Faster Storage Devices Profiling with Parallel SeRRa

Jean Bez Francieli Boito Rodrigo Kassick Vinícius Machado Philippe Navaux

Federal University of Rio Grande do Sul (UFRGS), Brazil

XIII WSPPD - July 21st, 2015 Porto Alegre, Brazil

Summary

Introduction

SeRRa

Parallel SeRRa

Performance Evaluation

Conclusion

Introduction

Introduction 1/33

Hard Disk Drives

- Main non-volatile storage option
- Mechanical parts limit their performance
- Most Systems were developed or adapted in order to maximize their performance

Introduction 2/33

RAID Arrays

- Another popular solution
- Combine multiple hard disks onto a virtual unit
- Data is striped among the disks and can be retrieved in parallel

ntroduction 3/

Solid State Drives

- Recent Alternative
- No mechanical parts
- Lower power consumption

Introduction 4/33

Performance differences

- SSDs and RAID arrays are inherently different from HDDs
- They cannot be treated as "faster disks"

ntroduction 5/3

Spatial Locality

- HDDs perform better sequentially
- RAID arrays' performance are usually better with sequential accesses

ntroduction 6/33

Spatial Locality

- Works that aim to characterize SSDs reach different conclusions
- In some disks, there is no difference between sequential and random accesses
- Others have differences in orders of magnitude

ntroduction 7/

Classifying Optimizations

- Optimizations cannot be classified between suitable for HDDs or SSDs
 - Sequential approaches can benefit both HDDs and certain SSDs
 - The optimization might not compensate its overhead

ntroduction 8/3

A New Tool

- We could classify these according to the sequential to random throughput ratio
- Obtaining this metric can be time-consuming
- We developed SeRRa to provide this metric as quickly as possible with small errors

ntroduction 9/3

Parallelizing

- Faster profiling would facilitate the tool's use for dynamic decision making
- SeRRa's accuracy can be increased by allowing more repetitions of its benchmark
- For these reasons, we developed a parallel version of SeRRa

ntroduction 10/33

SeRRa

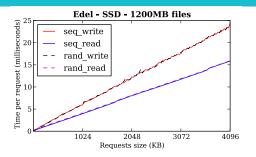
SeRRa

- A storage device profiling tool
- Written in Python
- Provides the sequential to random throughput ratio of storage devices

SeRRa 12/

Goals

- Performance: Provide results as fast as possible
- Accuracy: Results must reflect the real behavior of the profiled devices
- Generality: The tool must be easy to use and do not require user-provided information about the device


Serra 13/3

Difficulties

- Keeping both performance and accuracy goals is challenging
- Profiling a storage device properly can take a long time
- Results depend on a system configuration
- Changes could require a new profiling

Serra 14/33

Solution

- Most of our tests' graphs present a linear function appearance
- Possible to estimate accurate results with linear regressions

SeRRa

Monte Carlo

 Request sizes inside a given interval are randomly picked

Serra 16/33

2. Benchmark

Tests are executed for the picked request sizes

SeRRa 16/33

- 3. Linear regression
 - Estimate the complete set of access times

Serra 16/33

4. Report

 Ratios for write and read tests are reported

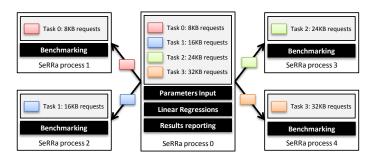
Parallel SeRRa

Parallel SeRRa 17/3

Motivation

- It is usual for HPC architectures to dedicate a set of nodes for the parallel file system deployment
- This shared storage infrastructure often uses identical storage devices on all involved machines
- These devices are expected to present the same performance behavior

Parallel SeRRa 18/33


Implementation

- A parallel implementation which benefits from this characteristic
- Parallelization with MPI4PY
- Master-Slave paradigm for communication between processors
- Parallelism is limited by:
 - Number of intervals
 - Measuring points per interval

Benchmark repetitions

Parallel SeRRa 19/33

Organization

- Only the benchmark step was parallelized
- Master is responsible for all other steps

