
Designing Virtual Knowledge Graphs
with Ontop and Ontopic Studio
Diego Calvanese1,2, Benjamin Cogrel1,2, Davide Lanti2
1 Ontopic s.r.l.
2 Free University of Bozen-Bolzano
15th Seminar on Ontology Research in Brazil (OntoBras 2022),

25 November 2022

Outline of the tutorial

1. Introduction to Virtual Knowledge Graphs (VKGs)
45 min – Diego Calvanese

2. Introduction to Ontopic Studio
45 min – Benjamin Cogrel

3. VKG Design with Ontopic Studio (handson)
60 min – Benjamin Cogrel

4. Setting up and accessing a SPARQL endpoint with Ontop (handson)
30 min – Davide Lanti

Part I

Introduction to Virtual Knowledge Graphs

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 0/44

Outline of Part 1

1. Challenges in Data Access

2. A Quick History of VKGs

3. Ontop

4. The VKG Framework

5. Query Answering in VKGs

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 0/44

Challenges in data management

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 1/44

Variety, not volume, is driving data management initiatives

69%

25%

6%

Relative Importance

Variety
Volume
Velocity

[MIT Sloan Management Review (28 March 2016)]
http://sloanreview.mit.edu/article/variety-not-volume-is-driving-big-data-initiatives/

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 2/44

 http://sloanreview.mit.edu/article/variety-not-volume-is-driving-big-data-initiatives/

The problem of data access

In large organization data management is a complex challenge:
• Many different data sets are created independently.
• The data is heterogeneous in the way it is represented and structured.
• Data are often stored across different sources (possibly controlled by

different people / organizations).

However, complex data processing pipelines (e.g., for
analysis, monitoring and prediction) require to

access in an integrated and uniform way
such large, richly structured, and heterogeneus data sets.

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 3/44

The problem of data access

In large organization data management is a complex challenge:
• Many different data sets are created independently.
• The data is heterogeneous in the way it is represented and structured.
• Data are often stored across different sources (possibly controlled by

different people / organizations).

However, complex data processing pipelines (e.g., for
analysis, monitoring and prediction) require to

access in an integrated and uniform way
such large, richly structured, and heterogeneus data sets.

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 3/44

Why heterogeneity?

• Data model heterogeneity: Relational data, graph data, xml, json, csv, text
files, . . .

• System heterogeneity: Even when systems adopt the same data model,
they are not always fully compatible.

• Schema heterogeneity: Different people see things differently, and design
schemas differently!

• Data-level heterogeneity: e.g., ‘IBM’ vs. ‘Int. Business Machines’ vs.
‘International Business Machines’

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 4/44

Schema heterogeneity

Source 1

Movie (mid, title)
Actor (aid, firstName, lastName,

nationality, yearOfBirth)
Plays (aid, mid)
MovieDetails (mid, director, genre, year)

Source 2

Cinema (place, movie, start)

Source 3

NYCCinema (name, title, startTime)

Source 4

MovieGenre (title, genre)
MovieDirector (title, dir)
MovieYear (title, year)

Source 5

Review (title, date, grade, review)

Source 6

Movie (title, director, year, genre)
Actor (title, name)
Plays (movie, location, startTime)
Review (title, rating, description)

Organization of
tables and attributes
Table and attribute

names
Coverage and detail

of the schema

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 5/44

Schema heterogeneity

Source 1

Movie (mid, title)
Actor (aid, firstName, lastName,

nationality, yearOfBirth)
Plays (aid, mid)
MovieDetails (mid, director, genre, year)

Source 2

Cinema (place, movie, start)

Source 3

NYCCinema (name, title, startTime)

Source 4

MovieGenre (title, genre)
MovieDirector (title, dir)
MovieYear (title, year)

Source 5

Review (title, date, grade, review)

Source 6

Movie (title, director, year, genre)
Actor (title, name)
Plays (movie, location, startTime)
Review (title, rating, description)

Organization of
tables and attributes

Table and attribute
names

Coverage and detail
of the schema

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 5/44

Schema heterogeneity

Source 1

Movie (mid, title)
Actor (aid, firstName, lastName,

nationality, yearOfBirth)
Plays (aid, mid)
MovieDetails (mid, director, genre, year)

Source 2

Cinema (place, movie, start)

Source 3

NYCCinema (name, title, startTime)

Source 4

MovieGenre (title, genre)
MovieDirector (title, dir)
MovieYear (title, year)

Source 5

Review (title, date, grade, review)

Source 6

Movie (title, director, year, genre)
Actor (title, name)
Plays (movie, location, startTime)
Review (title, rating, description)

Organization of
tables and attributes

Table and attribute
names

Coverage and detail
of the schema

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 5/44

Schema heterogeneity

Source 1

Movie (mid, title)
Actor (aid, firstName, lastName,

nationality, yearOfBirth)
Plays (aid, mid)
MovieDetails (mid, director, genre, year)

Source 2

Cinema (place, movie, start)

Source 3

NYCCinema (name, title, startTime)

Source 4

MovieGenre (title, genre)
MovieDirector (title, dir)
MovieYear (title, year)

Source 5

Review (title, date, grade, review)

Source 6

Movie (title, director, year, genre)
Actor (title, name)
Plays (movie, location, startTime)
Review (title, rating, description)

Organization of
tables and attributes

Table and attribute
names

Coverage and detail
of the schema

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 5/44

Schema heterogeneity

Source 1

Movie (mid, title)
Actor (aid, firstName, lastName,

nationality, yearOfBirth)
Plays (aid, mid)
MovieDetails (mid, director, genre, year)

Source 2

Cinema (place, movie, start)

Source 3

NYCCinema (name, title, startTime)

Source 4

MovieGenre (title, genre)
MovieDirector (title, dir)
MovieYear (title, year)

Source 5

Review (title, date, grade, review)

Source 6

Movie (title, director, year, genre)
Actor (title, name)
Plays (movie, location, startTime)
Review (title, rating, description)

Organization of
tables and attributes

Table and attribute
names

Coverage and detail
of the schema

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 5/44

Schema heterogeneity

Source 1

Movie (mid, title)
Actor (aid, firstName, lastName,

nationality, yearOfBirth)
Plays (aid, mid)
MovieDetails (mid, director, genre, year)

Source 2

Cinema (place, movie, start)

Source 3

NYCCinema (name, title, startTime)

Source 4

MovieGenre (title, genre)
MovieDirector (title, dir)
MovieYear (title, year)

Source 5

Review (title, date, grade, review)

Source 6

Movie (title, director, year, genre)
Actor (title, name)
Plays (movie, location, startTime)
Review (title, rating, description)

Organization of
tables and attributes
Table and attribute

names

Coverage and detail
of the schema

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 5/44

How can we address the complexity of data access?

We combine three key ideas:

1. Expose to users/applications the data in a very flexible data model, making
use of terms the users are familiar with
{ Knowledge Graph with vocabulary expressed in a domain ontology.

2. Map the data sources to the domain ontology to provide data for the KG.

3. Exploit virtualization, i.e., the KG is not materialized, but kept virtual.

This gives rise to the Virtual Knowledge Graph (VKG) approach to data
access, also called Ontology-based Data Access (OBDA).
[Xiao, Calvanese, et al. 2018, IJCAI]

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 6/44

Virtual Knowledge Graph (VKG) architecture

Mapping

VKG
Query

Query
Result Ontology

Data
Sources•••

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 7/44

Why an ontology?

An ontology is a structured formal
representation of concepts and their
relationships that are relevant for
the domain of interest.

Mapping

Data
Sources

Query Query
Result

Ontology
VKG

•••

• In the VKG setting, the ontology has two purposes:
• It defines a vocabulary of terms to denote classes and properties that are familiar to

the user.
• It extends the data in the sources with background knowledge about the domain of

interest, and this knowledge is machine processable.
• One can make use of custom-built domain ontologies.
• In addition, one can rely on standard ontologies, which are available for

many domains.

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 8/44

Why an ontology?

An ontology is a structured formal
representation of concepts and their
relationships that are relevant for
the domain of interest.

Mapping

Data
Sources

Query Query
Result

Ontology
VKG

•••

• In the VKG setting, the ontology has two purposes:
• It defines a vocabulary of terms to denote classes and properties that are familiar to

the user.
• It extends the data in the sources with background knowledge about the domain of

interest, and this knowledge is machine processable.
• One can make use of custom-built domain ontologies.
• In addition, one can rely on standard ontologies, which are available for

many domains.
Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 8/44

Why a KG for the global schema?

Traditional approaches to data management
rely on the relational model.

Mapping

Data
Sources

Query Query
Result

Ontology
VKG

•••

A Knowledge Graph, instead:
• Does not require to commit early on to a specific structure.
• Can better accommodate heterogeneity.
• Can better deal with missing / incomplete information.
• Does not require complex restructuring operations to accommodate

changes or new information.

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 9/44

Why a KG for the global schema?

Traditional approaches to data management
rely on the relational model.

Mapping

Data
Sources

Query Query
Result

Ontology
VKG

•••

A Knowledge Graph, instead:
• Does not require to commit early on to a specific structure.
• Can better accommodate heterogeneity.
• Can better deal with missing / incomplete information.
• Does not require complex restructuring operations to accommodate

changes or new information.

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 9/44

Why mappings?

Traditional approaches to data
access/integration rely on mediators,
which are specified through complex code.

Mapping

Data
Sources

Query Query
Result

Ontology
VKG

•••

Mappings, instead:
• Provide a declarative specification, and not code.
• Are easier to understand, and hence to design and to maintain.
• Support an incremental approach to integration.
• Are machine processable, hence are used in query answering and for

query optimization.

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 10/44

Why mappings?

Traditional approaches to data
access/integration rely on mediators,
which are specified through complex code. Mapping

Data
Sources

Query Query
Result

Ontology
VKG

•••

Mappings, instead:
• Provide a declarative specification, and not code.
• Are easier to understand, and hence to design and to maintain.
• Support an incremental approach to integration.
• Are machine processable, hence are used in query answering and for

query optimization.

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 10/44

Why virtualization?

Materialized data access /1 integration relies on
extract-transform-load (ETL) operations, to
load data into an integrated data store / data
warehouse / materialized KG.

Mapping

Data
Sources

Query Query
Result

Ontology
VKG

•••

In the virtual approach, instead:
• The data stays in the sources and is only accessed at query time.
• No need to construct a large and potentially costly materialized data store

and keep it up-to-date.
• Hence the data is always fresh wrt the latest updates at the sources.
• One can rely on existing data infrastructure and expertise.

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 11/44

Why virtualization?

Materialized data access /1 integration relies on
extract-transform-load (ETL) operations, to
load data into an integrated data store / data
warehouse / materialized KG.

Mapping

Data
Sources

Query Query
Result

Ontology
VKG

•••

In the virtual approach, instead:
• The data stays in the sources and is only accessed at query time.
• No need to construct a large and potentially costly materialized data store

and keep it up-to-date.
• Hence the data is always fresh wrt the latest updates at the sources.
• One can rely on existing data infrastructure and expertise.

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 11/44

Engineering a VKG solution – Which languages?

Which are the right languages for the
components of the VKG framework?

We need to consider the tradeoff between
expressive power and efficiency, where efficiency
with respect to the data is the key aspect to
consider.

Mapping

Data
Sources

Query Query
Result

Ontology
VKG

•••

The W3C has standardized languages that are suitable for VKGs:
1. Knowledge graph: expressed in RDF [W3C Rec. 2014] (v1.1)
2. Ontology O: expressed in OWL 2 QL [W3C Rec. 2012]
3. MappingM: expressed in R2RML [W3C Rec. 2012]
4. Query: expressed in SPARQL [W3C Rec. 2013] (v1.1)

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 12/44

Engineering a VKG solution – Which languages?

Which are the right languages for the
components of the VKG framework?

We need to consider the tradeoff between
expressive power and efficiency, where efficiency
with respect to the data is the key aspect to
consider.

Mapping

Data
Sources

Query Query
Result

Ontology
VKG

•••

The W3C has standardized languages that are suitable for VKGs:
1. Knowledge graph: expressed in RDF [W3C Rec. 2014] (v1.1)
2. Ontology O: expressed in OWL 2 QL [W3C Rec. 2012]
3. MappingM: expressed in R2RML [W3C Rec. 2012]
4. Query: expressed in SPARQL [W3C Rec. 2013] (v1.1)

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 12/44

Outline

1. Challenges in Data Access

2. A Quick History of VKGs

3. Ontop

4. The VKG Framework

5. Query Answering in VKGs

Outline

1. Challenges in Data Access

2. A Quick History of VKGs

3. Ontop

4. The VKG Framework

5. Query Answering in VKGs

A quick history of VKGs

1990’s Logic-based knowledge representation languages proposed as global
schema formalisms in data integration: high expressive power, too
complex { mostly theoretical

2005 Families of lightweight ontology languages (or Description Logics)
{ DL-Lite family of DLs

2007 DL-Lite used as a basis for the Ontology-based Data Access (OBDA)
paradigm: based on conjunctive queries, abstract mapping language

2012 OWL 2 standardized by W3C with 3 profiles: OWL 2 QL profile based on
DL-Lite

2012 R2RML mapping language standardized by W3C

> 2012 OBDA paradigm moved to Semantic Web standards

2019 OBDAs rebranded as VKGs

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 13/44

Outline

1. Challenges in Data Access

2. A Quick History of VKGs

3. Ontop

4. The VKG Framework

5. Query Answering in VKGs

The Ontop system

https://ontop-vkg.org/

• State-of-the-art VKG system
• Compliant with all relevant Semantic Web standards:

RDF, RDFS, OWL 2 QL, R2RML, SPARQL, and GeoSPARQL

• Supports all major relational DBs:
Oracle, DB2, MS SQL Server, Postgres, MySQL, Teiid, Dremio, Denodo, etc.

• Open-source and released under Apache 2 license.

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 14/44

https://ontop-vkg.org/

Developer community

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 15/44

Some use cases of Ontop – Research projects

• EU FP7 project Optique “Scalable End-user Access to Big Data” (11/2012 – 10/2016)
• 10 partners, including industrial partners Statoil, Siemens, DNV
• Ontop is core component of the Optique platform

• EU project EPNet (ERC Advanced Grant) “Production and distribution of food during the
Roman Empire: Economics and Political Dynamics”
• Access to data in the cultural heritage domain [Calvanese et al. 2016, EAAI]

• Euregio project KAOS “Knowledge-aware Operational Support” (06/2016 – 05/2019)
• Preparation of standardized log files from timestamped log data for the purpose of

process mining

• EU H2020 project INODE “Intelligent Open Data Exploration” (11/2019 – 04/2023)
• Development of techniques for the flexible interaction with data

See also [Xiao, Ding, et al. 2019].

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 16/44

Some use cases of Ontop – Industrial applications

• Industry 4.0
• Many vendors / historical data of exploration campaigns
• Examples: Equinor, Siemens, Bosch

• Analytical / BI
• Combine internal data, manual processes (e.g., Excel) and external data
• Data privacy issues / GDPR: we need to avoid data copies
• Examples: Toscana Open Research, a large European university

• Geospatial data
• GeoSPARQL over PostGIS
• Examples: LinkedGeoData.org, South Tyrolean Open Data Hub

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 17/44

Outline

1. Challenges in Data Access

2. A Quick History of VKGs

3. Ontop

4. The VKG Framework

5. Query Answering in VKGs

Components of the VKG architecture

We consider now the main components that
make up a VKG system, and the languages
used to define them.

Mapping

Data
Sources

Query Query
Result

Ontology
VKG

•••

The W3C has standardized languages that are suitable for VKGs:
1. Knowledge graph: expressed in RDF [W3C Rec. 2014] (v1.1)
2. Ontology O: expressed in OWL 2 QL [W3C Rec. 2012]
3. MappingM: expressed in R2RML [W3C Rec. 2012]
4. Query: expressed in SPARQL [W3C Rec. 2013] (v1.1)

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 18/44

Components of the VKG architecture

We consider now the main components that
make up a VKG system, and the languages
used to define them.

Mapping

Data
Sources

Query Query
Result

Ontology
VKG

•••

The W3C has standardized languages that are suitable for VKGs:
1. Knowledge graph: expressed in RDF [W3C Rec. 2014] (v1.1)
2. Ontology O: expressed in OWL 2 QL [W3C Rec. 2012]
3. MappingM: expressed in R2RML [W3C Rec. 2012]
4. Query: expressed in SPARQL [W3C Rec. 2013] (v1.1)

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 18/44

RDF – Data is represented as a graph

The graph consists of a set of subject-predicate-object triples relating
objects to other objects or values, and to classes.

Object property:
<A-1> ore:describes <ReM-1> .

Data property:
<ReM-1> :created "2008-02-07" .

Class membership:
<A-1> rdf:type :JournalArticle .

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 19/44

SPARQL query language
• Is the standard query language for RDF data. [W3C Rec. 2008, 2013]

• Core query mechanism is based on graph matching.

SELECT ?a ?t
WHERE { ?a rdf:type Actor .

?a playsIn ?m .
?m rdf:type Movie .
?m title ?t .

}

?a

Actor

?m

Movie

?t

rdf:type

playsIn

rdf:type

title

Additional language features (SPARQL 1.1):
• UNION: matches one of alternative graph patterns
• OPTIONAL: produces a match even when part of the pattern is missing
• complex FILTER conditions
• GROUP BY, to express aggregations
• MINUS, to remove possible solutions
• property paths (regular expressions)

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 20/44

SPARQL query language
• Is the standard query language for RDF data. [W3C Rec. 2008, 2013]
• Core query mechanism is based on graph matching.
SELECT ?a ?t
WHERE { ?a rdf:type Actor .

?a playsIn ?m .
?m rdf:type Movie .
?m title ?t .

}

?a

Actor

?m

Movie

?t

rdf:type

playsIn

rdf:type

title

Additional language features (SPARQL 1.1):
• UNION: matches one of alternative graph patterns
• OPTIONAL: produces a match even when part of the pattern is missing
• complex FILTER conditions
• GROUP BY, to express aggregations
• MINUS, to remove possible solutions
• property paths (regular expressions)

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 20/44

SPARQL query language
• Is the standard query language for RDF data. [W3C Rec. 2008, 2013]
• Core query mechanism is based on graph matching.
SELECT ?a ?t
WHERE { ?a rdf:type Actor .

?a playsIn ?m .
?m rdf:type Movie .
?m title ?t .

}

?a

Actor

?m

Movie

?t

rdf:type

playsIn

rdf:type

title

Additional language features (SPARQL 1.1):
• UNION: matches one of alternative graph patterns
• OPTIONAL: produces a match even when part of the pattern is missing
• complex FILTER conditions
• GROUP BY, to express aggregations
• MINUS, to remove possible solutions
• property paths (regular expressions)

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 20/44

SPARQL Basic Graph Patterns

Basic Graph Pattern (BGP) are the simplest form of SPARQL query, asking
for a pattern in the RDF graph, made up of triple patterns.

Example: BGP
SELECT ?p ?ln ?c ?t
WHERE {
?p :lastName ?ln .
?p :teaches ?c .
?c :title ?t .

}

When evaluated over the RDF graph
Professor

<uni2/p/25> <uni2/p/38>

"Artale"

<uni2/c/7> <uni2/c/5>

"Anna" "Rossi"

"KR" "Databases"

rdf:type rdf:type

:lastName :teaches
:teaches

:givesLab

:firstName

:lastName

:title :title

. . . the query returns:
p ln c t

<uni2/p/25> "Artale" <uni2/c/5> "Databases"
<uni2/p/25> "Artale" <uni2/c/7> "KR"

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 21/44

SPARQL Basic Graph Patterns

Basic Graph Pattern (BGP) are the simplest form of SPARQL query, asking
for a pattern in the RDF graph, made up of triple patterns.

Example: BGP
SELECT ?p ?ln ?c ?t
WHERE {
?p :lastName ?ln .
?p :teaches ?c .
?c :title ?t .

}

When evaluated over the RDF graph
Professor

<uni2/p/25> <uni2/p/38>

"Artale"

<uni2/c/7> <uni2/c/5>

"Anna" "Rossi"

"KR" "Databases"

rdf:type rdf:type

:lastName :teaches
:teaches

:givesLab

:firstName

:lastName

:title :title

. . . the query returns:
p ln c t

<uni2/p/25> "Artale" <uni2/c/5> "Databases"
<uni2/p/25> "Artale" <uni2/c/7> "KR"

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 21/44

Abbreviated syntax for Basic Graph Patterns

We can use an abbreviated syntax for BGPs, that avoids repeating the
subject of triple patterns.

Ex.: BGP
SELECT ?p ?ln ?c ?t ?r
WHERE {
?p :lastName ?ln .
?p :teaches ?c .
?c :title ?t .
?c :room ?r .

}

Ex.: BGP with abbreviated syntax
SELECT ?p ?ln ?c ?t ?r
WHERE {
?p :lastName ?ln ;
:teaches ?c .

?c :title ?t ;
:room ?r .

}

When we end a triple pattern with a ’;’ (instead of ’.’), the next triple
pattern uses the same subject (which therefore is not repeated).

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 22/44

Abbreviated syntax for Basic Graph Patterns

We can use an abbreviated syntax for BGPs, that avoids repeating the
subject of triple patterns.

Ex.: BGP
SELECT ?p ?ln ?c ?t ?r
WHERE {
?p :lastName ?ln .
?p :teaches ?c .
?c :title ?t .
?c :room ?r .

}

Ex.: BGP with abbreviated syntax
SELECT ?p ?ln ?c ?t ?r
WHERE {
?p :lastName ?ln ;
:teaches ?c .

?c :title ?t ;
:room ?r .

}

When we end a triple pattern with a ’;’ (instead of ’.’), the next triple
pattern uses the same subject (which therefore is not repeated).
Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 22/44

Projecting out variables in a SPARQL query

A query may also return only a subset of the variables used in the BGP.

Ex.: BGP with projection
SELECT ?ln ?t
WHERE {
?p :lastName ?ln .
?p :teaches ?c .
?c :title ?t .

}

When evaluated over the RDF graph
Professor

<uni2/p/25> <uni2/p/38>

"Artale"

<uni2/c/7> <uni2/c/5>

"Anna" "Rossi"

"KR" "Databases"

rdf:type rdf:type

:lastName :teaches
:teaches

:givesLab

:firstName

:lastName

:title :title

. . . the query returns:
ln t

"Artale" "Databases"
"Artale" "KR"

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 23/44

Projecting out variables in a SPARQL query

A query may also return only a subset of the variables used in the BGP.

Ex.: BGP with projection
SELECT ?ln ?t
WHERE {
?p :lastName ?ln .
?p :teaches ?c .
?c :title ?t .

}

When evaluated over the RDF graph
Professor

<uni2/p/25> <uni2/p/38>

"Artale"

<uni2/c/7> <uni2/c/5>

"Anna" "Rossi"

"KR" "Databases"

rdf:type rdf:type

:lastName :teaches
:teaches

:givesLab

:firstName

:lastName

:title :title

. . . the query returns:
ln t

"Artale" "Databases"
"Artale" "KR"

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 23/44

Anonymous variables

We can use [...] to represent an anonymous variable.

Ex.: BGP
SELECT ?ln ?t ?r
WHERE {
?p :lastName ?ln ;
:teaches ?c .

?c :title ?t ;
:room ?r .

}

Ex.: BGP with anonymous variable
SELECT ?ln ?t ?r
WHERE {
?p :lastName ?ln ;
:teaches

[:title ?t ;
:room ?r .] .

}

Within the square brackets, the triple patterns, separated by ’;’, all have
the anonymous variable as subject.

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 24/44

Anonymous variables

We can use [...] to represent an anonymous variable.

Ex.: BGP
SELECT ?ln ?t ?r
WHERE {
?p :lastName ?ln ;
:teaches ?c .

?c :title ?t ;
:room ?r .

}

Ex.: BGP with anonymous variable
SELECT ?ln ?t ?r
WHERE {
?p :lastName ?ln ;
:teaches

[:title ?t ;
:room ?r .] .

}

Within the square brackets, the triple patterns, separated by ’;’, all have
the anonymous variable as subject.

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 24/44

Union of Basic Graph Patterns

Example: BGPs with UNION
SELECT ?p ?ln ?c
WHERE {
{ ?p :lastName ?ln . ?p :teaches ?c . }
UNION
{ ?p :lastName ?ln . ?p :givesLab ?c . }

}

When evaluated over
Professor

<uni2/p/25> <uni2/p/38>

"Artale"

<uni2/c/7> <uni2/c/5>

"Anna" "Rossi"

"KR" "Databases"

rdf:type rdf:type

:lastName :teaches
:teaches

:givesLab

:firstName

:lastName

:title :title

. . . the query returns:

p ln c
<uni2/p/25> "Artale" <uni2/c/5>

<uni2/p/25> "Artale" <uni2/c/7>

<uni2/p/38> "Rossi" <uni2/c/5>

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 25/44

Union of Basic Graph Patterns

Example: BGPs with UNION
SELECT ?p ?ln ?c
WHERE {
{ ?p :lastName ?ln . ?p :teaches ?c . }
UNION
{ ?p :lastName ?ln . ?p :givesLab ?c . }

}

When evaluated over
Professor

<uni2/p/25> <uni2/p/38>

"Artale"

<uni2/c/7> <uni2/c/5>

"Anna" "Rossi"

"KR" "Databases"

rdf:type rdf:type

:lastName :teaches
:teaches

:givesLab

:firstName

:lastName

:title :title

. . . the query returns:

p ln c
<uni2/p/25> "Artale" <uni2/c/5>

<uni2/p/25> "Artale" <uni2/c/7>

<uni2/p/38> "Rossi" <uni2/c/5>

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 25/44

Extending BGPs with OPTIONAL
We might want to add information when available, but not reject a
solution when some part of the query does not match.

Ex.: BGP with OPTIONAL
SELECT ?p ?fn ?ln
WHERE {
?p :lastName ?ln .
OPTIONAL {
?p :firstName ?fn .

}
}

When evaluated over the RDF graph
Professor

<uni2/p/25> <uni2/p/38>

"Artale"

<uni2/c/7> <uni2/c/5>

"Anna" "Rossi"

"KR" "Databases"

rdf:type rdf:type

:lastName :teaches
:teaches

:givesLab

:firstName

:lastName

:title :title

. . . the query returns:
p fn ln

<uni2/p/25> "Artale"
<uni2/p/38> "Anna" "Rossi"

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 26/44

Extending BGPs with OPTIONAL
We might want to add information when available, but not reject a
solution when some part of the query does not match.

Ex.: BGP with OPTIONAL
SELECT ?p ?fn ?ln
WHERE {
?p :lastName ?ln .
OPTIONAL {
?p :firstName ?fn .

}
}

When evaluated over the RDF graph
Professor

<uni2/p/25> <uni2/p/38>

"Artale"

<uni2/c/7> <uni2/c/5>

"Anna" "Rossi"

"KR" "Databases"

rdf:type rdf:type

:lastName :teaches
:teaches

:givesLab

:firstName

:lastName

:title :title

. . . the query returns:
p fn ln

<uni2/p/25> "Artale"
<uni2/p/38> "Anna" "Rossi"

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 26/44

ORDER BY, LIMIT, and OFFSET
We might be interested in obtaining the results in a certain order, and/or
only some of the results. This is controlled by three clauses, appended to
the WHERE {} block: ORDER BY, LIMIT, and OFFSET.

Ex.: Ordering and limiting results
SELECT ?ln ?t ?r
WHERE {
?p :lastName ?ln ;
:teaches ?c .

?c :title ?t ;
:room ?r .
}
ORDER BY ?ln
LIMIT 10
OFFSET 5

Ex.: Multiple order comparators
SELECT ?ln ?t ?r
WHERE {
?p :lastName ?ln ;
:teaches ?c .

?c :title ?t ;
:room ?r .
}
ORDER BY ASC(?ln) DESC(?t)

The default is no limit, and offset 0.

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 27/44

ORDER BY, LIMIT, and OFFSET
We might be interested in obtaining the results in a certain order, and/or
only some of the results. This is controlled by three clauses, appended to
the WHERE {} block: ORDER BY, LIMIT, and OFFSET.

Ex.: Ordering and limiting results
SELECT ?ln ?t ?r
WHERE {
?p :lastName ?ln ;
:teaches ?c .

?c :title ?t ;
:room ?r .
}
ORDER BY ?ln
LIMIT 10
OFFSET 5

Ex.: Multiple order comparators
SELECT ?ln ?t ?r
WHERE {
?p :lastName ?ln ;
:teaches ?c .

?c :title ?t ;
:room ?r .
}
ORDER BY ASC(?ln) DESC(?t)

The default is no limit, and offset 0.

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 27/44

ORDER BY, LIMIT, and OFFSET
We might be interested in obtaining the results in a certain order, and/or
only some of the results. This is controlled by three clauses, appended to
the WHERE {} block: ORDER BY, LIMIT, and OFFSET.

Ex.: Ordering and limiting results
SELECT ?ln ?t ?r
WHERE {
?p :lastName ?ln ;
:teaches ?c .

?c :title ?t ;
:room ?r .
}
ORDER BY ?ln
LIMIT 10
OFFSET 5

Ex.: Multiple order comparators
SELECT ?ln ?t ?r
WHERE {
?p :lastName ?ln ;
:teaches ?c .

?c :title ?t ;
:room ?r .
}
ORDER BY ASC(?ln) DESC(?t)

The default is no limit, and offset 0.
Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 27/44

FILTER conditions
We might want to select only those query answers respecting a condition.
This can be achieved by adding FILTER conditions to the query.

Example: BGP with a FILTER condition
SELECT ?ln ?dob
WHERE {
?p :lastName ?ln ; :isBorn ?dob .
FILTER("1990-01-01"^^xsd:dateTime <= ?dob &&

?dob < "1996-01-01"^^xsd:dateTime) .
}

FILTER() takes an expression returning an xsd:boolean, built using:
• comparison atoms, using the comparison operators: =, !=, <, >, <=, >=;
• logical connectives: && and ||;
• EXISTS { graph-pattern } and NOT EXISTS { graph-pattern };
• SPARQL functions (for more details, see the SPARQL standard).

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 28/44

FILTER conditions
We might want to select only those query answers respecting a condition.
This can be achieved by adding FILTER conditions to the query.
Example: BGP with a FILTER condition
SELECT ?ln ?dob
WHERE {
?p :lastName ?ln ; :isBorn ?dob .
FILTER("1990-01-01"^^xsd:dateTime <= ?dob &&

?dob < "1996-01-01"^^xsd:dateTime) .
}

FILTER() takes an expression returning an xsd:boolean, built using:
• comparison atoms, using the comparison operators: =, !=, <, >, <=, >=;
• logical connectives: && and ||;
• EXISTS { graph-pattern } and NOT EXISTS { graph-pattern };
• SPARQL functions (for more details, see the SPARQL standard).

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 28/44

FILTER conditions
We might want to select only those query answers respecting a condition.
This can be achieved by adding FILTER conditions to the query.
Example: BGP with a FILTER condition
SELECT ?ln ?dob
WHERE {
?p :lastName ?ln ; :isBorn ?dob .
FILTER("1990-01-01"^^xsd:dateTime <= ?dob &&

?dob < "1996-01-01"^^xsd:dateTime) .
}

FILTER() takes an expression returning an xsd:boolean, built using:
• comparison atoms, using the comparison operators: =, !=, <, >, <=, >=;
• logical connectives: && and ||;
• EXISTS { graph-pattern } and NOT EXISTS { graph-pattern };
• SPARQL functions (for more details, see the SPARQL standard).

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 28/44

SPARQL algebra

We have seen the following features of the SPARQL algebra:
• Basic Graph Patterns
• UNION

• OPTIONAL

• ORDER BY, LIMIT, OFFSET
• FILTER conditions

The overall algebra has additional features:
• GROUP BY, to express aggregations and support aggregation operators
• MINUS, to remove possible solutions
• path expressions, corresponding to regular expressions

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 29/44

SPARQL algebra

We have seen the following features of the SPARQL algebra:
• Basic Graph Patterns
• UNION

• OPTIONAL

• ORDER BY, LIMIT, OFFSET
• FILTER conditions

The overall algebra has additional features:
• GROUP BY, to express aggregations and support aggregation operators
• MINUS, to remove possible solutions
• path expressions, corresponding to regular expressions

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 29/44

The OWL 2 QL ontology language

• OWL 2 QL is one of the three standard profiles of OWL 2.
[W3C Rec. 2012]

• Is considered a lightweight ontology language:
• controlled expressive power
• efficient inference

• Optimized for accessing large amounts of data
• Queries over the ontology can be rewritten into SQL queries over the underlying

relational database (First-order rewritability).
• Consistency of ontology and data can also be checked by executing SQL queries.

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 30/44

Main constructs of OWL 2 QL

Class hierarchy: rdfs:subClassOf
Example: :MovieActor rdfs:subClassOf :Actor .

Inference: <person/2> rdf:type :MovieActor .
=⇒ <person/2> rdf:type :Actor .

Domain of properties: rdfs:domain
Example: :playsIn rdfs:domain :MovieActor .
Inference: <person/2> :playsIn <movie/3> .

=⇒ <person/2> rdf:type :MovieActor .

Range of properties: rdfs:range
Example: :playsIn rdfs:range :Movie .
Inference: <person/2> :playsIn <movie/3> .

=⇒ <movie/3> rdf:type :Movie .

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 31/44

Main constructs of OWL 2 QL

Class hierarchy: rdfs:subClassOf
Example: :MovieActor rdfs:subClassOf :Actor .
Inference: <person/2> rdf:type :MovieActor .

=⇒ <person/2> rdf:type :Actor .

Domain of properties: rdfs:domain
Example: :playsIn rdfs:domain :MovieActor .
Inference: <person/2> :playsIn <movie/3> .

=⇒ <person/2> rdf:type :MovieActor .

Range of properties: rdfs:range
Example: :playsIn rdfs:range :Movie .
Inference: <person/2> :playsIn <movie/3> .

=⇒ <movie/3> rdf:type :Movie .

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 31/44

Main constructs of OWL 2 QL

Class hierarchy: rdfs:subClassOf
Example: :MovieActor rdfs:subClassOf :Actor .
Inference: <person/2> rdf:type :MovieActor .

=⇒ <person/2> rdf:type :Actor .

Domain of properties: rdfs:domain
Example: :playsIn rdfs:domain :MovieActor .

Inference: <person/2> :playsIn <movie/3> .
=⇒ <person/2> rdf:type :MovieActor .

Range of properties: rdfs:range
Example: :playsIn rdfs:range :Movie .
Inference: <person/2> :playsIn <movie/3> .

=⇒ <movie/3> rdf:type :Movie .

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 31/44

Main constructs of OWL 2 QL

Class hierarchy: rdfs:subClassOf
Example: :MovieActor rdfs:subClassOf :Actor .
Inference: <person/2> rdf:type :MovieActor .

=⇒ <person/2> rdf:type :Actor .

Domain of properties: rdfs:domain
Example: :playsIn rdfs:domain :MovieActor .
Inference: <person/2> :playsIn <movie/3> .

=⇒ <person/2> rdf:type :MovieActor .

Range of properties: rdfs:range
Example: :playsIn rdfs:range :Movie .
Inference: <person/2> :playsIn <movie/3> .

=⇒ <movie/3> rdf:type :Movie .

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 31/44

Main constructs of OWL 2 QL

Class hierarchy: rdfs:subClassOf
Example: :MovieActor rdfs:subClassOf :Actor .
Inference: <person/2> rdf:type :MovieActor .

=⇒ <person/2> rdf:type :Actor .

Domain of properties: rdfs:domain
Example: :playsIn rdfs:domain :MovieActor .
Inference: <person/2> :playsIn <movie/3> .

=⇒ <person/2> rdf:type :MovieActor .

Range of properties: rdfs:range
Example: :playsIn rdfs:range :Movie .

Inference: <person/2> :playsIn <movie/3> .
=⇒ <movie/3> rdf:type :Movie .

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 31/44

Main constructs of OWL 2 QL

Class hierarchy: rdfs:subClassOf
Example: :MovieActor rdfs:subClassOf :Actor .
Inference: <person/2> rdf:type :MovieActor .

=⇒ <person/2> rdf:type :Actor .

Domain of properties: rdfs:domain
Example: :playsIn rdfs:domain :MovieActor .
Inference: <person/2> :playsIn <movie/3> .

=⇒ <person/2> rdf:type :MovieActor .

Range of properties: rdfs:range
Example: :playsIn rdfs:range :Movie .
Inference: <person/2> :playsIn <movie/3> .

=⇒ <movie/3> rdf:type :Movie .

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 31/44

Other constructs of OWL 2 QL
Class disjointness: owl:disjointWith

Example: :Actor owl:disjointWith :Movie .

Inference: <person/2> rdf:type :Actor .
<person/2> rdf:type :Movie .

=⇒ RDF graph inconsistent with the ontology

Inverse properties: owl:inverseOf
Example: :actsIn owl:inverseOf :hasActor .
Inference: <person/2> :actsIn <movie/3> .

=⇒ <movie/3> :hasActor <person/2> .

Property hierarchy
Property disjointness
Mandatory participation

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 32/44

Other constructs of OWL 2 QL
Class disjointness: owl:disjointWith

Example: :Actor owl:disjointWith :Movie .
Inference: <person/2> rdf:type :Actor .

<person/2> rdf:type :Movie .
=⇒ RDF graph inconsistent with the ontology

Inverse properties: owl:inverseOf
Example: :actsIn owl:inverseOf :hasActor .
Inference: <person/2> :actsIn <movie/3> .

=⇒ <movie/3> :hasActor <person/2> .

Property hierarchy
Property disjointness
Mandatory participation

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 32/44

Other constructs of OWL 2 QL
Class disjointness: owl:disjointWith

Example: :Actor owl:disjointWith :Movie .
Inference: <person/2> rdf:type :Actor .

<person/2> rdf:type :Movie .
=⇒ RDF graph inconsistent with the ontology

Inverse properties: owl:inverseOf
Example: :actsIn owl:inverseOf :hasActor .

Inference: <person/2> :actsIn <movie/3> .
=⇒ <movie/3> :hasActor <person/2> .

Property hierarchy
Property disjointness
Mandatory participation

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 32/44

Other constructs of OWL 2 QL
Class disjointness: owl:disjointWith

Example: :Actor owl:disjointWith :Movie .
Inference: <person/2> rdf:type :Actor .

<person/2> rdf:type :Movie .
=⇒ RDF graph inconsistent with the ontology

Inverse properties: owl:inverseOf
Example: :actsIn owl:inverseOf :hasActor .
Inference: <person/2> :actsIn <movie/3> .

=⇒ <movie/3> :hasActor <person/2> .

Property hierarchy
Property disjointness
Mandatory participation

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 32/44

Other constructs of OWL 2 QL
Class disjointness: owl:disjointWith

Example: :Actor owl:disjointWith :Movie .
Inference: <person/2> rdf:type :Actor .

<person/2> rdf:type :Movie .
=⇒ RDF graph inconsistent with the ontology

Inverse properties: owl:inverseOf
Example: :actsIn owl:inverseOf :hasActor .
Inference: <person/2> :actsIn <movie/3> .

=⇒ <movie/3> :hasActor <person/2> .

Property hierarchy
Property disjointness
Mandatory participation
Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 32/44

Representing OWL 2 QL ontologies as UML class diagrams

There is a close correspondence between OWL 2 QL and conceptual
modeling formalisms, such as UML class diagrams and ER schemas.
:MovieActor rdfs:subClassOf :Actor .
:MovieActor owl:disjointWith :SeriesActor .
:actsIn rdfs:domain :MovieActor .
:actsIn rdfs:range :Movie .
:actsIn rdfs:subPropertyOf :playsIn .
... owl:someValuesFrom ...

subclass
disjointness
domain
range
sub-association
mandatory participation

Actor
name: String

SeriesActor MovieActor

Play
title: String

MovieactsIn
1..⋆▶

playsIn
▶

{disjoint}
In fact, to visualize an OWL 2 QL
ontology, we can use standard
UML class diagrams.

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 33/44

Representing OWL 2 QL ontologies as UML class diagrams

There is a close correspondence between OWL 2 QL and conceptual
modeling formalisms, such as UML class diagrams and ER schemas.
:MovieActor rdfs:subClassOf :Actor .
:MovieActor owl:disjointWith :SeriesActor .
:actsIn rdfs:domain :MovieActor .
:actsIn rdfs:range :Movie .
:actsIn rdfs:subPropertyOf :playsIn .
... owl:someValuesFrom ...

subclass
disjointness
domain
range
sub-association
mandatory participation

Actor
name: String

SeriesActor MovieActor

Play
title: String

MovieactsIn
1..⋆▶

playsIn
▶

{disjoint}
In fact, to visualize an OWL 2 QL
ontology, we can use standard
UML class diagrams.

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 33/44

Use of mappings

In VKGs, the mappingM encodes how the data D in the sources should
be used to create the Virtual Knowledge Graph.

VKGV defined fromM and D
• Queries are answered with respect to O andV.
• The data ofV is not materialized (it is virtual!).
• Instead, the information in O andM is used to

translate queries over O into queries formulated
over the sources.
• Advantage, compared to materialization:

the graph is always up to date w.r.t. data sources.

MappingData
Sources

Query Query
Result

Ontology
VKG

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 34/44

Use of mappings

In VKGs, the mappingM encodes how the data D in the sources should
be used to create the Virtual Knowledge Graph.

VKGV defined fromM and D
• Queries are answered with respect to O andV.
• The data ofV is not materialized (it is virtual!).
• Instead, the information in O andM is used to

translate queries over O into queries formulated
over the sources.
• Advantage, compared to materialization:

the graph is always up to date w.r.t. data sources.

MappingData
Sources

Query Query
Result

Ontology
VKG

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 34/44

Mapping language

The mapping consists of a set of assertions of the form

Qsql(x⃗) ⇝ t(x⃗) rdf:type C
Qsql(x⃗) ⇝ t1(x⃗) p t2(x⃗)

where
• Qsql(x⃗) is the source query expressed in SQL,
• the right hand side is the target, consisting of a triple pattern involving a

class C or a (data or object) property p, and making use of the answer
variables x⃗ of the SQL query.

Impedance mismatch between values in the DB and objects in the KG:
In the target, we make use of iri-templates t(x⃗), which transform
database values into IRIs (i.e., object identifiers) or literals.

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 35/44

Mapping language

The mapping consists of a set of assertions of the form

Qsql(x⃗) ⇝ t(x⃗) rdf:type C
Qsql(x⃗) ⇝ t1(x⃗) p t2(x⃗)

where
• Qsql(x⃗) is the source query expressed in SQL,
• the right hand side is the target, consisting of a triple pattern involving a

class C or a (data or object) property p, and making use of the answer
variables x⃗ of the SQL query.

Impedance mismatch between values in the DB and objects in the KG:
In the target, we make use of iri-templates t(x⃗), which transform
database values into IRIs (i.e., object identifiers) or literals.

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 35/44

Mapping language – Example

Ontology O:

:actsIn rdfs:domain :MovieActor .
:actsIn rdfs:range :Movie .
:title rdfs:domain :Movie .
:title rdfs:range xsd:string .

MappingM:
m1: SELECT mcode, mtitle FROM MOVIE
WHERE type = "m"
⇝ :m/{mcode} rdf:type :Movie .
:m/{mcode} :title {mtitle} .

m2: SELECT M.mcode, A.acode FROM MOVIE M, ACTOR A
WHERE M.mcode = A.pcode AND M.type = "m"
⇝ :a/{acode} :actsIn :m/{mcode} .

Database D:
MOVIE

mcode mtitle myear type · · ·

5118 The Matrix 1999 m · · ·

8234 Altered Carbon 2018 s · · ·

2281 Blade Runner 1982 m · · ·

ACTOR
pcode acode aname · · ·

5118 438 K. Reeves · · ·

5118 572 C.A. Moss · · ·

2281 271 H. Ford · · ·

The mappingM applied to database D generates the (virtual) knowledge graphV =M(D):
:m/5118 rdf:type :Movie . :m/5118 :title "The Matrix" .
:m/2281 rdf:type :Movie . :m/2281 :title "Blade Runner" .
:a/438 :actsIn :m/5118 . :a/572 :actsIn :m/5118 . :a/271 :actsIn :m/2281 .

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 36/44

Mapping language – Example

Ontology O:

:actsIn rdfs:domain :MovieActor .
:actsIn rdfs:range :Movie .
:title rdfs:domain :Movie .
:title rdfs:range xsd:string .

MappingM:
m1: SELECT mcode, mtitle FROM MOVIE
WHERE type = "m"
⇝ :m/{mcode} rdf:type :Movie .
:m/{mcode} :title {mtitle} .

m2: SELECT M.mcode, A.acode FROM MOVIE M, ACTOR A
WHERE M.mcode = A.pcode AND M.type = "m"
⇝ :a/{acode} :actsIn :m/{mcode} .Database D:

MOVIE
mcode mtitle myear type · · ·

5118 The Matrix 1999 m · · ·

8234 Altered Carbon 2018 s · · ·

2281 Blade Runner 1982 m · · ·

ACTOR
pcode acode aname · · ·

5118 438 K. Reeves · · ·

5118 572 C.A. Moss · · ·

2281 271 H. Ford · · ·

The mappingM applied to database D generates the (virtual) knowledge graphV =M(D):
:m/5118 rdf:type :Movie . :m/5118 :title "The Matrix" .
:m/2281 rdf:type :Movie . :m/2281 :title "Blade Runner" .
:a/438 :actsIn :m/5118 . :a/572 :actsIn :m/5118 . :a/271 :actsIn :m/2281 .

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 36/44

Mapping language – Example

Ontology O:

:actsIn rdfs:domain :MovieActor .
:actsIn rdfs:range :Movie .
:title rdfs:domain :Movie .
:title rdfs:range xsd:string .

MappingM:
m1: SELECT mcode, mtitle FROM MOVIE
WHERE type = "m"
⇝ :m/{mcode} rdf:type :Movie .
:m/{mcode} :title {mtitle} .

m2: SELECT M.mcode, A.acode FROM MOVIE M, ACTOR A
WHERE M.mcode = A.pcode AND M.type = "m"
⇝ :a/{acode} :actsIn :m/{mcode} .Database D:

MOVIE
mcode mtitle myear type · · ·

5118 The Matrix 1999 m · · ·

8234 Altered Carbon 2018 s · · ·

2281 Blade Runner 1982 m · · ·

ACTOR
pcode acode aname · · ·

5118 438 K. Reeves · · ·

5118 572 C.A. Moss · · ·

2281 271 H. Ford · · ·

The mappingM applied to database D generates the (virtual) knowledge graphV =M(D):
:m/5118 rdf:type :Movie . :m/5118 :title "The Matrix" .
:m/2281 rdf:type :Movie . :m/2281 :title "Blade Runner" .
:a/438 :actsIn :m/5118 . :a/572 :actsIn :m/5118 . :a/271 :actsIn :m/2281 .

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 36/44

Outline

1. Challenges in Data Access

2. A Quick History of VKGs

3. Ontop

4. The VKG Framework

5. Query Answering in VKGs

Query answering via query reformulation – Conceptual
framework

Ontology

Mappings

Data
Sources

. . .
. . .

. . .

. . .

Ontological Query q

Rewritten Query

SQLRelational Answer

Ontological Answer

qresult

Rewriting

Unfolding

Evaluation

Result Translation

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 37/44

Query answering via query reformulation – Conceptual
framework

Ontology

Mappings

Data
Sources

. . .
. . .

. . .

. . .

Ontological Query q

Rewritten Query

SQLRelational Answer

Ontological Answer

qresult

Rewriting

Unfolding

Evaluation

Result Translation

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 37/44

Query answering via query reformulation – Conceptual
framework

Ontology

Mappings

Data
Sources

. . .
. . .

. . .

. . .

Ontological Query q

Rewritten Query

SQLRelational Answer

Ontological Answer

qresult

Rewriting

Unfolding

Evaluation

Result Translation

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 37/44

Query answering via query reformulation – Conceptual
framework

Ontology

Mappings

Data
Sources

. . .
. . .

. . .

. . .

Ontological Query q

Rewritten Query

SQL

Relational Answer

Ontological Answer

qresult

Rewriting

Unfolding

Evaluation

Result Translation

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 37/44

Query answering via query reformulation – Conceptual
framework

Ontology

Mappings

Data
Sources

. . .
. . .

. . .

. . .

Ontological Query q

Rewritten Query

SQLRelational Answer

Ontological Answer

qresult

Rewriting

Unfolding

Evaluation

Result Translation

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 37/44

Query answering via query reformulation – Conceptual
framework

Ontology

Mappings

Data
Sources

. . .
. . .

. . .

. . .

Ontological Query q

Rewritten Query

SQLRelational Answer

Ontological Answer

qresult

Rewriting

Unfolding

Evaluation

Result Translation

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 37/44

Query answering via query reformulation – Conceptual
framework

Ontology

Mappings

Data
Sources

. . .
. . .

. . .

. . .

Ontological Query q

Rewritten Query

SQLRelational Answer

Ontological Answer

qresult

Rewriting

Unfolding

Evaluation

Result Translation

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 37/44

Rewriting step

The Rewriting Step deals with the knowledge encoded in the axioms of the
ontology:

• hierarchies of classes and of properties;

• objects that are existentially implied by such axioms: existential reasoning.

We illustrate the need for dealing with class hierarchies.

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 38/44

Dealing with hierarchies
Suppose that every MovieActor is an Actor, i.e.,

:MovieActor rdfs:subClassOf :Actor .

and that keanu is a MovieActor: :keanu rdf:type :MovieActor .

What is the answer to the following query, asking for all actors?

SELECT ?x WHERE { ?x a :Actor . }

The answer should be keanu, since being a MovieActor, he is also an Actor.

In fact, the query rewriting algorithm applies the above inclusion axiom as a kind of
rule from right to left, and rewrites the query into a UNION query:

SELECT DISTINCT ?x
WHERE {
{ ?x a :Actor . } UNION { ?x a :MovieActor . }

}

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 39/44

Dealing with hierarchies
Suppose that every MovieActor is an Actor, i.e.,

:MovieActor rdfs:subClassOf :Actor .

and that keanu is a MovieActor: :keanu rdf:type :MovieActor .

What is the answer to the following query, asking for all actors?

SELECT ?x WHERE { ?x a :Actor . }

The answer should be keanu, since being a MovieActor, he is also an Actor.

In fact, the query rewriting algorithm applies the above inclusion axiom as a kind of
rule from right to left, and rewrites the query into a UNION query:

SELECT DISTINCT ?x
WHERE {
{ ?x a :Actor . } UNION { ?x a :MovieActor . }

}

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 39/44

Dealing with hierarchies
Suppose that every MovieActor is an Actor, i.e.,

:MovieActor rdfs:subClassOf :Actor .

and that keanu is a MovieActor: :keanu rdf:type :MovieActor .

What is the answer to the following query, asking for all actors?

SELECT ?x WHERE { ?x a :Actor . }

The answer should be keanu, since being a MovieActor, he is also an Actor.

In fact, the query rewriting algorithm applies the above inclusion axiom as a kind of
rule from right to left, and rewrites the query into a UNION query:

SELECT DISTINCT ?x
WHERE {
{ ?x a :Actor . } UNION { ?x a :MovieActor . }

}

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 39/44

Dealing with hierarchies
Suppose that every MovieActor is an Actor, i.e.,

:MovieActor rdfs:subClassOf :Actor .

and that keanu is a MovieActor: :keanu rdf:type :MovieActor .

What is the answer to the following query, asking for all actors?

SELECT ?x WHERE { ?x a :Actor . }

The answer should be keanu, since being a MovieActor, he is also an Actor.

In fact, the query rewriting algorithm applies the above inclusion axiom as a kind of
rule from right to left, and rewrites the query into a UNION query:

SELECT DISTINCT ?x
WHERE {
{ ?x a :Actor . } UNION { ?x a :MovieActor . }

}

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 39/44

Contributions of rewriting and unfolding
By computing the rewriting qr of q w.r.t. O and its unfolding qunf w.r.t.M,
the resulting query qunf might become too large and costly to execute
over D.

Let’s consider how rewriting and unfolding contribute to query answers:
• In principle, evaluating qunf over D, gives the same result as evaluating qr

over the RDF graphV =M(D) extracted throughM from D.
• Instead, the rewriting impacts query answers in two ways:

(1) through the rewriting w.r.t. class and property hierarchies, i.e.,
C1 rdfs:subClassOf C2, p1 rdfs:subPropertyOf p2;

(2) through the rewriting taking into account existential reasoning, i.e.,
owl:someValuesFrom in the right-hand side of inclusion assertions.

Note: Component (1) corresponds to computing the saturationVsat ofV
w.r.t. class and property hierarchies, while component (2) can be handled
only through rewriting.

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 40/44

Contributions of rewriting and unfolding
By computing the rewriting qr of q w.r.t. O and its unfolding qunf w.r.t.M,
the resulting query qunf might become too large and costly to execute
over D.

Let’s consider how rewriting and unfolding contribute to query answers:
• In principle, evaluating qunf over D, gives the same result as evaluating qr

over the RDF graphV =M(D) extracted throughM from D.
• Instead, the rewriting impacts query answers in two ways:

(1) through the rewriting w.r.t. class and property hierarchies, i.e.,
C1 rdfs:subClassOf C2, p1 rdfs:subPropertyOf p2;

(2) through the rewriting taking into account existential reasoning, i.e.,
owl:someValuesFrom in the right-hand side of inclusion assertions.

Note: Component (1) corresponds to computing the saturationVsat ofV
w.r.t. class and property hierarchies, while component (2) can be handled
only through rewriting.
Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 40/44

Tree-witness rewriting and saturated mapping
We want to avoid materializingV andVsat, but also want to avoid
computing the query rewriting w.r.t. class and property hierarchies.

Therefore we proceed as follows:

1. We rewrite q only w.r.t. the inclusions that cause existential reasoning
{ tree-witness rewriting qtw [Kikot, Kontchakov, and Zakharyaschev 2012]

2. We use instead class and property hierarchies to enrich the mappingM.
{ saturated mappingMsat [Kontchakov, Rezk, et al. 2014; Rodriguez-Muro,

Kontchakov, and Zakharyaschev 2013]

3. We unfold the tree-witness rewriting qtw w.r.t. the saturated mappingMsat.

One can show that the resulting query is equivalent to the one obtained
via ordinary rewriting w.r.t. O and unfolding w.r.t.M.

For more details, we refer also to [Kontchakov and Zakharyaschev 2014].
Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 41/44

Saturated mapping

Intuitively, the saturated mappingMsat is the composition ofM and O.

For each mapping assertion and each TBox assertion we add a mapping assertion
inM in O toMsat

Qsql(x⃗)⇝ t(x⃗) rdf:type C1 C1 rdfs:subClassOf C2 Qsql(x⃗)⇝ t(x⃗) rdf:type C2

Qsql(x⃗, y⃗)⇝ t1(x⃗) p t2(y⃗) p rdfs:domain C1 Qsql(x⃗, y⃗)⇝ t1(x⃗) rdf:type C1

Qsql(x⃗, y⃗)⇝ t1(x⃗) p t2(y⃗) p rdfs:range C2 Qsql(x⃗, y⃗)⇝ t2(x⃗) rdf:type C2

Qsql(x⃗, y⃗)⇝ t1(x⃗) p1 t2(y⃗) p1 rdfs:subPropertyOf p2 Qsql(x⃗, y⃗)⇝ t1(x⃗) p2 t2(y⃗)

Due to saturation,Msat will contain at most |O| · |M| many mappings.

Note: The saturated mapping has also been called T-mapping in the literature.

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 42/44

Saturated mapping

Intuitively, the saturated mappingMsat is the composition ofM and O.

For each mapping assertion and each TBox assertion we add a mapping assertion
inM in O toMsat

Qsql(x⃗)⇝ t(x⃗) rdf:type C1 C1 rdfs:subClassOf C2 Qsql(x⃗)⇝ t(x⃗) rdf:type C2

Qsql(x⃗, y⃗)⇝ t1(x⃗) p t2(y⃗) p rdfs:domain C1 Qsql(x⃗, y⃗)⇝ t1(x⃗) rdf:type C1

Qsql(x⃗, y⃗)⇝ t1(x⃗) p t2(y⃗) p rdfs:range C2 Qsql(x⃗, y⃗)⇝ t2(x⃗) rdf:type C2

Qsql(x⃗, y⃗)⇝ t1(x⃗) p1 t2(y⃗) p1 rdfs:subPropertyOf p2 Qsql(x⃗, y⃗)⇝ t1(x⃗) p2 t2(y⃗)

Due to saturation,Msat will contain at most |O| · |M| many mappings.

Note: The saturated mapping has also been called T-mapping in the literature.

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 42/44

Saturated mapping

Intuitively, the saturated mappingMsat is the composition ofM and O.

For each mapping assertion and each TBox assertion we add a mapping assertion
inM in O toMsat

Qsql(x⃗)⇝ t(x⃗) rdf:type C1 C1 rdfs:subClassOf C2 Qsql(x⃗)⇝ t(x⃗) rdf:type C2

Qsql(x⃗, y⃗)⇝ t1(x⃗) p t2(y⃗) p rdfs:domain C1 Qsql(x⃗, y⃗)⇝ t1(x⃗) rdf:type C1

Qsql(x⃗, y⃗)⇝ t1(x⃗) p t2(y⃗) p rdfs:range C2 Qsql(x⃗, y⃗)⇝ t2(x⃗) rdf:type C2

Qsql(x⃗, y⃗)⇝ t1(x⃗) p1 t2(y⃗) p1 rdfs:subPropertyOf p2 Qsql(x⃗, y⃗)⇝ t1(x⃗) p2 t2(y⃗)

Due to saturation,Msat will contain at most |O| · |M| many mappings.

Note: The saturated mapping has also been called T-mapping in the literature.

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 42/44

Implementation of query answering in Ontop

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 43/44

We now switch to the practical part
with Ontopic Studio,

followed by hands-on sessions.

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 44/44

Part II

appendix

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 44/44

Outline of Part 2

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 44/44

References I

[1] Diego Calvanese, Pietro Liuzzo, Alessandro Mosca, Jose Remesal,
Martin Rezk, and Guillem Rull. “Ontology-Based Data Integration in
EPNet: Production and Distribution of Food During the Roman
Empire”. In: Engineering Applications of Artificial Intelligence 51
(2016), pp. 212–229. doi: 10.1016/j.engappai.2016.01.005.

[2] Stanislav Kikot, Roman Kontchakov, and Michael Zakharyaschev.
“Conjunctive Query Answering with OWL 2 QL”. In: Proc. of the 13th
Int. Conf. on Principles of Knowledge Representation and Reasoning
(KR). 2012, pp. 275–285.

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 1/4

https://doi.org/10.1016/j.engappai.2016.01.005

References II

[3] Roman Kontchakov, Martin Rezk, Mariano Rodriguez-Muro,
Guohui Xiao, and Michael Zakharyaschev. “Answering SPARQL Queries
over Databases under OWL 2 QL Entailment Regime”. In: Proc. of the
13th Int. Semantic Web Conf. (ISWC). Vol. 8796. Lecture Notes in
Computer Science. Springer, 2014, pp. 552–567. doi:
10.1007/978-3-319-11964-9_35.

[4] Roman Kontchakov and Michael Zakharyaschev. “An Introduction to
Description Logics and Query Rewriting”. In: Reasoning Web:
Reasoning on the Web in the Big Data Era – 10th Int. Summer School
Tutorial Lectures (RW). Vol. 8714. Lecture Notes in Computer Science.
Springer, 2014, pp. 195–244. doi: 10.1007/978-3-319-10587-1_5.

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 2/4

https://doi.org/10.1007/978-3-319-11964-9_35
https://doi.org/10.1007/978-3-319-10587-1_5

References III

[5] Mariano Rodriguez-Muro, Roman Kontchakov, and
Michael Zakharyaschev. “Ontology-Based Data Access: Ontop of
Databases”. In: Proc. of the 12th Int. Semantic Web Conf. (ISWC).
Vol. 8218. Lecture Notes in Computer Science. Springer, 2013,
pp. 558–573. doi: 10.1007/978-3-642-41335-3_35.

[6] Guohui Xiao, Diego Calvanese, Roman Kontchakov, Domenico Lembo,
Antonella Poggi, Riccardo Rosati, and Michael Zakharyaschev.
“Ontology-Based Data Access: A Survey”. In: Proc. of the 27th Int. Joint
Conf. on Artificial Intelligence (IJCAI). IJCAI Org., 2018, pp. 5511–5519.
doi: 10.24963/ijcai.2018/777.

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 3/4

https://doi.org/10.1007/978-3-642-41335-3_35
https://doi.org/10.24963/ijcai.2018/777

References IV

[7] Guohui Xiao, Linfang Ding, Benjamin Cogrel, and Diego Calvanese.
“Virtual Knowledge Graphs: An Overview of Systems and Use Cases”.
In: Data Intelligence 1.3 (2019), pp. 201–223. doi:
10.1162/dint_a_00011.

Designing VKGs with Ontop and Ontopic Studio | Calvanese, Cogrel, Lanti | 4/4

https://doi.org/10.1162/dint_a_00011

	Introduction to Virtual Knowledge Graphs
	Challenges in Data Access
	A Quick History of VKGs
	Ontop
	The VKG Framework
	Query Answering in VKGs

	appendix
	References
	

	References