Performance Evaluation

Performance Evaluation 21/33

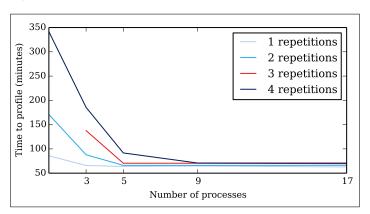
Tests' Environment

- Four different clusters from Grid'5000
 - Graphene and Pastel use HDDs
 - Suno uses an RAID-0 array
 - Edel uses SSDs

Performance Evaluation 22/3:

Profiling Time

Time to profile (in minutes)


	No SeRRa	Sequential SeRRa		Parallel SeRRa
	NO SERINA	1 repetition	4 repetitions	4 repetitions
Pastel (HDD)	19769.4	93.21 (1/212)	376.99 (1/52)	71.57 (1/276)
Graphene (HDD)	7222.8	85.69 (1/84)	341.50 (1/21)	70.75 (1/102)
Suno (RAID-0)	3679.2	28.12 (1/130)	109.42 (1/33)	21.56(1/171)
Edel (SSD)	2426.4	5.92 (1/409)	23.58 (1/102)	2.72(1/892)
Sum	33097.8	212.94 (1/155)	851.49 (1/39)	166.6 (1/199)

 Parallel SeRRa's times for 4 benchmark repetitions were faster than sequential SeRRa with 1 repetition

Performance Evaluation 23/3:

Profiling Time

Time to profile disks with Parallel SeRRa - Graphene cluster (HDDs)

Other curves omitted because of similarities

Performance Evaluation 24/33

Analysis

- Performance increases with the number of processes
- This increase is limited by the number of benchmark repetitions

Performance Evaluation 25/3:

Analysis

- In most cases with 4 benchmark repetitions, there's no difference between using 9 or 17 processes
- Same for 2 benchmark repetitions and 5 or 9 processes
- Maximum speedup can be reached using a number of tasks which is twice the number of slave processes

Performance Evaluation 26/33

Speedup

Speedup provided by SeRRa's parallel implementation (with the best number of processes to each case).

Benchmark repetitions	Pastel (HDD)	Graphene (HDD)	Suno (RAID-0)	Edel (SSD)
1	1.47	1.37	1.31	2.29
2	2.76	2.59	2.6	4.51
3	2.15	1.98	2.18	3.31
4	5.34	4.83	5.08	8.71

- Speedup increases with the number of benchmark executions
- Edel cluster has the highest speedups

Limitation

- Storage device presents a high sequential to random throughput ratio
- A Task consisting of many small, random accesses will take much longer than other possible tasks

Performance Evaluation 28/33

Limitation

- This creates a situation of Load Imbalance
- The imbalance can impair speedup due to longer execution times

Performance Evaluation 29/3:

Analysis

Sequential to random ratio with 1200MB files for 8KB requests - measured vs. estimated with SeRRa tool (4 repetitions).

		Pastel (HDD)	Graphene (HDD)	Suno (RAID-0)	Edel (SSD)
Write	Measured	21.29	15.12	8.17	0.66
	SeRRa	22.62	15.21	8.42	0.67
Read	Measured	38.91	40.68	25.46	2.37
	SeRRa	39.08	40.65	25.51	2.38

- Edel cluster has the lowest ratios
- Load unbalance is also smaller
 - Presents the highest speedups

Performance Evaluation 30/33

Conclusion

Conclusion 31/33

Final Remarks

- We presented a parallel implementation of a storage device profiling tool named SeRRa
- SeRRa is available at http://serratool.bitbucket.org

Conclusion 32/3:

Final Remarks

- We have evaluated our approach with four different clusters, using HDDs, RAID arrays and SSDs
- Our results show performance improvements
 - Up to 8.71 times over sequential SeRRa
 - Up to 895 times over not using SeRRa

 It is possible to achieve more accurate results with same profiling time

Conclusion 33/3: