25" South Symposium on Microelectronics
May 10" to 15™, 2010
Porto Alegre — RS — Brazil

Proceedings

Edited by
Luciano Volcan Agostini
Cesar Albenes Zeferino
Fernando Gehm Moraes

Promoted by
Brazilian Computer Society (SBC)
Brazilian Microelectronics Society (SBMicro)
[EEE Circuits and Systems Society (IEEE CAS)

Organized by
Pontificia Universidade Catolica do Rio Grande do Sul (PUC-RS)
Universidade Federal de Pelotas (UFPel)

Published by
Brazilian Computer Society (SBC)

Pontificia Universidade Catolica do Rio Grande do Sul
Faculdade de Informatica

Av. Ipiranga, 6681, Prédio 32

Porto Alegre - RS - Brasil

Dados Internacionais de Catalogacao na Publicacéo (CIP)

C726p South Symposium on Microelectronics (25. : 2010 : Porto Alegre,
RS)
Proceedings / 25. SIM ; ed. César Albenes Zeferino,
Fernando Gehm Moraes, Luciano Volcan Agostini. — Porto Alegre:
EDIPUCRS, 2010.
220 p.

1. Microeletrénica — Simposios. 2. Engenharia Eletronica.
I. Zeferino, César Albenes. Il. Moraes, Fernando Gehm.
[ll. Agostini, Luciano Volcan. V. Titulo.

CDD 621.3817

Ficha catalografica elaborada pelo
Setor de Tratamento da Informacéo da BC-PUCRS

ISSN 2177-5176

Printed in Porto Alegre, Brazil.

Cover: Leomar Soares da Rosa Junior (UFPel)
Cover Picture: Alexandre de Morais Amory (PUCRS)
Edition Production: Marcel Moscarelli Corréa (UFPel)

Mateus Thurow Schoenknecht (UFPel)

Foreword

Welcome to the 25th edition of the South Symposium on Microelectronics. This symposium, originally
called Microelectronics Internal Seminar (SIM), started in 1984 as an internal workshop of the Microelectronics
Group (GME) at the Federal University of Rio Grande do Sul (UFRGS) in Porto Alegre. From the beginning,
the main purpose of this seminar was to offer the students an opportunity for practicing scientific papers
writing, presentation and discussion, as well as to keep a record of research works under development locally.

The event was renamed as South Symposium on Microelectronics in 2002 and transformed into a regional
event, reflecting the growth and spreading of teaching and research activities on microelectronics in the region.
The proceedings, which started at the fourth edition, have also improved over the years, receiving ISBN
numbers, adopting English as the mandatory language, and incorporating a reviewing process that also involves
students. The papers submitted to this symposium represent different levels of research activity, ranging from
early undergraduate research assistant assignments to advanced PhD works in cooperation with companies and
research labs abroad.

This year SIM takes place at Porto Alegre together with the 12" edition of the regional Microelectronics
School (EMICRO). A series of basic, advanced, hands-on and demonstrative short courses were provided by
invited speakers.

These proceedings include 46 papers organized in eight sessions: Design Automation Tools 1, Video
Coding 1, Design Automation Tools 2, Video Coding 2, NOCs and MPSoCs, Arithmetic and Digital Signal
Processing, Devices and Analog Design and Digital Design and Embedded Systems. These papers came from 9
different institutions: PUCRS, UFRGS, UFPel, FURG, UFSM, UFSC, IF Sul-rio-grandense, UCPel and
UNIPAMPA.

We would finally like to thank all individuals and organizations that helped to make this event possible.
SIM 2010 was co-organized among PUCRS and UFPel, promoted by the Brazilian Computer Society (SBC),
the Brazilian Microelectronics Society (SBMicro) and IEEE CAS Region 9, receiving financial support from
CAPES and FAPERGS Brazilian agencies and DLP-CAS program. Special thanks go to the authors and
reviewers that spent precious time on the preparation of their works and helped to improve the quality of the
event.

Porto Alegre, May 10, 2009

Fernando Ghem Moraes
Cesar Albenes Zeferino
Luciano Volcan Agostini

SIM 2010 - 25™ South Symposium on Microelectronics

May 10" to 15™, 2010
Porto Alegre — RS — Brazil

General Chair
Prof. Fernando Gehm Moares (PUCRS)

SIM Program Chairs

Prof. Cesar Albenes Zeferino (UNIVALI)
Prof. Luciano Volcan Agostini (UFPel)

EMICRO Program Chair
Profa. Lisane Brisolara de Brisolara (UFPel)

IEEE CAS Liaison
Prof. Ricardo Augusto da Luz Reis (UFRGS)

Local Arrangements Committee

Alexandre Amory (PUCRS)
Edson Moreno (PUCRS)
Luciano Ost (PUCRS)
Guilherme Guindani (PUCRS)
Leonel Tedesco (PUCRS)
Marcel Corréa (UFPel)
Mateus Schoenknecht (UFPel)

List of Reviewers

Adriel Ziesemer (UFRGS)
Alexandre Amory (PUCRS)
Antonio Carlos Beck Filho (UFSM)
Caio Alegretti (UFRGS)

Caroline Concatto (UFRGS)
Cesar Zeferino (UNIVALI)
Claudio Diniz (UFRGS)

Cristiano Lazzari (INESC-ID)
Cristina Meinhardt (UFRGS)
Daniel Palomino (UFPel)

Denis Franco (FURG)

Digeorgia da Silva (UFRGS)
Douglas Rossi de Melo (UNIVALI)
Eduardo da Costa (UCPel)

Felipe S. Marques (UFRGS)
Felipe Sampaio (UFPel)
Fernando Moraes (PUCRS)
Gustavo Girdo (UFRGS)

Gustavo Wilke (UFRGS)

Helen Franck (UFRGS)

José Rodrigo Azambuja (UFRGS)
Julio C.B. Mattos (UFPel)
Leomar Rosa Jr (UFPel)

Leonel Tedesco (PUCRS)

Lisane Brisolara (UFPel)

Lucas Brusamarello (UFRGS)
Luciano Agostini (UFPel)
Luciano Ost (PUCRS)

Marcelo Porto (UFPel)

Marcio Oyamada (UNIOESTE)
Marco Wehrmeister (UFRGS)
Marcos Hervé (UFRGS)

Mateus Beck Rutzig (UFRGS)
Mauricio Lima Pilla (UFPel)
Monica Magalhaes Pereira (UFRGS)
Osvaldo Martinello Jr (UFRGS)
Paulo F. Butzen (UFRGS)
Reginaldo Tavares (UNIPAMPA)
Renato Hentschke (INTEL)
Roger Porto (UFPel)

Sandro Sawicki (UNLJUI)

Thiago Assis (UFRGS)

Thiago Felski Pereira (UNIVALI)
Tomas Garcia Moreira (UFRGS)
Ulisses Brisolara Corréa (UFRGS)
Vagner Rosa (FURG)

Vinicius Dal Bem (UFRGS)

SIM 2010 — 25™ South Symposium on Microelectronics

SIM 2010 — 25" South Symposium on Microelectronics

Table of Contents

Session 1: DESIGN AUTOMATION TOOLS 1

KL-Cuts: Logic Synthesis Targeting Multiple Output Blocks

Osvaldo Martinello Jr, Felipe S Marques, Renato P Ribas and André I Reisc..ccccceen... 13
A Tool for the Automatic Generation of the Ordering and Partitioning of Coefficients

in FIR Filters

Angelo Luz, Eduardo da Costa and Marilton AQUIAEccccoceeeiecieoeienieiieeeee e 19

AIG Rewriting Considering Multiple Objectives
Thiago Figueiro, Renato Ribas and Andre Reisccccocoviiiiiiiiiiiiiiiiiieieeee e 23

Automatic Cell Layouts Generation Using the ASTRAN Tool
Gracieli Posser, Daniel Guimardes Jr , Adriel Ziesemer, Gustavo Wilke and Ricardo Reis 27

SwitchCraft - A Tool for Generating Switch Networks for Digital Cells
Vinicius Callegaro, Felipe de Souza Marques, Carlos Eduardo Klock,
Leomar S da Rosa Jr, Renato P Ribas and ANdré I REiscocccovicininccinineinineeniscieeeenn, 31

Clock Mesh Size for Wirelength and Capacitance Minimization
Guilherme Flach, Gustavo Wilke, Marcelo Johann and Ricardo Reisc..ccoocuieveevcnecannnn. 35

Session 2: VIDEO CODING 1

Power Efficient Motion Estimation Architecture Using QSDS Algorithm with Dynamic
Iteration Control
Marcelo Porto, Jodo Altermann, Eduardo Costa, Luciano Agostini and Sergio Bampi 4]

A Low-Cost Hardware Architecture Design for Binarizer Defined by H 264/AVC Standard
André Martins, Vagner Rosa, Dieison Depra and Sergio Bampiccccooioeiiiiavecneneann. 45

Adaptive Distortion Metric Architecture for H 264/AVC Video Coding
Guilherme Corréa, Claudio Diniz, Luciano Agostini and Sergio Bampiccccccoeeceenennee. 49

A New Parallel Motion Estimation Algorithm
Diego Noble, Gabriel Siedler, Marcelo Porto and Luciano AOSHNIccccceevvoeeeciieneenenns 53

A Dedicated Hardware Solution for the H 264/AVC Half-Pixel Interpolation Unit
Marcel Corréa, Mateus Schoenknecht and Luciano AGOSHNIccccoveeieciiecieineieiieeeeee, 57

A Low Cost Real Time Motion Estimation/Compensation Architecture for the H 264/AVC
Video Coding Standard
Robson Dornelles, Luciano Agostini and Sergio Bampiccccccoecevvivcninninnciceiicieee, 61

Session 3: DESIGN AUTOMATION TOOLS 2

Improvements in the Detection of False Path by Using Unateness and Satisfiability
Felipe Marques, Osvaldo Martinello Jr, Renato Ribas and André Reisccccoocvevveeneannnn... 67

A Case Study about Variability Impact in a Set of Basic Blocks Designed to Regular Layouts
Jerson Paulo Guex, Cristina Meinhardt and Ricardo Reiscccoccvviciniicinnccinieccneecns 71

A Graph-based Approach to Generate Optimized Transistor Networks
Vinicius Possani, Eric Timm, Luciano V Agostini and Leomar da Rosa Junior 75

GDLR: a Detailed Routing Tool
Charles Leonhardt, Adriel Ziesemer and Ricardo Reisccccoooeeeiiieeeiiiiiieeeeiaieeeeeeeeeeen 79

SIM 2010 — 25™ South Symposium on Microelectronics

A Software Tool for the Analysis of Reliability in Combinational Logic Circuits
Mateus Teixeira Borges, Rafael Florentino de Oliveira and Denis Francocccc.ccoceeuuen.. 83

Evaluating Power Consumption on Buses Under the Effect of Crosstalk
Carolina Metzler, Gustavo Wilke, Ricardo Reis and Luigi Ferreiraccoocueveveeeceeenenannns 87

Session 4: VIDEO CODING 2

Low Latency and High Throughput Architecture for the H 264/AVC Transforms and
Quantization Loop Targeting Intra Prediction
Daniel Palomino, Felipe Sampaio and Luciano AGOSHNIccceveciioeneieineies e 93

Efficiency Evaluation and Architecture Design of SSD Unities for the H 264/AVC Standard
Felipe Sampaio, Gustavo Freitas Sanchez, Robson Dornelles and Luciano Agostini 97

Evaluating the Ginga Media Processing Component for Implementation of a Video Player
Marco Beckmann, Tiago H Trojahn, Juliano L Gongalves, Lisane Brisolara and
LUCTIANO V AGOSHINT ..ottt e 101

A Implementation of Media Processing Component Using LibVLC Library for the
Ginga Middleware
Tiago H Trojahn, Juliano L Gongalves, Leomar S da Rosa Junior and Luciano V Agostini 105

A Media Processing Implementation Using Xine-Lib for the Ginga Middleware
Rafael Pereira, Juliano L Gongalves, Julio C B Mattos and Luciano V AgoStini 109

Proposal of a Diamond Search Design with Integrated Motion Compensation for a
Half/Quarter-Pixel H 264/AVC Motion Estimation Architecture
Gustavo Freitas Sanchez, Robson Sejanes Soares Dornelles and Luciano Volcan Agostini 113

Session 5: NOCS AND MPSOCS

Wire Length Evaluation of Dedicated Test Access Mechanisms in
Networks-on-Chip based SoCs
Alexandre Amory, Cristiano Lazzari, Marcelo Lubaszewski and Fernando Moraes 119

Model-Based Power Estimation of NOC-Based MPSoCs
Luciano Ost, Guilherme Guindani, Leandro Indrusiak and Fernando Moraes 125

Implementation and Evaluation of a Congestion Aware Routing Algorithm for
Networks-On-Chip
Leonel Tedesco, Thiago Gouvea da Rosa and Fernando Moraescccoceoeeeeecenenenannn. 129

Flow Oriented Routing for NOCs
Everton Carara and Fernando MOVAESc.c..cccueeeveeeeieeieieeeeeeeeeiee e 133

Adaptive Buffer Size Based on Flow Control Observability for NoC Routers
Anelise Kologeski, Caroline Concatto, Débora Matos, Fernanda Kastensmidt,
Luigi Carro, Altamiro Susin and Marcio KFeUtzcccoceveveoiiineieiseseeeeeeee e 137

Crosstalk Fault Tolerant NOC - Design and Evaluation
Alzemiro Lucas, Alexandre Amory and Fernando Moraesccccoceeeeoeeeoieoeseieeaeneeannns 141

Session 6: ARITHMETIC AND DIGITAL SIGNAL PROCESSING
Radix-2 Decimation in Time (DIT) FFT Implementation Based on Multiple Constant

Multiplication Approach
Sidinei Ghissoni, Eduardo Costa, José Monteiro, Cristiano Lazzari and Ricardo Reis 149

SIM 2010 — 25" South Symposium on Microelectronics 9

Synthesis-Based Dedicated Radix-2 DIT Butterflies Structures for a Low Power FFT
Implementation
Mateus Beck Fonseca, Eduardo da Costa and Jodo B dos S Martinscccccceveeevveveeeenn.. 153

Implementation of Adders Circuits Using Residue Number System — RNS
Alexsandro O Schiavon, Eduardo A C Costa and Sérgio J M Almeidacccocoveveeennn... 157

Optimal Arrangement of Parallel Prefix Adder(PPA) Trees Acording to Area and
Performace Criteria
Kim Escobar, Luca Manique and Renato Perez Ribasccoccoeveoveiicieieiieieieiieeeeeienne 161

Implementation of a Floating Point Unit in the Technology X-FAB 0 35
Raphael Da Costa Neves and TUri CASIFOccccooeoeeiieieieeiei et 165

Floating Point Unit Implementation for a Reconfigurable Architecture
Bruno Hecktheuer, Mateus Grellert, Julio C B Mattos, Antonio C S Beck,
Mateus Rutzig and LUIT CATTOcccoccveiieieiiieieieeieeeiee ettt ene e 169

Session 7: DEVICES AND ANALOG DESIGN

1V Self-Biased Current Sources with 10nW of Maximum Power Consumption
Roddy Romero and Henrique MAmOTUc.cccoceeiiieiiiaiaieieee e 175

Automatic Sizing of Analog Integrated Circuits Including Analysis of Parameter Variation
Lucas Compassi Severo and Alessandro Girardic.ccoceoeoeveeeoisoeneieieeet e 179

Photoluminescence Behavior of Si Nanocrystals Produced by Hot Implantation into
Silicon Nitride
Fellipe C Pereira, Pietro S Konzgen, Felipe L Bregolin and Uilson S Siascc.cccceveeveeeun.. 183

Study of the Electroluminescence from Ge Nanocrystals Obtained by Hot Ton
Implantation into SiO2
Pietro S Konzgen, Fellipe C Pereira, Felipe L Bregolin and Uilson S Siasccccccocvvieece. 187

Session 8: DIGITAL DESIGN AND EMBEDDED SYSTEMS

Designing NBTI Robust Gates
Paulo F Butzen, Vinicius Dal Bem, André I Reis and Renato P Ribascccccoeueveeueen... 193

A Study About Transient Vulnerabilities in Combinational Circuits
Mayler Martins, Fernanda Lima, Renato Ribas and André Reiscccoceeviecieveecieeaiaennn. 197

Design and Verification of a Layer-2 Ethernet MAC Search Engine and Frame Marker
for a Gigabit Ethernet Switch
Jorge Tonfat, Gustavo Neuberger and Ricardo Reisc.ccccocoievioieieneieiiieiieeeieeee 201

Evaluating the Efficiency of Software-only Techniques in Microprocessors
José Rodrigo Azambuja, Fernando Sousa, Lucas Rosa, Jodo Almeida and Fernanda Lima 205

Exploring Embedded Software Efficiency through Code Refactoring
Wellisson G P, Da Silva, Lisane Brisolara, Ulisses B Corréa and Luigi Carrocc.......... 211

A Front-End Development Environment for the Brazilian Digital Television System
Jonatas Romani Rech, Leonardo Roveda Faganello and Altamiro Amadeu Susin 215

F 0L Lol 1 o =) GO 219

10

SIM 2010 — 25™ South Symposium on Microelectronics

SIM 2010 — 25" South Symposium on Microelectronics 11

Design Automation Tools 1

12

SIM 2010 — 25™ South Symposium on Microelectronics

SIM 2010 — 25" South Symposium on Microelectronics 13

KL-Cuts: Logic Synthesis Targeting Multiple Output Blocks

Osvaldo Martinello Jr, Felipe S. Marques, Renato P. Ribas, André I. Reis
{omjunior, felipem, rpribas, andreis} @inf.ufrgs.br

Institute of Informatics, Federal University of Rio Grande do Sul - UFRGS

Abstract

This paper introduces the concept of [-feasible backcuts, by extending the concept of k-feasible cuts to work
with outputs. Then, the combination of k-feasible cuts and the new I-feasible backcuts originates the ki-cuts,
which are circuit cuts with controlled number of inputs and outputs. An algorithm for computing this kind of
cuts is presented and results are shown. These cuts introduce a new methodology for working with multiple
output sub-circuits, and some applications to it are discussed.

1. Introduction

Some recent advances on logic synthesis are based on And Inverter Graphs — AIGs, for scalability reasons
[1, 2]. Part of these advances is based on the concept of k-feasible cuts [3, 4], including algorithms for re-
synthesis based on AIG rewriting [5]. Scalability is obtained by keeping the value of £ small so that logic
functions can be manipulated as vectors of integers. For instance, in [6] scalability is achieved by using
functions of 16 or less inputs represented as binary truth-tables.

Algorithms for efficient cut computation are well known for single output cuts. Particularly, algorithms for
exhaustive computation of k-feasible cuts were introduced by Cong [3] and Pan [4]. Chatterjee [7] introduced
the concept of factor cuts, where exhaustive enumeration is avoided by making a separation between dag nodes
and tree nodes in the AIG. All these algorithms for cut enumeration are only able to take the number & of inputs
into account, not contemplating the benefits of multiple output reasoning. For example, in technology mapping
using k-feasible cuts, logic duplication may occur during the step of covering, which is likely a problem on a
design flow.

In this paper, we introduce the idea of controlling the number of outputs / in k-feasible cuts. Applications
of kl-cuts may include peephole optimization [8], regularity extraction [9] and technology mapping. The use of
kl-feasible cuts in peephole optimization is justified as an arbitrary portion of the circuit, potentially having
multiple outputs, can be exchanged by another one by taking into account all signals which it affects at once. Its
use in regularity extraction can be justified as many regular (logic) patterns are composed of multiple output
circuits. This is especially true for arithmetic circuits, e.g. full adder and half adder library cells.

The remainder of this paper is organized as follows. Section 2 presents a state-of-the-art review. Section 3
discusses the concept of backcuts and I/-feasible backcuts. Section 4 shows the k/-cuts definition, and an
algorithm to enumerate k/-cuts on an AIG. Section 5 presents the results of the implemented algorithm. Section
6 discusses some possible applications for the proposed kl-cuts, and Section 7 concludes the paper.

2. Background

21 AIG

And-Inverter-Graph (AIG), G, is a specific type of Directed Acyclic Graph (DAG), where each node has
either 0 incoming edges — primary inputs (PI) — or 2 incoming edges — AND nodes. Each edge can be
complemented or not. Some nodes are marked as primary outputs (PO).

2.2. K-Feasible Cuts

A cut of anode 7 is a set of nodes ¢ such that every path between a PI and » contains a node in c. A cut of
n is irredundant if no subset of it is a cut. A k-feasible cut is an irredundant cut containing & or fewer nodes.
Let A and B to be two sets of cuts. Let the auxiliary operation i to be:
AxB={aUbla€AbeEB,|laUub| <k}
Let @4 (n) to be the set of k-feasible cuts of n € G, and if n is an AND node, let n; and n; to be its inputs.
Then, @4 (n) is defined recursively as follows:

{{n}} :nisaPl
@y (n) = .
{{n}} U (tbx(nl) %] d>g((n2)) : otherwise
For instance, in Fig. 1, @4 (r) = {{r},{a, p},{a, b, c}}.
The =1 operation can also easily remove the redundant cuts, by comparing the cuts with one another, or by
making use of signatures [10].

14 SIM 2010 — 25™ South Symposium on Microelectronics

3. L-Feasible Backcuts

The algorithms for computing cuts work from inputs to outputs. Computing kl-feasible cuts involves
computing backward cuts — or backcuts — from outputs to inputs. The proposed backcuts are quite similar to
cuts. However, instead of representing a set of nodes that can generate #n, they represent a set of nodes that are
influenced by n.

A backcut of a node 7 is a set of nodes ¢ such that every path between n and a PO contains a node in ¢. A
backcut is irredundant if no subset of it is a backcut. An /-feasible backcut is an irredundant backcut containing
[or lesser nodes.

For convenience, let us define another operator, the operation Mj—,, X; = X, X -+ X X,,. This attribution
can be made since the 4 operation is commutative.

Let @, (n) to be the set of /-feasible backcuts of r, and let n; to be the i-th node connected to its output. We
define @, (n) as:

{{n}} :nisaPO

Pe(m) = {{{n}} U (Dla CDL(ni)) : otherwise
As an example, in Fig. 1, ®,(p) = {{p}, {r,s},{s, t}}.

® 6 ®
Fig. 1 — AIG demonstrating backcut enumeration.. Nodes a, b, ¢ and d are primary inputs. Nodes s and ¢ are
primary outputs.

4, KL-Feasible Cuts

Cuts are an efficient way of representing a region of an AIG regarding one signal generation. However,
when it comes to multiple output regions multiple cuts would be needed.

A kl-cut defines a sub-graph Gj; of G which has no more than % inputs and no more than / outputs. It is
represented as two sets of nodes {Gy, G;}: being G, the inputs set and G; the outputs set. If a node » belongs to a
path between ny, € G;, and n; € G;, and n € Gy, then n is contained in Gy;. Notice that all nodes in G; are
contained in G;. However, G;; does not contain any node of G;.

A kl-cut is said to be complete when all the following conditions are met:

cl: Every path between a PI and a node n; € G; contains a node in Gy;

c2: Every path between a node contained in G;; and a PO contains a node in G;;
c3: No kl-cut defined by a subset of G, and the same G; is complete;

c4: No kl-cut defined by the same G, and a subset of G; is complete.

4.1. KL-Cuts Generation Algorithm

The objective of this algorithm is to find k/-cuts that have shared nodes on the generation of more than one

output, that is, nodes that belong to k-feasible cuts of more than one output.
1. compute_klcuts(k, I, aig) {

2 kcuts = compute_kcuts(aig, k)

3 Icuts = compute_lcuts(aig, 1)

4 for (each lcut in lcuts) {

5. p = combine_kcuts(lcut)
6
7
8
9

for (each pi in p) {
klcut = create_klcut(pi, lcut)
if (check_and_fix(klcut))
klcuts.add(klcut)

}
12. return klcut
13.}

Fig. 2 — Pseudo-code for k/-cuts calculation.

Fig. 2 shows a pseudo-code for kl-cuts enumeration. It starts enumerating all k-feasible cuts and all /-
feasible backcuts on the circuit. Each computed backcut generates a set of kl-cuts. The function on line 5
combines the k-feasible cuts of the nodes belonging to the current backcut d. Let d; to be a node of 4. Let p to

SIM 2010 — 25™ South Symposium on Microelectronics 15

be p = x; @4 (d;). This way, p is a set of input groups p;, and each one defines a kl-cut {p;, d}. Nevertheless,
not every resulting k/-cut is complete, because condition c2 is not assured. So, the function on line 8 adds nodes
to the outputs set in order to make the k/-cut complete, or else discards the k/-cut. If a node ny, belonging to Gy,
has as output a node that does not belong to Gy;, then ny; must be added to G;. If G; still have no more than /
nodes, Gy; is a complete k/-cut. On this implementation the check_and_fix() function also discards k/-cuts that
are not connected.

For instance, in Fig. 3, starting by the backcut {u, v} generated by the node s, the cuts {a, b, s} from u and
{s, g, h} from v are combined, generating the incomplete k/-cut {{a, b, s, g, h}, {u, v}}. The last step adds the
node 7 to the outputs set, resulting on the complete kl-cut {{a, b, s, g, h}, {r, u, v}} containing the nodes u, v, r
and 7.

Fig. 3 — AIG illustrating a possible covering using 5-2-cuts. Nodes a, b, ¢, d, e, f, g and h are primary inputs.
Nodes u and v are primary outputs.

5. Results

The algorithm was implemented in Java language and all results were obtained by execution on a 2.4GHz
Intel Pentium IV with 1GB of RAM. The implemented program reads BAF files as inputs, which were
generated from EQN files using the ABC tool [11], after running the ‘dc2 —I’ command twice.

Table I shows results for /-feasible backcuts enumeration. Notice that for the circuit C3540 the time taken
to compute the backcuts was particularly larger than the others. This is due to the fact that some nodes have a
huge number of backcuts. The utilization of a limit factor of backcuts per node would significantly reduce this
time in despite of the quality of results. Table II shows the results for constructing k/-cuts from cuts and
backcuts enumeration.

Although a huge number of cuts can be enumerated from circuits, and therefore a big time to compute
them, the applications can calculate k/-cuts on-the-fly, and more than that, compute only a small subset of them,
which provides scalability to the applications.

Tab. 1 - Comparison between all 1-feasible backcuts enumeration and factor backcuts enumeration.

Nodes 1=2 1=4

Total % Dag Total Time (s) Total Time (s)
C1355 433 38.11 1707 0.032 4457 0.344
C1908 393 41.98 1805 0.015 7350 0.421
C2670 777 22.52 4535 0.078 26286 1.578
C3540 975 27.18 6986 0.078 64779 | 334.703
C5315 1522 26.87 9960 0.109 29807 4.047
C6288 1902 73.87 7682 0.046 | 140157 3.875
C7552 1625 38.34 | 16790 0.188 71183 5.391
s13207 2757 27.64 | 10699 0.078 20605 22.422
s15850 3374 29.02 | 13391 0.125 54001 4.578
$35932 | 10841 30.84 | 90148 1.250 | 122938 9.547
s38417 9795 25.88 | 41122 0.250 | 255430 15.485
s38584 | 11306 27.56 | 39848 0.312 | 135238 10.594

Avg. 3808 34.15 | 20389 0.213 77686 34.415

Names

16 SIM 2010 — 25™ South Symposium on Microelectronics

Tab. 2 - Comparison between full kl-cuts search and global kl-cuts search.

4-2-cuts 6-4-cuts

Total | Size | Time (s) Total Size Time (s)
C1355 2778 | 4.19 0.578 36186 | 8.76 20.969
C1908 2300 | 3.59 0.422 24838 | 7.38 20.266
C2670 3313 | 3.18 0.797 21847 | 6.35 35.938
C3540 5392 | 2.61 1.063 56782 | 5.47 413.547
C5315 7680 | 3.00 2.297 59529 | 6.39 63.422
C6288 | 10836 | 3.21 2.797 | 345069 | 9.12 | 1083.828
C7552 9624 | 3.31 3.296 | 111160 | 7.10 224.500
s13207 8862 | 2.41 1.438 58607 | 5.11 38.266
s15850 | 13928 | 2.62 2.563 | 113296 | 5.48 70.219
$35932 | 54015 | 3.60 44.907 | 391684 | 6.75 817.985
s38417 | 44322 | 2.61 6.062 | 351974 | 5.38 345.703
538584 | 44425 | 2.40 20.515 | 369003 | 5.22 294.844

Avg. | 17290 | 3.06 7.228 | 161665 | 6.54 285.791

Name

6. Applications

The step of technology mapping could make good use of kl-cuts, since most of standard cell libraries have
multiple output cells, e.g. full adders. Similarly, library free technology mappers could use multiple output cells
to significantly reduce area of a circuit. Moreover, current FPGAs have multiple output LUTs [12, 13].

Regularity extraction is important for improving the yield of fabrication [9]. Maintaining a hash table of k-
cuts structure and/or functions could help on an implementation of an algorithm to perform regularity extraction
on a circuit.

Another application for k/-cuts is to perform peephole optimizations. By defining a sub-graph on an AIG,
one can replace it by any other sub-graph that implements the same outputs, but minimizing a given cost
function.

7. Conclusions and Future Work

The concept of kl-feasible cuts was introduced, which allows controlling both the number & of inputs and
the number / of outputs in the computation of circuit cuts. Algorithms for computing kl-feasible cuts were
presented and results have shown the usefulness of the method. Further work is necessary in the use of kl-
feasible cuts in peephole optimization, AIG rewriting, regularity extraction, and technology mapping.

8. Acknowledgements

Research partially funded by Nangate Inc. under a Nangate/UFRGS research agreement, by CNPq
Brazilian funding agency, and by the European Community’s Seventh Framework Programme under grant
248538-Synaptic.

0. References

[11 Ling, A. C., Zhu, J., “Scalable Synthesis and Clustering Techniques Using Decision Diagrams”, IEEE
Trans. on CAD. 2008.

[2] Mishchenko, A., Brayton, R., “Scalable Logic Synthesis using a Simple Circuit Structure”, Int’l
Workshop on Logic & Synthesis, 2006.

[3] Cong J., Wu, C.,, Ding, Y., “Cut Ranking and Pruning: Enabling A General and Efficient FPGA
Mapping Solution”, Int’l Symp. on FPGA, 1999.

[4] Pan, P, Lin C., “A New Retiming-based Technology Mapping Algorithm for LUT-based FPGAs”, Int’1
Symp. on FPGA, 1998.

[5] Mishchenko, A., Chatterjee, S., Brayton, R., “DAG-Aware AIG Rewriting: A Fresh Look at
Combinational Logic Synthesis”, Design Automation Conference, 2006.

[6] Mishchenko, A., Brayton, R., Chatterjee, S., “Boolean Factoring and Decomposition of Logic
Networks”, Int’l Conf. on CAD, 2008.

[7] Chatterjee, S., Mishchenko, A. and Brayton, R., “Factor Cuts”, Int’l Conf. on CAD, 2006.

SIM 2010 — 25" South Symposium on Microelectronics 17

[8] Werber, J., Rautenbach, D., Szegedy, C., “Timing Optimization by Restructuring Long Combinatorial
Paths”, Int’l Conf. on CAD, 2007.

[9] Rosiello, A. P. E., Ferrandi, F., Pandini, D., Sciuto, D., “A Hash-based Approach for Functional
Regularity Extraction During Logic Synthesis”, IEEE Comp. Soc. Annual Symp. on VLSI, 2007.

[10] Mishchenko, A., Chatterjee, S., Brayton, R., “Improvements to Technology Mapping for LUT-Based
FPGAs”, Int’l Symp. on FPGA, 2006.

[11] Berkeley Logic Synthesis and Verification Group, “ABC: A System for Sequential Synthesis and
Verification”. http://www.eecs.berkeley.edu/~alanmi/abc

[12] Xilinx, “Achieving Higher System Performance with the Virtex-5 Family of FPGAs”, White Paper,
2006. http://www xilinx.com/

[13] Altera, “Improving FPGA Performance and Area Using an Adaptive Logic Module”, White Paper,
2004. http://www.altera.com/

18

SIM 2010 — 25™ South Symposium on Microelectronics

SIM 2010 — 25" South Symposium on Microelectronics 19

A Tool for the Automatic Generation of the Ordering and
Partitioning of Coefficients in FIR Filters

'Angelo G. da Luz, 'Eduardo A.C da Costa, 2Marilton S. de Aguiar
angelogl@gmail.com, ecosta@ucpel.tche.br, marilton@ufpel.tche.br

lCatholic University of Pelotas — UCPel — Pelotas, Brazil
’Federal University of Pelotas — UFPel — Pelotas, Brazil

Abstract

This paper proposes a tool for the automatic generation of the ordering and partitioning of coefficients in
Finite Impulse Response (FIR) filters, which are based on heuristic algorithms. Due to the characteristics of
the FIR filter algorithms, which involve multiplications of input data with appropriate coefficients, the best
ordering and partitioning of these operations can contribute for the reduction of the switching activity, what
leads to the minimization of power consumption in the filters. Thus, two algorithms were implemented for the
ordering and partitioning of the coefficients and all of them are based on some heuristic approach. The results
are presented in terms of the Hamming distance between the consecutive coefficients.

1. Introduction

In this paper, we propose a tool that searches for the best ordering and partitioning of the sequential and
semi-parallel FIR filters with the use of some heuristic-based algorithms. In the FIR filter operation, each tap
involves getting the appropriate coefficient and data values and performing a multiply-accumulate computation.
The larger the number of taps, the more accuracy we can have on the transfer function implemented by the
filter. However, the hardwired implementation presents a large amount of arithmetic operation of addition and
multiplication, which contributes for a higher power consumption in the FIR filter, mainly due to the
multipliers.

In FIR filter computation, the summation operation is both commutative and associative, and the filter
output is independent of the order of computing the coefficient product. Thus, coefficient ordering has been
used as a technique for low power, where all coefficients are ordered in a Fully-Sequential circuit so as to
minimize the transitions in the multiplier input and data bus [1]. In [2], this technique was extended-up by using
the ordering and partitioning of the coefficients for the Semi-Parallel FIR filter architecture, where the hardware
is duplicated and coefficients are partitioned into groups of coefficients. Thus, the problem in both cases is
related to finding the best partition for each coefficient by calculating the minimum Hamming distance between
the coefficients into each group. Although the techniques of [1] and [2] optimize the partitioning and ordering
of the coefficients, the cost function of the algorithms is calculated for all the combinations over the
coefficients, which is limited to a small group of coefficients, where the total number of permutations is
calculated in a still reasonable time. However, for a higher number of coefficients these exhaustive algorithms
are less attractive due to the time necessary to process the large number of combinations while using heuristics
the results is obtained almost instantly.

In our work, we have implemented two heuristic-based algorithms named Nearest neighbor and Bellmore
and Nembhauser [3,4], to get as near as possible to the optimal solution for the ordering and partitioning of
larger filter instances. We have tested the use of the algorithms in a combination of different number of taps
and different coefficient bit-width coefficients that were obtained by Remez algorithm in Matlab tool. A
proposed tool calculates the Hamming distance between the coefficients automatically.

2. Heuristic-based algorithms

There are many heuristics in the literature, which can be classified as constructive [3,4] or refinement [3,4].
In this work only the constructive heuristics are taken into account. Constructive heuristics have as main feature
the construction element by element solutions making local optimal choices in search for global optimum.
Among the constructive heuristics in the literature we may include: Nearest Neighbor Heuristic, Bellmore and
Nembhauser Heuristic and Cheapest Insertion Heuristic. This work uses the first two heuristics for the problem
under study.

2.1. Nearest Neighbor Heuristic

This heuristic starts from an initial element and the next element choose to be added to the solution is that
considered as the best neighbor (for a given cost function). Tab. 1 presents the symmetric cost to add each
element to the sequence of decisions.

20 SIM 2010 — 25™ South Symposium on Microelectronics

Tab. 1 Costs for the insertion of elements in the solution

Element El E2 E3 E4 E5 E6
El 0 2 1 4 9 1
E2 2 0 5 9 7 2
E3 1 5 0 3 8 6
E4 4 9 3 0 2 5
ES 9 7 8 2 0 2
E6 1 2 6 5 2 0

Applying the Nearest Neighbor Heuristic to the elements of tab. 1, we would find the following choice of
items with the lowest cost ([E1] [E3] [E4] [E5] [E6] [E2]), with the following steps (considering E1 the initial
element):

Step 1: Insert E3 as the successor of El, because it is the element with the lowest cost in the vicinity of E1. Thus, the
current list consists of ([E1] [E3]).

Step 2: Insert the element E4, because El is less expensive but it has already been inserted. Current list is ([E1] [E3]
[E4)).

Step 3: Insert ES5, because it is the best available neighbor of E4. Current list: ([E1] [E3] [E4] [ES5]).

Step 4: Insert E6, since it is the best available neighbor of E5. Current list: ([E1] [E3] [E4] [E5] [E6]).

Step 5: Insert E2, which is the only remaining element. Final list: ([E1] [E3] [E4] [E5] [E6] [E2]).

The total cost of the elements of the list is given by:
Total Cost = cost (E1, E3) + cost (E3, E4) + cost (E4, E5) + cost (ES5, E6) + cost (E6, E2) = 12.

2.2, Bellmore and Nemhauser Heuristic

This heuristic starts from an initial element and makes the insertion of its best neighbor. From there, the
two ends of the list are analyzed in order to discover the best cost. Each new insertion should be confronted
with both ends. The new element must be inserted at the end with lower cost.

Considering the same element values from tab. 1, we would have the following solution ([E2] [E6] [E1]
[E3] [E4] [ES]), which would be formed by the following steps (starting from the initial element E1):

Step 1: Insert E3, since it is the best neighbor of E1. Current list: ([E1] [E3]).

Step 2: Insert E6 because it is among the elements not yet added. Choosing the best neighbors to each end of the list,
E6 appears as the best neighbor of E1, with a cost of 1. At the other end of the list, E4 is the best neighbor of E3 with a cost
of 3. Then, E6 is added to the extreme left of the route. Current list: ([E6] [E1] [E3]).

Step 3: Insert E2 at the left end of the list. From the elements which are not added yet, the best neighbor of E6 is E2
with a cost of 2, and the element with lower cost from E3 is E4 with cost 3. Current list: ([E2] [E6] [E1] [E3]).

Step 4: Insert E4 in the far right of the list, because the best neighbor of E2 is ES at a cost of 7, and the element with
lower cost compared to E3 is E4 with a cost of 3. Current list: ([E2] [E6] [E1] [E3] [E4]).

Step 5: As the only remaining element is the ES5, we just must see which end their inclusion has lower cost. If ES is
inserted at the end of E2, then the cost is equal to 7. On the other hand, if inserted as a neighbor of E4 then the cost is 2.
Final list: ([E2] [E6] [E1] [E3] [E4] [E5]).

The total cost of the elements of the list is given by:
TotalCost = cost(E2,E6) + cost(E6, E1) + cost(E1, E3) + cost(E3, E4) + cost(E4, E5) = 16.

2.3. Proposed Tool

In order to include the two heuristic-based algorithms and the coding schemes used in this work, and
generates the ordering and partitioning of the coefficients automatically, we have implemented a tool. The tool
receives as input the FIR filter coefficients (in decimal or binary representation) and they are ordered and/or
partitioned according to the selected technique and according to the selected encoding scheme. The output of
the tool is the Hamming distance of the coefficients based on the best cost function that is found by the
heuristic-based algorithms. Fig 1 shows the interface of the proposed automatic tool.

SIM 2010 — 25" South Symposium on Microelectronics 21

& S] B =]
Original coefficients Result:
] Decimalinput [ogpgoo10 (o) [roooooo0 |22 Gt
00000000 1] 00110011 [19]
00000001 [2] 01110101 [21]
00000100 [3] ooooo101 7]
Loadfile | 00000110 [4] 00000100 [3]
00000011 [5] 00000110 [4]
00001010 [5] ooooo111 8]
Bellmore e Nemhauser || 00000101 [7] 00000011 [5]
00000111 [8] 00000001 [2]
00010010 9] 00000000 [1]
00010100 [10] 00000010 [0]
00001011 [11] 00001010 [6]
00001111 [12] 00001011 [11] Hamming Original Coefficients:
00001100 [13] 00001111 [12]
———— (00011010 [14] 00001110 [18] |56
‘ Run 00110000 [15] 00001100 [13]
00110100 [18] 00011100 [17) el i
00011100 [17] 00010100 [10] —
00001110 [18] 00110100 [16] B2 |
00110011 [19] 00110000 [15]
01011001 [20] 00010010 [9] Hamming Partition 1:
01110101 [27] 00011010 [14] i1g | ‘
10000000 [22] 01011001 [20] et
Hamming Partition 2: ‘M
«] T 4] I 13|

Fig. 1. Proposed tool interface

3. Results

In this section, we present the results obtained with the two heuristic-based commented previously. We
have applied these algorithms to the reduction of the Hamming distance between consecutive coefficients,
where the Hamming distance represents the different bits between two consecutive words. The filter
coefficients were computed with the MATLAB using the Remez algorithm. We used the same FIR filter
instances of [5]. The five columns of tab. 2 present the filters specification: filfer is just an index for each
example, passband and stopband are normalized frequencies, #tap is the number of coefficients of the filters
and width is the bit-width of each coefficient. The results are obtained by the cost function that is automatically
calculated by the proposed tool.

Tab. 2 Fir filters specification

Filter | Passband | stopband #tap width
1 0.10 0.25 27 10
2 0.15 0.25 18 12
3 0.10 0.15 25 14
4 0.15 0.25 29 14
5 0.10 0.15 48 16
6 0.15 0.20 30 14
7 0.15 0.20 49 16
8 0.10 0.12 49 16
9 0.10 0.12 60 18
10 0.24 0.25 53 12
11 0.20 0.25 23 8
12 0.20 0.25 36 12

Tab. 3 shows the results that were obtained, in terms of number of transitions, from the original
coefficients and after using the heuristic-based Bellmore and Nemhauser and Nearest Neighbor algorithms for
the ordered and partitioned coefficients. The partitioned coefficients were grouped into two columns of half of
the coefficients.

Although the application of the heuristic-based algorithms reduces the number of the transitions of the
coefficients significantly, the Bellmore and Nemhauser algorithm is more efficient for all the filter instances.
This occurs because this algorithm looks for the best ordering of the coefficients in a larger search area. As also
can be observed in tab. 3, the partitioning of the coefficients also reduces the number of transitions in all the
filter instances, because the search for a best ordering occurs in a specified smaller group of coefficients. This is
important for the implementation of a semi-parallel filter, because this it can operate faster (the processing of
two samples at a time) with a reduced number of transitions between the coefficients (probably less power
consumption).

22

SIM 2010 — 25™ South Symposium on Microelectronics

Tab. 3 Number of transitions for the original coefficients

Number of transitions between the coefficients
(Hamming distance)
Bellmore and Nearest
Nemhauser Neighbor
Original Ordering/ Ordering/
Filter Coefficients Partitioning Partitioning
1 85 53/52 56/53
2 67 44/42 47/45
3 102 71/69 74/71
4 139 79/76 81/78
5 249 149/146 157/155
6 150 89/87 93/92
7 276 147/144 152/151
8 294 177/174 182/179
9 398 231/228 242/239
10 204 95/93 98/96
11 56 33/32 34/33
12 137 83/81 87/86

4. Conclusions

In this work two heuristic-based algorithms named Nearest Neighbor and Bellmore and Nemhauser were
applied to the ordering and partitioning of FIR filters coefficients. The results showed that the algorithms can
find the best cost function for the ordering and partitioning of the coefficients, so that the Hamming distance
between consecutive coefficients could be reduced significantly. An automatic tool was proposed in order to
include the heuristic-based algorithms and generates the Hamming distance results from the ordered and
partitioned coefficients. As future work we intend to implement the filters with original and ordered (for a
sequential FIR filter) and partitioned (for a semi-parallel FIR filter) coefficients in order to observe the impact
on power reduction of the filters with the reduction of the number of the transitions of the coefficients.

5. References

[1T] M. Mehendale, S. Sherlekar, G. Venkatesh. Techniques for Low Power Realization of FIR Filters. In:
Asia and South Pacific Design Automation Conference, ASPDAC, 1995. Proceedings... New York:
ACM, 1995. p.447-450.

[2] E. Costa, J. Monteiro , and S. Bampi. Gray Encoded Arithmetic Operators Applied to FFT and FIR
Dedicated Datapaths. In: 11th IEEE/IFIP International Conference on Very Large Scale Integration.
VLSI-SoC. 2003.

[3] Ansari, Nirwan and Hou, E. Computational Intelligence for Optimization. Kluwer Academic Publishers,
1997.

[4] Reeves, C.R. Modern Heuristic Techniques for Combinatorial Problems. Blackwell Scientif
Publications, 1993.

[51 E. Costa, P. Flores, and J. Monteiro. Maximal Sharing of Partial Terms in MCM under Minimal Signed
Digit Representation. In: European Conference on Circuit Theory and Design. pp. 221-224. 2005.

SIM 2010 — 25" South Symposium on Microelectronics 23

AIG Rewriting Considering Multiple Objectives

Thiago Figueiro, Renato Ribas, Andre Reis
{trfigueiro,rpribas,andreis } @inf.ufrgs.br

Av. Bento Gongalves, 9500, Bloco 1V, Porto Alegre/RS, Brazil
Instituto de Informatica — Universidade Federal do Rio Grande do Sul

Abstract

This work presents a technology independent logic synthesis algorithm that works on top of an AND-INV
graph (AIG) data structure. The final goal is to minimize a cost function taking into account both the number of
nodes and the depth of the AIG. In this paper we analyze several cases for AIG rewriting that affect the depth
and number of nodes of final AIG. This initial study is proposed to guide an algorithm for constructive
synthesis of AIGs considering a trade-off between area and depth.

1. Introduction

Algorithmic logic synthesis is usually performed in two steps, one performed over Boolean equations
(regardless any physical property) and another where the resulting logic is mapped into a physical cell library or
other physical implementation. The first step is composed of several logic operations such as Decomposition
Extraction, Factoring, Substitution and Elimination [1]. These operations may be either explicitly performed
(SIS [2]) or implicitly performed by other methods such as AIG rewriting (ABC [3]).

The main goal of technology independent synthesis is to compute an equation that represents a given
Boolean function with a minimum number of literals. This type of optimization aims to yield a minimum area
of the circuit implementing this function [4]. Some heuristic techniques have been proposed, achieving high
commercial success, such as quick factor (QF) and good_factor (GF), both algorithms available in SIS tool [2].
Recent works on this field indicate that it is not only possible to reduce area by a good technology independent
synthesis but also it is feasible to enhance other characteristics of the resulting circuit by focusing on goals
other than minimum number of literals. Recently, a function composition algorithm was proposed in order to
build equations in a bottom-up approach, where characteristics other than literal count are taken into
consideration [5].

The second step of algorithmic logic synthesis is to map the function description into a physical
implementation. This is usually implemented as a graph covering problem. The most common approach is to
use the resulting equations from technology independent synthesis to build a Boolean network, which is a
directed acyclic graph (DAG), with nodes corresponding to logic gates and directed edges corresponding to
wires connecting the gates inputs and outputs [2]. Recent works are using AND-INV graphs (AIGs) as a special
case of a DAG to represent the Boolean network on the covering step [3]. AIGs are graphs whose nodes are
limited to two-input ANDs while inverters are indicated by a special attribute on the edges of the network.

A Boolean function has many possible AIG representations, according to the order which the variables are
processed and how the nodes of the AIG graph are created. However, it is possible to build AIGs ensuring that
functional equivalent structures are represented by the same sub-graph. This idea leads to the integration of the
functional reduction process to the AIG construction, generating what is called Functionally Reduced AND-
INV Graph (FRAIG) [6].

A function may have different FRAIG representations, according to the characteristics of the equation used
to build the FRAIG. It is known that two functions with the same number of literals may produce FRAIGs with
different sizes and that equations with more literals may, in some cases, produce a smaller FRAIG. Therefore,
this paper intend to explore a large set of equations trying to identify characteristics that allow equations with a
larger number of literals to result in better FRAIGs (either regarding the number of nodes or the logical depth).
This work is part of a project that intends to explore the different characteristics of equations in the context of
AIG rewriting.

This paper is organized as follows. Section 2 presents basic concepts regarding technology independent
synthesis algorithms and FRAIGs. Section 3 presents and discusses examples of equations and their
corresponding FRAIGs. The final section discusses the conclusions of this paper.

2. Basic Concepts

A Boolean function describes how to determine a Boolean value output based on some logical calculation
performed over Boolean inputs. An equation is one form to represent a function, which may also be described

24 SIM 2010 — 25™ South Symposium on Microelectronics

as a Binary Decision Diagram (BDD) or as a Truth Table (TT), for instance. Every representation of a function
may be classified as canonical or non-canonical. A representation is said to be canonical if every function will
always be described exactly in the same way. Examples of canonical representations are BDDs and TTs (as
long as the variable orderings are the same). Equations are non-canonical representations of a function.
Therefore, the same function may be described by different equations. For instance, equations (1), (2) and (3)
represent exactly the same function. An equation is composed of literals. A literal is an instance of a variable
(positive literal, for instance “A”) or its complement (negative literal, for instance “!A”).

F=A*B+C (1)
F=A*B+4*C)
F=(4+C)*(B+C) 3)

AND-INV graphs (AIGs) are another way to represent Boolean functions. An AIG is a graph composed
exclusively of two-input AND gates and inverters. It is frequent to represent the inverters as a special flag on
graph edges. This way, all nodes on the graph represent two-input ANDs. Figure 1 present one AIG for the
equation F=A*!B*C. Different AIGs may represent the same Boolean function, as AIGs are not a canonical
representation. Figure 2 presents three different AIGs for the same function (they implement the equations
presented previously).

(a) (®) (c)

Fig. 2 - Sample of AIG representing the same function but described as (a) F= A*B+C, (b) F= A*B+A*C
and (c) F=(A+C)*(B+C)

3. Examples

This section presents two examples. The first example consists on the result of two different factoring
algorithms and the demonstration that an equation with less literals may result in a larger AIG graph. The
second example presents different equations generating graphs with different logical depths.

3.1. Example 1

This example intends to demonstrate that assuring the smallest equation possible for a function will not
result in the smallest AIG graph. Consider the function represented by the truth table in figure 3. Considering
two possible factoring results of this function represented in equations (4) and (5). Equation (4) is the factoring
result generated by the algorithm described in [4] and equation (5) the result from ESPRESSO command in SIS

[3].

O=(IB¥(!ID+!C))* (I4%(D+C)) 4)
O=IA*IB*C*ID+IA*IB*IC*D (5)

SIM 2010 — 25" South Symposium on Microelectronics 25

(S IS 1S (R4 (R IR PN (S SN RN N RN RS S RN N IS
~[~|=[~|z|z[]|s~|=]|~|~]|<|z|<|o®
~|~[[s]|~|~[=[=]~|~|=|=|~|~]|=|=|O
~|o[~[s]|~|s|~[z]~||~|=|~|=|~|=|T
S B B B N BN BN N BN BN BN B B N ()

Fig. 3 - Truth table for the function in example 1.

The resulting FRAIGs when using equations (4) and (5) to build them are presented in figures 4 and 5,
respectively.

Fig. 4 - FRAIG built using equation (4) as input. Fig. 5 - FRAIG built using equation (5) as input.

Although equation (4) present 6 literals, while equation (5) present 8 literals, the resulting FRAIG for
equation (4) has one extra node, since it is more difficult to reuse intermediate nodes (notice that one node in
the FRAIG generated for equation (5) presents a fanout equal to 2).

3.2. Example 2

This example intends to demonstrate that two different equations may generate graphs with different
heights. This can potentially lead to circuits with different logical depths. Figure 6 presents the truth table for
the function used in example 2.

[N 1N PN 1N N N P P PN PN RS S S RS S RS N
~=I~[~[==|||~~]~]~[==|=|
~|~|s|s[~[~[||~|~|<|=|~[~[=|=|O

~|o|~|s[~[s|~||~|=|~|z|~[=|~|=|T
I 1S R 1S R S 1 R R S O Y P

Fig. 6 - Truth table for the function in example 2.

Considering two possible factoring results of this function represented in equations (6) and (7).
O=(a*b+c)+d (6)
O=(a*b)+(ctd) (7)

The resulting FRAIGs when using equations (6) and (7) to build them are presented in figures 7 and 8,
respectively.

26 SIM 2010 — 25™ South Symposium on Microelectronics

~]B] €]

Fig. 7 - FRAIG built using equation (6) as input. Fig. 8 - FRAIG built using equation (7) as input.

Although equation (6) presents the same number of literals than equation (7), the resulting FRAIGs present
different heights since the associations are performed in a different order.

4, Conclusions

The use of AIGs for representing a network to be mapped is appropriate since its characteristics directly
reflect the characteristics of the resulting circuit. There are several techniques to reduce the AIGs size, both
available in building time (such as the FRAIG) and after construction enhancements (techniques for AIG
rewriting). In this paper we highlight the fact that features of an AIG associated to the quality of the final
implementation can vary for the same logic function. This initial study will be used to produce a constructive
algorithm to produce AIGs while minimizing a cost function expressing a trade-off between the depth of the
AIG and the final number of nodes.

5. Acknowledgements

Research partially funded by Nangate Inc under a Nangate/UFRGS research agreement, by CNPq Brazilian
funding agency, and by the European Community’s Seventh Framework Programme under grant 248538-

Synaptic.

6. References

[1] G.D. Hachtel and F. Somenzi, Logic Synthesis and Verification Algorithms, Kluver Academic
Publishers (1996).

[2] E. Sentovich, K. Singh, L.Lavagno, C. Moon, R. Murgai, A. Saldanha, H. Savoj, P. Stephan, R. Brayton
and A. Sangiovanni-Vincentelli, SIS: A system for sequential circuit synthesis. Tech. Rep. UCB/ERL
M92/41. UC Berkeley, Berkely, 1992.

[3] Berkeley Logic Synthesis and Verification Group. ABC: A System for Sequential Synthesis and
Verification. http://www-cad.eecs.berkeley.edu/~alanmi/abc

[4] M.C. Golumbic and A. Mintz, Factoring Logic Functions Using Graph Partitioning, ICCAD ’99. IEE
Press, Piscataway, NJ, 195-199.

[5] A. Reis, A. Rasmussen, L. Rosa, R. Ribas., Fast Boolean Factoring with Multi-Objective Goals,
International Workshop on Logic & Synthesis, IWLS 2009.

[6] A. Mishchenko, S. Chatterjee, R. Jiang, R. Brayton, “FRAIGs: A Unifying Representation for Logic
Synthesis and Verification”, ERL Technical Report, EECS Dept., UC Berkeley, March 2005.

SIM 2010 — 25" South Symposium on Microelectronics 27

Automatic Cell Layouts Generation Using the ASTRAN Tool

Gracieli Posser, Daniel Guimaraes Jr., Adriel Ziesemer, Gustavo Wilke, Ricardo
Reis
{gposser,dsgjunior,amziesemerj,wilke,reis} @inf.ufrgs.br

Universidade Federal do Rio Grande do Sul (UFRGS)
Instituto de Informatica — PPGC/PGMicro
Av. Bento Gongalves 9500 Porto Alegre, RS - Brazil

Abstract

In this work, a cell library in a 0.35 um technology was automatically generated using the ASTRAN tool.
These cells are then inserted in an automatic synthesis flow to generate some test circuits. Results are
compared to results obtained using the same flow with a commercial standard cell library. In the first step cells
are generated and then characterized so that they can be used in the standard synthesis flow. This process it
was done using Cadence’s Encounter Library Characterizer tool. Using the two liberty files was possible to
compare a design mapped using commercial standard cell library and the automatic generated library. Our
results in the synthesis flow indicate that the automatically generated cells saved up to 24% of power and the
timing is on average 12% lower. The increase in the total circuit area was only 12%.

1. Introduction

New products are needed in the market in the shortest time possible due to time-to-market, and these
devices should have more functionalities and higher performance. This increases the need for the development
of CAD (Computer Aided Design) tools that enables productivity increasing the designer’s ability of designing
higher complexity projects in a shorter time.

To achieve an efficient area and performance tradeoff in current designs, a cell-based methodology with
large standard cell libraries is usually employed. To address this problem, cells synthesis tools can be used to
quickly generate physical layouts for a given transistor-level netlist, accordingly to the design rules and
constrains specified by the designer. The ASTRAN [1] tool is an example of a cells synthesis tool.

Using a tool for automatic cell generation reduces the need to fabricate integrated circuit layouts for the
full-custom methodology and enabled the circuits generation on the fly using a smaller number of transistor
than standard cells methodology. On this paper ASTRAN was used to generate a large standard cell library.
The synthesis results of two circuits, one synthesized using a standard cell library generated by ASTRAN and
the other using a typical standard cell library, were compared.

The remaining of this paper is organized as follows: in section 2, we present the ASTRAN tool that is used
to generate the layouts. Section 3 discusses the approach used for cells characterization and the tool ELC
(Encounter Library Characterizer) used in this work to make the characterization. The cells generation and
characterization to the 0.35 um technology are explained in Section 4. In section 5, a comparison is made by
mapping a set of automatically generated cells and a set of standard cells from a commercial library to circuits
found in the set of benchmarks ISCAS/89. In this section, is also made a comparison between the two sets of
cells characterization values. Finally, we present conclusions in section 6.

2. ASTRAN Tool

In this work, the academic netlist-to-layout tool ASTRAN [1] is used to synthesize the cells being
designed. This tool was developed by Ziesemer [2] in order to automate the process of developing circuit
layouts.

The ASTRAN generates the cells under a linear matrix (1D) layout style and is able to support unrestricted
circuit structures, and continuous transistor sizing. Also, the generator supports transistor folding and uses
Threshold Accept algorithm [3] to determine a placement that maximizes the diffusion sharing and minimizes
the interconnection length. The cell nets are routed using a negotiation-based algorithm similar to Path-Finder
[4]. An Integer Linear Programming (ILP) solver [5] is used for compaction. The compaction step produces the
final layout, according to the result provided by the placement/routing steps and regarding the technology
design rules [1].

The tool receives as input a file containing a SPICE netlist of the cells (with their respective and
individually sized transistors and interconnections), a configuration file (which defines the layout topology and
control parameters to the generator), and a technology file, which contains a description of the design rules [1].

For a given transistor network, the tool objective is to place and route the transistors using the proposed
layout style in such a way that the cell width and interconnections length are minimized. At the end, the circuit
is compacted to produce a design error-free layout in CIF (Caltech Intermediate Format) and LEF (Library
Exchange Format) formats [1].

28 SIM 2010 — 25™ South Symposium on Microelectronics

The automatically generated cells follow a pattern that allows creation of a cell library and subsequently
they can be used to integrate a generation flow with automatic placement and routing, compatible to the
standard cells flow [2].

3. Cells Characterization

Cell characterization generates a liberty file (.1ib) as a result of the characterization process. The liberty file
contains power, timing and noise values for each cell after its fabrication. The characterization is made using
Cadence ELC (Encounter Library Characterizer) [6]. This tool, generate ECSM models (Effective Current
Source Model) that increase the accuracy in the delay values, where fluctuations in voltage, process variation
and noise are problematic.

The ELC requires three input files to perform the characterization of the cell library:

e Setup file: this is the cells configuration file, where the values in which the characterization will be based
are reported. The values are: corners conditions (voltage, temperature), the standard cells signals
(maximum output slew rate, threshold voltage), data for standard cells simulation (transient, resistance),
slew rate and load capacitance for each cell or group of cell (for instance, if a set of cells have the same
slew and load values, then they are in the same group and require only one specification), process
characteristics (simulation corner).

e SPICE subcircuits file: contains the subcircuit of each cell to be characterized. The subcircuit is taken from
the SPICE netlist obtained through the layout parasitic extraction using Cadence’s Virtuoso.

e Transistor model: is also taken from the SPICE netlist, but, as all cells have the same technologys, it is used
only one template file. It has the electrical characteristics of the transistor.

In addition to these three files, scripts are required to automate the cell characterization process. ELC
output is the liberty file (.1ib).

The parameters used to characterize the library generated by ASTRAN have to be in accordance to the
parameters used to characterize the commercial standard cell library to which synthesis results are going to be
compared. Input slew range, loading capacitance range, timing characteristic have all to be matched to
guarantee a fair comparison between the two libraries.

4, Methodology

This work follows the flow shown in Figure 1. First, we select 14 basic cells used for the comparison
between automatic generated cells and standard cells. The selected cells are: ADD21, BUF2, CLKBU2, DFI,
INV1, JK1, NAND20, NOR20, DFC1, XOR20, INV6, MUX21, AOI211 and OAI210. We extract the SPICE
netlist of each cell by using Cadence Virtuoso tool.

This netlist is used as input to ASTRAN to automatically generate cell layouts. The CIF format file is then
imported into Virtuoso where we set the pins, verify the design rules and extract the layout parasitics to a
SPICE file. Next, cell characterization is done using the Encounter Library Characterize tool from Cadence and
the output is the Liberty file (.lib).

e—
StdCell Layout) Encounter Library StdCell
Library Extraction Netlist Characterizer Library
—— (Liberty)
ASTRAN
——
A=
Layout Layout Encounter Library ASTRAN
(CIF) Extraction Characterizer Library
———— (Liberty)

Fig. 1 — Design Flow to generate the set of cells
Following the flow shown in Figure 1, it was possible to obtain a file with a set of cells to be instantiated
by a logic synthesis tool. To obtain a fair comparison between this set of automatically generated cells and
standard cells, we had re-characterized the standard cells. This step is necessary, because the two set of cell
should have the same characterization data and a same setup file. In this paper, we used the characterization
process typical, where the corner conditions are: 25° C temperature and voltage of 3.3V.

SIM 2010 — 25" South Symposium on Microelectronics 29

5. Comparison between Standard Cells and Automatic Generated Cells

The comparison was made using eight ISCAS/89 [7] benchmark circuits: s1196, s1238, s15850, s9234,
$35932, 538417, s38584 and s13207. Table 1 presents the power (mW), timing (ns) and area (um?) values for
the benchmarks mapping using two different standard cell libraries, the commercial standard cell re-
characterized library (SC) and automatic generated one (AG). Negative values indicate that the commercial
standard cell library yields a better result. The mapping was obtained by running the logic synthesis tool, RTL
Compiler. The different technology mapping was used for mapping the circuits using both libraries.

Table 1 — Comparison between standard cells (SC) and automatic generated cells (AG)

Power (mW) Timing (ns) Cell area (um?)

SC AG Gain(%)| SC AG Gain(%) | SC AG Gain(%)
s1196 29.40 23.34 25.96 | 2.144 2.146 -0.09| 38929 40385 -3.61
51238 29.23 23.55 24.12| 2.310 2.012 14.81| 37765 44226 | -14.61
515850 190.22 153.47 2395 2.779 2.368 17.36| 62517 72982 -14.34
$9234 208.94 167.75 24.55| 3.538 2.971 19.08| 91655 107543 -14.77
535932 2527.74| 2040.05 2391 | 2.520 2.328 8.25| 957627 | 1097041 -12.71
$38417 2322.22| 1871.97 24.05| 4.432 4.069 8.92| 950604 | 1074728 -11.55
538584 1707.61| 1376.91 24.02| 2.976 2.68 11.04 | 738101 853434 | -13.51
513207 466.39 373.23 24.96 | 2.434 2.16 12.69| 161761 184821 -12.48
Avg. 935.22 753.78 24.44 | 2.890 2.59 11.51] 379870 434395| -12.20

According to Table 1, the automatically generated cells saved up to 25% of power and the design timing is
12% average faster than the circuits using standard cells. The standard cells achieve a better result only in area,
obtaining a 12% lower, because the automatic generated cells layout is less dense, therefore having larger cell
areas.

In addition to the results obtained by logic synthesis, we compared the characterization values obtained for
the two sets of cells. The results are showed in Table 2 in percentage. Positive values mean that automatic
generated cells had a lower value, in this case, a better result. Two aspects have significant difference:
automatic generated cells have produced an average 13.44% smaller input capacitance and commercial standard
cells presented 16.4% smaller area.

Table 2 - Comparison cell to cell from Liberty values

Cells Timing (ns) | Power | Leakage | Transition| Area Input Cap.
Gain (%) | Gain (%) | Gain (%) | Gain (%) | Gain(%) Gain(%)

ADD21 2.86 5.88 0.02 0.93 -20 18.07
AOI211 1.59 7.08 0.43 1.34 -20 12.95
BUF2 0.35 1.11 -0.02 0.26 -25 -1.98
CLKBU2 2.48 3.27 -0.04 -2.23 25 12.72
DFCl1 4.22 1.01 -0.16 0.61 -10.52 15.11
DF1 9.76 -1.33 0.10 1.20 -11.76 54.85
INV6 -2.33 2.60 -42.68 -2.31 -40 -6.57
INV1 2.05 8.93 -0.42 1.10 0 42.39
JK1 1.94 -6.59 -0.04 0.54 -20.83 44.59
MUX21 1.60 3.54 -0.03 0.50 -14.28 19.34
NAND20 1.27 6.06 0.04 1.63 0 8.32
NOR20 -0.52 2.47 -0.19 0.77 -25 9.68
OAI210 -0.70 -1.26 0.29 -0.16 -20 15.67
XOR20 -1.85 -3.81 -0.19 -0.80 0 25.68
Average 2.26 0.30 -2.20 0.23 -16.37 13.44

The timing and power gain for the automatic generated cells presented in Table 1 is much higher than the
gain compared vis-to-vis in Table 2. This is explained by the smaller input capacitance presented by the
automatic generated cells. The smaller input capacitance has allowed the logic synthesis tool to reduce the total
number of gates in the circuit and the number of gates in the longest path, improving timing and power while
keeping transition times under control.

Table 2 shows that larger cell areas represent smaller input capacitances. This happen because the
automatic generation tool has designed cells where the polysilicon used to create the transistor gates presents a
smaller coupling capacitance with metal 1 lines used to route internal signal. The commercial standard cell
library was designed minimizing area, reducing the available space for internal interconnects, consequently
there are more metal lines crossing over the polysilicon lines increasing the gate input capacitance.

The main advantage of automatically generated cell is to produce cell versions different from the existing
in standard libraries, this comparison doesn’t fully take advantage of the benefits of the automatic layout

30 SIM 2010 — 25™ South Symposium on Microelectronics

generation approach, better timing and power results could be achieved by using optimized netlist produced by
logic synthesis and transistor sizing tools.

6. Conclusion

In this work, we have shown that automatic generated cells are able to present the same overall quality than
standard cells, or even better. By using a set of cells automatically generated we could verify the efficiency of
the ASTRAN tool, reducing the time needed for a layout, and generating layouts with smaller input
capacitance. This characteristic results in a design with a smaller power consumption and timing than the
commercial standard cells. This work enabled us to learn about cells characterization and use the tool
Encounter Library Characterizer. Furthermore, this work will be available for other colleagues to build circuits,
or parts there, using cells layout which may reduce design timing and power consumption.

As future work, we intend to generate more cells to be included in the set generated in this work. These
cells will have different logic and sizes than the ones available in the commercial standard cell libraries. This
will allow a higher quality project. The final goal is to design a synthesis flow, where the first step is to use a
logic synthesis tool that makes logical optimizations to reduce the number of transistors; an example is the
ELIS (Environment for Logic Synthesis) tool [8]. The output of the logic synthesis tool is then inserted into the
ASTRAN allowing the circuit layout generation on the fly.

7. Acknowledgment

This work is partially supported by Brazilian National Council for Scientific and Technological
Development (CNPq — Brazil) and Coordination for the Improvement of Higher Education Personnel (CAPES).

8. References

[11] A. Ziesemer; C. Lazzari, R. Reis. “Transistor Level Automatic Layout Generator for non-
Complementary CMOS Cells,” In: IFIP/CEDA VLSI-SoC2007, International Conference on Very Large
Scale Integration, Atlanta, USA, October 15-17, 2007. pp. 116-121.

[2] A. M. Ziesemer Jr. “Geracdo Automatica de Partes Operativas de Circuitos VLSI”. master's thesis,
PPGC, UFRGS, Porto Alegre, 2007.

[3] G. Dueck et al., “Threshold accepting: A general purpose optimization algorithm appear superior to
simulated annealing”, Journal of Computational Physics, 1990.

[4] L. MCMURCHIE; C. EBELING. “PathFinder: a negotiation-based performance-driven router for
FPGAs,” In: ACM International Symposium on Field-Programmable Gate Arrays, FPGA, 3., 1995,
Monterey, California, United States, Proceedings... New York: ACM Press, 1995. p.111-117.

[S] Lpsolve, “Mixed Integer Linear Programming (MILP) Solver”, http://lpsolve.sourceforge.net/5.5/

[6] ENCOUNTER LIBRARY CHARACTERIZER - ELC. Cadence. Available at:
http://www.cadence.com/products/di/library _characterizer/pages/default.aspx.

[7] ISCASS89, “Iscas89 benchmark circuits,” March 2009. [Online]. Available:
http://courses.ece.illinois.edu/ece543/iscas89.html

[8] ELIS (Environment for Logic Synthesis). Available at: http://www.inf.ufrgs.br/nangate.

SIM 2010 — 25" South Symposium on Microelectronics 31

SwitchCraft - A Tool for Generating Switch Networks for Digital Cells

Vinicius Callegaro, *Felipe de Souza Marques, ‘Carlos Eduardo Klock,
’Leomar S. da Rosa Jr, 'Renato P. Ribas, *André I. Reis
{vcallegaro, felipem, ceklock, rpribas, andreis} @inf.ufrgs.br, leomarjr@ufpel.edu.br

YInstituto de Informatica — Nangate/UFRGS Research Lab, Porto Alegre, Brazil
Departamento de Informatica — IFM — UFPel, Pelotas, Brazil

Abstract

This paper presents a new CAD tool for switch network synthesis. SwitchCraft environment provides a set
of tools for switch network (and logic gate) generation. Transistor networks corresponding to target logic
functions can be generated from Boolean equations and/or from BDD graphs. Logically and topologically
complementary networks can be derived through dual-graphs. Different CMOS logic styles can be obtained,
e.g. single- and dual-rail, static and dynamic topologies, with disjoint planes or in a non-disjoint PTL-like
structure (with shared pull-up/pull-down). Estimators for delay propagation, layout area and power dissipation
(dynamic and leakage) are available. The switch network profile can also be extracted, providing the logic
function behavior, switch/transistor count, number of connections in internal nodes, the longest and shortest
paths, and other characteristics.

1. Introduction

Currently, VLSI design has established a dominant role in the electronics industry. CAD tools have
enabled designers to manipulate a huge number of transistors on a single die and shorten time-to-market. In
particular, logic synthesis tools have contributed significantly to reduce the design cycle time. In this sense, it
becomes also comfortable to have a transistor network synthesis tool to help digital circuit designers to generate
and evaluate potential logic gate implementations that respects the project needs.

There are several algorithms to derive transistor networks. Some algorithms have as main goal to reduce
the total number of transistors in the network [1]. Other ones reach transistor arrangements that respect the
minimum theoretical transistor stack for a target Boolean function [2]. There is a large variety of transistor
network arrangements that represent the same logical functionality, presenting naturally different behaviors in
terms of area, delay and power consumption. In this way, it became necessary to provide a tool that is able to
generate and to compare different transistor network arrangements. A tool that could be used to perform these
tasks is not available neither in the industry, nor in the academia until now.

This paper introduces a new CAD tool called SwitchCraft, which presents some features allowing the user
to generate transistor networks using several different algorithms, and to evaluate electrical and physical
characteristics through estimations. Also, it is possible to generate logic gates in different logic styles, like
standard CMOS [3], pass-transistor logic (PTL) [3] and others. It is a fast and easy way to investigate the
behavior of possible transistor networks and logic gate implementations for a given target logic function.

The remaining of this paper is organized as follows. Section 2 introduces basic concepts. Section 3
describes the proposed framework and conclusions are outlined in Section 4.

2. Background

There are several different methods for implementing switch networks proposed in the literature. The
resulting networks may present different properties, including physical and electrical characteristics. Different
logic styles are also available to implement digital circuits. In this sense, the first question is: what is the best
transistor arrangement that should be used to implement a target logic gate or digital circuit? Several different
methods and algorithms suggest to deliver the best solution for specific cases, and they must be exploited to
ensure the best solution. In the same way, a second question becomes: considering different logic styles, what is
the best one to achieve the design needs and constraints? Again, this answer is not obvious, since it depends of
several aspects regarding the project. These aspects include the definition of the input function that needs to be
implemented and the process technology targeted. To help designers to evaluate alternative solutions, several
estimation methods are described by the scientific community. The main idea behind these methods is to offer
means to analyze transistor network and logic gate behaviors without the need to perform simulation and
characterization. The use of estimators accelerates the design flow and increases the exploitation of the
solutions space.

32 SIM 2010 — 25™ South Symposium on Microelectronics

2.1. Switch Networks

Switch networks are composed of an arrangement of switches that implement a more complex switching
function. The switches, as elements, may be either a direct switch (when it conducts by applying a logic ‘1’
value in the control terminal) or a complementary switch (when it conducts by applying a logic ‘0’ value in the
control terminal). By interconnecting several switches, it is possible to build different arrangements, for switch
networks, such that the resulting network performs the interconnection between two different terminals
according to a given logic function. Fig. 1 illustrates some switch arrangements.

1
(a) (b) (c)

Figure 1 — Switch arrangements: (a) in series (b) in parallel (c) non-series-parallel.

Depending on the technology used, these switches can be implemented as different physical devices. In the
current CMOS technology, NMOS transistors are direct switches, while PMOS transistors are complementary
switches.

2.2. CMOS Logic Styles

Logic styles are basically classified as being static and dynamic topologies. Static styles guarantee that,
under fixed input vectors, each gate output is connected to power rail supplies (either ‘Vdd’ or ‘Gnd) via a low
resistance path. Logic gate outputs assume at all times the value of the Boolean function implemented by the
circuit, meaning that the circuit does not need to be pre-charged or pre-discharged. Some of the most common
static logic styles are static CMOS, pseudo-NMOS, DCVSL and PTL [3]. Dynamic styles rely on temporary
storage of signal values on the capacitance of high-impedance circuit nodes [4]. The implementation approach
of dynamic circuits may result in faster circuits, but their design and operation are more prone to failure
because of the increased sensitivity to noise. The most common dynamic logic styles are Domino and its
variants dual domino, multiple-output domino, NORA domino and zipper domino [5]. Some logic styles are
depicted in Fig. 2. The boxes labeled N and P represent NMOS and PMOS switch networks, respectively.

. . - I e
Static DPTL Pseudo NMOS StaticDCVE Dynamic-N Domino-N DynamicP ¢
e - e vee
P
= o
I .
L I s e “‘I' ot
cnd Al
- - b .
n 1
n— n
. N
end P @nd
Dynamic DPTL Domino-P Dynzmic DCVS ECDOL s
. oo
R] RS
- o p
= ST .
Ml i sanee. out ot @ — &
] § e in
n N
ou i
a 2 —
G £ Gna Gnal

Figure 2 — Some logic styles.

3. SwitchCraft Framework

The main goal of SwitchCraft framework is to provide a set of algorithms and methods to help designers to
generate and evaluate transistors networks and logic gates. As data input, the framework accepts several
descriptions like Boolean expressions, BDD, truth table, BLIF and Spice netlist format. This information is
used by the transistor network generation module, which implements several algorithms found in the literature
to generate transistor networks, for example: Direct generation from SOP equation, generation from factorized
expression [6], BDD-based [7], with unateness optimization [8], respecting minimum stacks [2], Mux-based
[2], Dual-rail [2], Topologically Complementary network (dual-graph) [9], and so on.

As these methods generate transistor networks with different arrangements and electrical behaviors, it is
important to provide methods for analysis and evaluation of the resulting networks. For this purpose, this tool
provides a set of estimation methods also available in the open literature: Elmore delay model [10], Dynamic

SIM 2010 — 25" South Symposium on Microelectronics 33

power consumption [2], Static power consumption (Subthreshold leakage [11] and Subthreshold and gate
leakage [12]), and Area [2].

All these methods and algorithms offer a complete solution to designers that need to go from a logic
description to a transistor-level implementation at the cell level. In this sense, SwitchCraft provides the
possibility to investigate several switch networks and logic gate alternatives, and the means to choose the best
solution that meets the design constraints.

Finally, this tool provides a transistor network visualization module. This is a useful feature, delivering a
fast and efficient way to visualize all the different networks and gates generated in the framework. Spice netlist
descriptions can also be easily imported and translated to transistor-based schematic. An example is shown in
Fig. 3, which also includes transistor network profile information.

Bl

[Logic Gate Viawar: Carmyou

L
P
s b b €
Ity == v
e
NWO%
a €
Ghb 4 i}
]
) .
Torminal nodes | [nd] and 2]}
Swieeh count | 6
Expression i =1 e+ i *
i 20010111 » i) o
J bk o L)
1o | A |
[

voo
pn2
opnl
! out
|, wwed, wwrd, ww
?our
F}_ a I- b
& nn2 *
b_ r-
* GND

Bveaking edges for § 1y

Pull derwn
Tormanalnodes | o] ard [
{ Switch count [
Expression Mie=b) s (b= a)+ e
Truth Tabla | 11101000} a '-I
Larges swiich stack | =
i, um, of serial § 3
Rewpects minimom || o) ynnl nn3
] [[swed, 5w, 5w, sw
Breskingedgmaioed ()
Logic gate 1l v |-

Figure 3 — Visualization and profile window for a carry-out full-adder logic gate.

A friendly graphical user interface (GUI) is available, as seen in Fig. 4. Each action performed in the
graphical interface is linked to a prompt command. In this way, the user is also able to create script files using
these commands in order to run tasks in batch mode. This feature makes possible to use SwitchCraft in a text
only interface (prompt mode), allowing that other tools may be used together with SwitchCraft in an integrated
design flow.

52| [03 swictmotmoskbemes: carvont Py 8]

Expression

1 ™ ns

Pactile || View Tnan Table Refiosh

n2

(5] Swetchs Wetwork Contamer 7] SwitctibistmerkVhemer: Carryth. Pllbavn (3

View || prome || memesn

3 | [51 Lovictiatebetwork Container I

Defast | Commands | Error

[logic Gate Hame: Carry

& [out]
lpu_swl pu_nl 1b ou

lpu_sw2 pu_n3 tc pu nl

Command Py

Figure 4 — SwitchCraft GUL

34 SIM 2010 — 25™ South Symposium on Microelectronics

4. Conclusions and Future Work

This paper presented a framework to automatically generate and evaluate transistor networks and logic
gates. In the current version, SwitchCraft provides several methods and algorithms available in the literature.
The tool can be used as a fast and easy way to investigate how different topologies may be used and explored to
improve a target design. As future works, we intend to implement other alternative methods and algorithms,
adding and providing extra capabilities for designers that want to extract the most optimized solution for digital
circuit design. Also, the native didactic characteristics of this tool will be improved, giving more flexibility for
students that want to learn about this topic.

5. Acknowledgments

Research partially funded by Nangate Inc. under a Nangate/UFRGS research agreement, by CNPq and
Capes Brazilian funding agencies, and by the European Community’s Seventh Framework Programme under
grant 248538-Synaptic.

6. References

[1] D. Kagaris and T. Haniotakis, “A Methodology for Transistor-Efficient Supergate Design” IEEE
Transactions on VLSI Systems, New York, USA, v.15, n.4. Apr. 2007. p. 488-492.

[2] L. S. Da Rosa Junior, “Automatic Generation and Evaluation of Transistor Networks in Different Logic
Styles” Tese (Programa de Pos-Graduacdo em Microeletronica) — Instituto de Informatica, UFRGS,
Porto Alegre. 2008. 147 f£.

[3] J. M, Rabaey, A. Chandrakasan and B. Nikolic, “Digital Integrated Circuits: A Design Perspective”, 2nd
ed. Upper Saddle River: Prentice Hall, 2005.

[4] T.J. Thorp, G. S Yee, C. M Sechen, “Design and synthesis of dynamic circuits”. IEEE Transactions on
VLSI Systems, New York, v. 11, n. 1, Feb. 2003, p. 141-149.

[5] N.H. E. Weste, D. Harris, “CMOS VLSI Design: A Circuits and Systems Perspective”, 3rd ed. Boston:
Pearson/Addison Wesley, 2005.

[6] V. Callegaro, L.S Rosa, A. I. Reis, R. P. Ribas, “A Kernel-based Approach for Factoring Logic
Functions” Microelectronics Students Forum (2009 Aug.: Natal, BR-RN). SForum 2009 [recurso
eletronico]. CD-ROM [S.1.], Setembro 2009.

[7] L.S Rosa, R. P. Ribas, A. I. Reis, “Fast Transistor Networks from BDDs”, Symposium On Integrated
Circuits And System Design, SBCCI, 19., 2006, Ouro Preto, Brasil. Proceedings... New York: ACM,
2006. p. 137-142

[8] R. E. B. Poli, R. P. Ribas, A. I. Reis, “Unified Theory to Build Cell-Level Transistor Networks from
BDDs”, Symposium On Integrated Circuits And System Design, SBCCI, Sao Paulo, Brasil. Proceedings
Los Alamitos: IEEE, 2003. p. 199-204.

[91 V. Callegaro, L.S Rosa, A. I. Reis, R. P. Ribas, “A Graph-based Solution for Dual Transistor Network
Generation”, VIII Student Forum on Microelectronics, 2008, Gramado. VIII Student Forum on
Microelectronics Porto Alegre : SBC, 2008. CDROM.

[10] W. Elmore, “The transient response of damped linear networks with particular regard to wideband
amplifiers”, Journal Applied Physics, Woodbury, USA, v. 19, n. 1, Jan. 1948, p. 55- 63.

[11] P. F. Butzen and Et Al, “Modeling Subthreshold Leakage Current in General Transistor Networks”,
ISVLSI. 2007

[12] P. F. Butzen and Et Al, “Simple and accurate method for fast static current estimation in CMOS
complex gates with interaction of leakage mechanisms.” 18" ACM Great Lakes Symposium on VLSI
(GLSVLSI), 2008, Orlando. Proceedings of the 18th ACM Great Lakes Symposium on VLSI. New
York : ACM, 2008, p. 407-410.

SIM 2010 — 25™ South Symposium on Microelectronics 35

Clock Mesh Size for Wirelength and Capacitance Minimization

Guilherme Flach, Gustavo Wilke, Marcelo Johann, Ricardo Reis
{gaflach, wilke, johann, reis}@inf.ufrgs.br

UFRGS - Universidade Federal do Rio Grande do Sul

Abstract

In this work we present some guidelines for mesh size selection aiming mesh wirelength or mesh
capacitance reduction. We show that the both goals depend basically only on the number of sinks that mus be
driven by the clock mesh. Also a study is presented analyzing how the clock skew changes as we move further
away from the optimum mesh size.

1. Introduction and Motivation

Clock meshes are effective architectures for clock skew reduction mainly in sub-micron technologies
where process and environmental variations become more aggressive. High-end microprocessors are usually
designed using clock meshes to smooth out variability effects on clock delays, e.g. [1-3].

When designing a clock mesh the designer trades off skew improvements by higher power consumption.
Denser is the clock mesh lower is the clock skew. By contrast power is not a monotonic function of the mesh
size and in fact an optimum mesh size for power reduction can be found.

Let's take a look at the Figure 1(a), which shows the mesh total wirelength and its components as a
function of the mesh size. The data were obtained from a /000umx1000um mesh driving 1200 sinks randomly
placed on the circuit area. Although it is a snapshot for a given mesh, different meshes present the same
behavior as the mesh size changes.

r 3.00E-011
0.16 | =tesh WL = esh Cap
i1 | ™= Stub WL 2 S0E-011 == Stubs Cap
Total WL Sink Cap
0.12 -
= 2.00E-011 Buf Cap
—
5 o010 § Total Cap
£
@ 0.08 g 1.50E-011
< @
3 0.06 &
] @
§= ¢ 1.00E-011
0.04
5.00E-012
0.02
0.00 0.00E+000
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Mesh Size Mesh Size
(a) (b)

Figure 1 — Mesh wirelength (a) and capacitance (b) as a function of the mesh size.

As it can be seen in Figure 1(a) the total mesh wirelength has a global minimum, which means that we
waste routing resources if the appropriate mesh size is not chosen. This global minimum emerges due to the
reduction on the average stub length as the mesh size increases in contrast with the mesh wirelength that
increases linearly as the mesh size increases.

Similarly, the total mesh capacitance has a global minimum as it can be noticed in Figure 1 (b). For
this chart, the buffers are sized to match the fanout-of-2, e.g. the total input capacitance of the buffers is equal
to the total mesh capacitance divided by two. However, as we shall see, the fanout rule does not affect the
optimum mesh size for total mesh capacitance reduction.

2. Assumptions and Definitions

In our analysis we suppose randomly placed clock sinks over an LxL die area. All clock sinks have the
same capacitance. A clock mesh is built over this region with m+1/ rows and m+1 columns evenly spaced and it
is referred as having an m size. The stubs connect sinks to the nearest grid edges. Figure 2 shows an example of
a 4x4 clock mesh.

36 SIM 2010 — 25™ South Symposium on Microelectronics

. L2 . L L4 - L4 L 2
. . - .
L] L] L L]

.l .l L .-

‘-.. L .. L .. - .. L
e o -—— —
® ® [(]

? .® ot o? y

™e —"e —"s Pl N A
e | . . .
.] [®

o? ®] o?

.
™ e Pl -1 PR g P |
- - 1 - L2
L] L] L] ®
! ! ot o? I

Figure 2 - A 4x4 clock mesh.

Although the buffer placement affects the clock skew, it can be ignored for the following discussion since
we are interested only in the total mesh wirelength and capacitance. Later, for experiments, we shall describe
the placement and buffer sizing strategy. For now, with no loss of generality, consider that mesh is driven by a
single buffer sized according to the fanout-of-n rule: the size of the buffer is such that its input capacitance is
equal to the total mesh capacitance divided by n.

3. Optimum Mesh Size for Wirelength and Capacitance Minimization

In this section we present analytic formulas for finding the optimum mesh size w.r.t total mesh wirelength
and total mesh capacitance.

3.1. Average Stub Length Estimation

Stubs connect sinks to the nearest mesh edge so that the sinks are always connected to one of the four
edges, which enclose it. The average stub length can be estimated by Equation 1 [4].

"P8(0/2-x 1
=) 7)x6x=g (1)

0

3.2. Mesh Size for Minimum Total Mesh Wirelength

The total mesh wirelength is composed by both mesh wirelength and stub wirelength. As seen in the Figure
2 the mesh wirelength increases linearly and the stub wirelength decreases in a 1/m rate. It is also clear by
Figure 2 that the total mesh wirelength has a global minimum. Equation 2 gives us the estimation of the total
mesh wirelength.

W (m)=2L(m+1)+(kL/6m)

mesh stubs

@)

Now taking derivative of W equal to zero we obtain the mesh size, which minimizes the total wirelength as
in Equation 3.

* k
my, = E (3)

Notice that the mesh size depends only on the number of sinks. Note also that each bin should has in
average 12 sinks for minimum wirelength.

3.3. Mesh Size for Minimum Total Mesh Capacitance

We define Cyy as the sum of the mesh capacitance (mesh wires and stubs) and buffer capacitance. The
mesh capacitance, C,p, 1S given by Equation 4.

C...(m)=C,, [2L(m+1)]+C,,(KL/6m)

mesh wirecap stub cap

“4)

Since we size buffers based on the fanaout-of-n rule, the total buffer capacitance is proportional to the
mesh capacitance. Finally Equation 5 gives the total mesh capacitance.

SIM 2010 — 25™ South Symposium on Microelectronics 37

Ctotal (m) = Cmesh (m) + Cme.vh (m)/ n+ szink
mesh cap buffer cap sink cap
Equation 6 shows that the mesh size which minimizes the total mesh capacitance, m*cap, is proportional to
the square root of the number of sinks and are not affected by the fanout-of-n rule. This is to say that we can
change the fanout used for sizing buffers without affecting the optimum mesh size and so trade off power
consumption and skew reduction [5].

* k Cstub

R e 6
cap 12 Cwire ()

. . * * *
Ngtlce also that if we have Cgyp, = Cyire We have m ¢, = m 1. However generally Cgup < Cyire 50 that m ¢ <
m .

4. Experiments
We perform a bunch of simulations to analyze the behavior of the clock skew as the mesh size goes away
from the optimum mesh size.

4.1. Experiment Setup

A buffer is placed at each intersection of a vertical and a horizontal grid wire. The buffers are sized based
on the fanout-of-4 rule [6] addressing the load capacitance due to direct connected edges as well as the stubs
and sink's capacitance connected to those edges. Figure 3 presents an example of the region addressed by a
buffer.

TI ..:IT

Figure 3 - The coverage region of a buffer.

The 65nm PTM [7] technology parameters are used in the electrical simulations. Wires smaller than /00um
are modeled with /7 and the remaining ones are modeled with 37 model. When variability is applied, 1000
Monte Carlo iterations are performed.

4.2. Result Analysis

First let us analyze the case where no input skew is applied to the clock mesh, that is, all mesh buffers
receive the clock signal at same time. The log-plot of results is shown in Figure 4(a). As we can see, as the
mesh size increases further from the optimum mesh size, we still obtain significant clock skew reduction.
Although the total mesh capacitance increases and more power is dissipated, it is still worthwhile to increase
the mesh size until the desired clock skew is achieved.

This scenario changes when input skew is applied to the mesh buffers. By analyzing the log-plot in
Figure 4(b) we can observe that no significant skew reduction is achieve by increasing the mesh size further
from the optimum size. This contrast with the rapidly increasing of the total mesh capacitance. The higher is the
total mesh capacitance, the higher is the mesh power consumption. It is important to notice that the power
consumption also increases by the increase of short circuit current.

38 SIM 2010 — 25™ South Symposium on Microelectronics

1000 998
=-pvg
= Normalized .92 Normaliz ed
- Skew 6.29 Skew
-Cap 5

= Cap

397
315
251
199
158
126

0.79
063

0.01 05
1] 5 10 15 20 25 30 5 40 45 0 5 10 15 20 25 30 35 40
Mesh Size Mesh Size
(@) (b)

Figure 4 - Skew and capacitance trade-off (a) when no input is applied and (b) when input skew is applied.

5. Conclusions

In this paper we outlined analytical formulas to compute the optimum mesh size for both wirelength
and capacitance reduction. As we observed the optimum mesh size for wirelength reduction is only dependent
on the number of sinks. The optimum mesh size for capacitance is also dependent on the number of sinks, but it
is also affected by the ratio between the mesh and the stub wire capacitances.

Another key point is to observe that we obtain little skew improvement when moving further from the
optimum mesh size, which may not compensate the increasing in total mesh capacitance and by as a
consequence the power consumption.

6. References

[1] S. Tam et al., “Clock generation and distribution for the first ia-64 microprocessor,” IEEE Journal of
Solid-State Circuits, vol. 35, no. 11, pp. 1545-1552, Nov. 2000.

[2] T. Xanthopoulos et al., “The design and analysis of the clock distribution network for a 1.2ghz alpha
microprocessor,” in Proceedings of the IEEE Internaional Solid State Circuits Conference, ISSCC, Feb.
2001, pp. 402—403.

[3] P. Restle et al., “The clock distribution of the power4 microprocessor,” in Proceedings of the IEEE
Internaional Solid State Circuits Conference, ISSCC, Feb. 2002, pp. 144—145. 476—479.

[4] G. Flach, G. Wilke, M. Johann, R. Reis. “A Study on Clock Mesh Size Selection” Proc. First IEEE
Latin American Symposium on Circuits and Systems (LASCAS), 2010.

[5] Shinya Abe; Hashimoto, M.; Onoye, T., “Clock Skew Evaluation Considering Manufacturing
Variability in Mesh-Style Clock Distribution” in 9th International Symposium on Quality Electronic
Design, 2008. ISQED 2008. 17-19 March 2008 , pp. 520-525 .

[6] Sutherland, 1.; Sproull, B.; Harris, D. Logical effort: designing fast CMOS circuits. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 1999.

[71 PTM. “Predictive Tecnology Model” Apr, 2010. http://www.eas.asu.edu/~ptm

SIM 2010 — 25" South Symposium on Microelectronics

39

Video Coding 1

40

SIM 2010 — 25™ South Symposium on Microelectronics

SIM 2010 — 25" South Symposium on Microelectronics 41

Power Efficient Motion Estimation Architecture Using QSDS Algorithm
with Dynamic Iteration Control

L3Marcelo Porto, 2Jodo Altermann, 2Eduardo Costa, *Luciano Agostini,
'Sergio Bampi
{msporto,bampi} @inf.ufrgs.br, {jaltermann, ecosta}@ucpel.tche.br
{porto, agostini} @ufpel.edu.br

YInstitute of Informatics - Federal University of Rio Grande do Sul - UFRGS
2Polytechnic Institute - Catholic University of Pelotas - UCPEL
3GACI - Federal University of Pelotas — UFPel

Abstract

This paper presents a power efficient and low hardware cost architecture for motion estimation (ME)
using a Quarter Sub-sampled Diamond Search algorithm (QSDS) with Dynamic Iteration Control (DIC)
algorithm. QSDS-DIC is a new algorithm for motion estimation and it is based on the Diamond Search
algorithm and the sub-sampling technique. The aspect of reducing significantly the number of Sum of Absolute
Differences (SAD) calculations enables the development of an efficient hardware design for the ME. Moreover,
the Dynamic Iteration Control available to the architecture, allows that the desired throughput can be
achievable with a restriction in the number of iterations. This aspect enables a power efficient architecture,
since the number of clock cycles can be reduced by using DIC technique. The implemented architecture uses
blocks of 16x16 samples and it was described in VHDL. Synthesis results are presented for TSMC 0,18um
CMOS standard cell. The architecture can reach real time for HDTV 1080p with power consumptions of
32.92mW.

1. Introduction

Motion estimation (ME) is the most important task in the current standards of video compression.
However, the intensive computation required to estimate the motion vectors leads to an increase of power
consumption. According to [1], typically, 60-80% of the total encoder computational power is due to the
motion estimation block. Thus, for the applications where the real-time video in portable devices operated by
battery, such as cell phones, wireless handheld terminals, etc., has to be considered, the low power aspect has to
be taken into account.

Several techniques for reducing power consumption in ME architectures are presented in literature. The
main goal is to reduce the computational complexity of the motion vector by using the most adequate search
algorithm. Diamond Search (DS) [2] algorithm can be a good choice to the reduction of the computational
requirements, because this algorithm can drastically reduce the number of SAD calculations, when compared to
the conventional Full Search (FS) algorithm. The use of DS algorithm enables a significant increase of search
area, with quality results close to the FS results. Moreover, the possibility of reducing SAD calculations can
appreciably reduce the hardware resources that are necessary to achieve real time for high resolution videos.
Another form to reduce the number of SAD calculations is the use of Pixel Sub-sampling (PS) technique [2].
According to [3], by using PS at a 4:1 rate, it is possible to reduce the number of SAD calculations by 75% and
to speed up the architecture four times.

This paper presents a power efficient architecture for ME using the new Quarter Sub-sampled Diamond
Search with Dynamic Iteration Control (QSDS-DIC), which is based on DS algorithm and uses PS 4:1 and
DIC. This architecture was firstly presented in [3] and the results showed that this architecture can reach real
time for HDTV 1080p videos with a low hardware cost. In this paper we show the capability of reducing power
consumption of the ME of [3] by exploring the use the DIC aspect in the QSDS algorithm. In fact, by using
DIC technique, the number of iterations that are used to generate the motion vectors can be controlled, and thus,
the number of clock cycles can be reduced with no penalties in the desired throughput and motion vector
quality. This enables a significant power reduction in the ME architecture.

The architecture was described in VHDL. Synthesis results are presented for TSMC 0.18um CMOS
standard cell technology. The architecture can reach real time for HDTV (1920x1080 pixels) in the worst case,
with a power consumption of 32.92mW, saving 17.5 % when compared with QSDS without DIC architecture.
The QSDS-DIC was developed for real time HDTV applications, but this architecture presents good results for
power consumption even working on low resolution videos as CIF. These results are achievable due to the
efficiency of the QSDS-DIC algorithm that is able to save SAD calculation and hardware resources.

The rest of paper is organized as follows: section II summarizes the QSDS-DIC algorithm. The designed
architecture is presented in section III and section IV presents the hardware synthesis results and comparisons
with related work. Finally, section V presents the conclusions of this paper.

42 SIM 2010 — 25™ South Symposium on Microelectronics

2. QSDS-DIC Motion Estimation Algorithm

In this section we summarize the QSDS-DIC algorithm for motion estimation proposed by [3]. This new
algorithm is based on three main principles: (1) Diamond Search algorithm; (2) 4:1 Pixel Sub-sampling (PS)
technique and (3) dynamic iteration control. These main principles will be detailed in the next paragraphs.

Diamond Search (DS) algorithm defines two diamond patterns, the Large Diamond Search Pattern (LDSP)
and the Small Diamond Search Pattern (SDSP) [3]. The LDSP consists of nine comparisons around the center
of the search area. The SDSP is used in the end of the search, when four candidate blocks are evaluated around
the center of the LDSP, to refine the final result. The search ends when the lower SAD is found at the center of
the LDSP. So, the SDSP is applied and the search is finished. When the best match is found in a vertex, more
five blocks are evaluated to form a new LDSP. If the best match was obtained in an edge, three blocks more are
evaluated. The 4:1 PS technique is applied to each evaluated candidate block. Thus, each line of the block has
eight samples, instead of 16 in a non sub-sampled block. The number of lines is also sub-sampled, only eight
lines are considered. Thus, each candidate block with 16x16 samples, becomes a sub-sampled block with 8x8
samples. Then, by using PS it is possible to improve the throughput reducing the hardware cost, with a small
loss in terms of quality.

The Dynamic Iteration Control (DIC) was designed focusing in the hardware design of ME. This feature
allows a good trade off among hardware resources consumption, throughput, synchronization, quality and
power consumption. The DIC explores the characteristics of the algorithm, and dynamically controls the use of
iterations, contributing to power saving and reducing the hardware utilization.

3. QSDS-DIC Architecture

This section presents the QSDS-DIC architecture. The designed architecture for the QSDS-DIC algorithm
uses SAD as a distortion criterion [3]. The architectural block diagram is shown in Fig. 1(a). The architecture
has nine processing unities (PU). The PU can process eight samples in parallel and this means that one line of
the 16x16 sub-sampled block is processed in parallel. So, eight accumulations must be used to generate the
final SAD result of each block, one accumulation per line.

Used Iterations

1
|
! Ly]
1 m e —— CR e
! ' LE MFE
ClE -
! — &
1 U4 &
CBM |1 = E eruion
1
|] PUS Yy
i N MV SAD
f PUG
LM o
o} D=
@) (b)

Fig. 1 — (a) QSDS —DIC block diagram architecture (b) Block diagram of DIC

3.1 Memory Organization

The internal memory is organized in 15 different local memories [3]. A local memory (LM) stores the
region with the nine candidate blocks of the first LDSP and all the possible blocks for the next step. Thus, when
the control unit decides which blocks must be evaluated in the next step, the LM already has this data. LM
memory is composed of 16 words with 128 bits. Another 13 small memories are used to store the candidates
block (CBM) and one for the current block (CB). These 14 memories are composed of 8 words with 64 bits (8
samples of 8 bits) and they store one sub-sampled block with 8x8 samples [3].

LM memory is read line by line and the data is stored in the CBM memories. Nine CBMs are used to store
the candidate blocks from the LDSP. Four CBMs are used to store the blocks of the SDSP. These blocks are
always stored, and they are ready to be calculated if the control decides to start the SDSP. This solution speeds
up the architecture and reduces the memory access latency. When the SDSP mode is active, the control unit
selects a multiplex and the PUs receives the data from these memories [3].

3.2 Dynamic Iteration Control — DIC

The restriction in the number of iterations is important to make it easier to synchronize this module with
other video coder modules, while at the same time it allows the number of cycles used to generate a motion

SIM 2010 — 25" South Symposium on Microelectronics 43

vector closer to the worst case [3]. Then, a dynamic restriction is considered in DIC. DIC allows the algorithm
to use a variable number of iterations, depending on the algorithm necessity. A variable stores the number of
iterations used by the generation of the 16 last motion vectors. Each motion vector has a limited number of 20
iterations to use (this is a variable number). When a motion vector uses less iterations than the maximum
available for it, the saved iterations are accumulated and this extra slack is available to be used in the estimation
of the next motion vector [3].

The architecture used to implement DIC is shown in Fig. 1(b). The number of iterations used is sent to a
shift register with 16 positions. A set of add/accumulator generates the total number of iterations used in the last
16 motion vectors. The DIC was developed allowing a maximum of 20 iteration per motion vector, so the used
iterations for the last 16 vectors are subtracted of 320 (maximum value for a set of 16 motion vectors), and the
result is the number of available iterations for the next motion vector generation.

4, Synthesis Results

The developed architecture was described in VHDL and synthesized to TSMC 0.18um standard cells
technology. The synthesis was generated using the Cadence Encounter RTL Compiler tool. The results are
presented for the worst case, considering the minimum frequency for real time processing at 30 fps (frames per
second). The worst case considers the maximum number of iterations available in the DIC. For the lower
resolution standards, as QCIF, CIF and VGA, the DIC was set to five. In this case, each motion vector can use a
maximum of 192 clock cycles. The highest resolution videos use a DIC with restriction of 20, for maximum
iteration per motion vector in the worst case. Thus, in this case, each motion vector can use 582 clock cycles.

By using DIC, the motion estimator works in a dynamic search area. Considering that the maximum number
of iteration per motion vector is set to five, the maximum number of iteration, for the last 16 vectors is 80
(maximum value for a set of 16 motion vectors). The maximum search area in this case is 320x320 pixels, since
it is considered that all motion vectors use all iterations available of it. For the DIC with 20 iterations, the
maximum search area is 1300x1300 pixels.

The synthesis results for the QSDS architecture, with and without DIC, are presented in tab. 1. The results
are presented considering the minimum operational frequency for real time processing, at 30 fps, for many
resolution standards. The QSDS-DIC architecture needs a very slow frequency (approximately 0.5MHz) to
work with QCIF resolution. The power consumption is also small, only 12.51mW.

The QSDS-DIC architecture was developed to reach real time for HDTV 1080p resolution. This architecture
can achieve this performance at 141.1MHz in the worst case. The power consumption is small, less than 33mW
to process HDTV videos.

Tab. 1 — Synthesis Results

; QSDS -DIC QSDS
Video Standard
30fps Frequency Power Frequency Power
(MHz) (mW) (MHz) (mW)
QCIF 0.57 12.51 0.57 13.92
CIF 2.28 12.55 2.28 14.58
VGA 6.91 13.26 6.91 16.07
SDTV 23.5 18.06 23.5 21.92
HD 720p 83.8 28.23 83.8 34.12
HD 1080p 141.4 32.92 141.4 39.92

The QSDS-DIC synthesis results were compared with some published solutions for low power ME as [4-7].
Tab. 2 presents the results of the QSDS-DIC architecture and some related work. Our architecture presents the
best results for area resources utilization and power consumption, when HDTV video processing is taken into
account. Our architecture presents the smaller area resources utilization, in terms of number of transistors
(Xtor). Comparing against [4] and [7], that have performance results for HDTV, our solution can save 65 % and
51 % power consumption, respectively.

The work of [5] and [6] presents architecture solutions for low resolution videos (CIF). As should be
observed, even developed to process HDTV, our solution has also lower power consumption in CIF. As can be
seen in table 2, our solution presents less power when compared against [6], and it presents power consumption
close to the result of [5]. However, the solution of [5] was developed especially for mobile applications, and
works only with QCIF and CIF videos. Moreover, this solution uses a less power supply of 1.2V, while our
solution uses a power supply of 1.8V. Even compared with solutions for low resolution videos, our architecture
has the lower hardware utilization. It can prove the quality of the QSDS-DIC algorithm for hardware
implementation.

44 SIM 2010 — 25™ South Symposium on Microelectronics

Tab. 2 — Synthesis Results

Motion Estimation Architectures

[10] [5] Our [8] [7] Our

Video Standard HD 1080p HD 1080p 1?8%p CIF CIF CIF
Process (um) 0.18 0.18 0.18 0.18 0.13 0.18
Transistor 620K 2.25M 94K 508K M 92.3K

Frames (fps) - 30 30 30 30 30

Freq. (MHz) 155 108 1414 27 13.5 2.2
Power (mw) 68 95 32.92 22.5 12 12.55

5. Conclusions

This paper presented a high performance and power efficient motion estimation architecture for real time
HDTYV encoding. The developed architecture uses the QSDS-DIC algorithm, and it presents smaller hardware
resource utilization. The architecture was described in VHDL and synthesized to TSMC 0.18um standard cells
technology.

The synthesis results shows that the developed architecture can reach real time for HDTV 1080p videos
with a frequency of 141.1MHz, with a power consumption of 32.92mW, for the worst case. The results also
show the advantages in power consumption by using DIC. Our solution presents the best result for area
resources utilization and power consumption when compared against some related work for low power ME
architectures, working on HDTV 1080p videos.

6. Referéncias

[1] M. Panovic, and A. Demosthenous, “A Low Power Block-Matching Analog Motion Estimation
Processor” IEEE International Symposium on Circuits and Systems, vol. 5, pp. 4827-4830, 2005.

[2] P. Kuhn, Algorithms, Complexity, Analysis and VLSI Architectures for MPEG-4 Motion Estimation.
Springer, June 1999.

[3] M. Porto, S. Bampi, A. Susin, and L. Agostini, “Architectural Design for the New QSDS with Dynamic
Iteration Control Motion Estimation Algorithm Targeting HDTV” 21st Symposium on Integrated
Circuits and Systems Design. September 2008.

[4] Y. Murachi, T. Matsuno, K. Hamano,J. Miyakoshi, M. Miyama, and M. Yoshimoto “A 95mW MPEG2
MP@HL Motion Estimation Processor Core for Portable High Resolution Video Application”
Symposium on VLSI Circuits Digest of Technical Papers, 2005.

[51] M. Miyama, J. Miyakoshi, Y. Kuroda, K. Imamura, H. Hashimoto, and M. Yoshimoto, “A Sub-mW
MPEG-4 Motion Estimation Processor Core for Mobile Video Application” IEEE Journal of Solid-State
Circuits, vol. 30,n0 9, pp. 1562—-1570, September 2004.

[6] Y-Han Chen, T-Chien Chen, C-Yung Tsai, S-Fang Tsai, and L-Gee Chen, “Data Reuse Exploration for
Low Power Motion Estimation Architecture Design in H.264 Encoder” Journal of Signal Processing
Systems, vol. 50, pp. 1-17, January 2008.

[71 S. Warrington, W. Chan, and Subramania Sudharsanan, “Scalable High-Throughput Architecture
forH.264/AVC Variable Block Size Motion Estimation”, International Symposium on Circuits and
Systems, 2006. ISCAS 2006.

SIM 2010 — 25™ South Symposium on Microelectronics 45

A Low-Cost Hardware Architecture Design for Binarizer Defined by

H.264/AVC Standard
LAndré Martins, *Vagner Rosa, 'Dieison Depré, ‘Sergio Bampi
{almmartins, vsrosa, depra, bampi} @inf.ufrgs.br

'UFRGS - Universidade Federal do Rio Grande do Sul

Abstract

This paper presents a hardware design of the binarizer part of the CABAC (Context-Based Adaptive
Binary Arithmetic Coding) entropy encoder as defined in the H.264/AVC video compression standard. The
architecture proposed in this paper is able to reach the HDTV throughput requirements for all modules of the
CABAC binarization process. The proposed solution was described in VHDL and the synthesized results show
that the developed architecture reaches enough performance in FPGA and ASIC to process HDTV videos in
real-time and it has the lowest area among all related work in literature .

1. Introduction

The H.264/AVC standard [1], [2] is the state-of-art in digital video compression, reaching gain in
compression rate of 50% compared to the previous Standards. However, the lower bit-rate to a given bitrate was
achieved through sophisticated algorithms that increased significantly the computational complexity in
encoding and decoding process. Therefore, many hardware architectures have been developed and proposed,
mainly to process high definition videos. One of the main tools that provide high compression performance to
H.264/AVC is the entropy encoder CABAC. However, developing high-performance hardware architectures to
CABAC is a great challenge because their algorithms are extremely sequential having strong data dependency.
These features deal very hard the exploring of parallelism being one of the bottlenecks of the system [2].

The coding process used by CABAC is composed by three basic stages: binarization, context modelling,
and arithmetic encoding as shown in Fig. 1. In the binarization stage, the syntactic elements (SE) are mapped to
chains of binary symbols, according to the type of SE being processed. Each symbol of these chains is called
“bin”, and the complete chain is called “bin string”. [3]

bin value for context model update

. . loop over v bin value
non-binary valued bin :' - ' el Regular
syntax element Binari string ins bin Context | confexi mode Codin
inarizer » Modeler En ins
-ne coded birs
regular regular
syntax P,
element T bitstream
hd @ “o bipass bypass ga
binary valued T Bypass coded bits
symiax element ST
bin value Coding Engine

Binary Arithmetic Coder

Fig. 1 - CABAC block diagram [2]

Currently, many works focusing CABAC architectures were found in literature, but only in a few
works all the stages of codification are developed. The majority is restricted to the problems of the arithmetical
codification and/or the context modeling, sometimes ignoring the binarization.

The previous works, which proposed hardware architectures for CABAC, usually do not focus in or
simply do not present implementation synthesis data on the binarization process [6]-[8]. This happens because
the CABAC data bottleneck is not in the binarizer, the other blocks of CABAC are critical in performance and
in their blocks the most of authors are developed architectures. Further about 90% of the total symbols are
derived from DCT coefficients and foreach one of these elements is necessary to apply the binarization process.
Based on these statistics, the work presented in [3] decided to implement the techniques of binarization in
hardware only for SEs that derived from the DCT coefficients, leaving the remaining binarization techniques to
be processed in software. However, the first architecture solution found in the literature for CABAC [3] showed
that the binarizer could demand 52% of total area of CABAC.

In the next section, will be present all the methods of binarization defined by H.264/AVC standard.
The architecture proposal is discussed in section 3. Section 4 presents the results of our developed architecture.
Finally, we present some conclusions in Section 5.

46 SIM 2010 — 25™ South Symposium on Microelectronics

2. Binarization Process

The binarization process consists of mapping integer values in a sequence of bits that represents the
original value. This mapping is carried through with objective to reduce the alphabet of symbols, thus
simplifying the amount of elements to be modeled, minimizing the costs of the context modeling and
facilitating the task of arithmetical codification. Each bit, generated through this process, is called “bin” and the
set of all “bins” (bits), generated from the mapping of an input value, was called “bin string”. The size of “bin
string” generated for each input value is variable and depends on the type of SE that is being processed and on
the current context. The goal to use the binary mapping with variable size of “bins” is, exactly, to generate the
smallest possible representation for SEs that occurs more frequently, making possible compression of bitstream.

Tab.1 - Example of binarization using U, TU and FL methods

SE Bin
Unary | Truncated Unary (cMax=4) | Fix Length (cMax=4)
0 0 0 0000
1 10 10 0001
2 110 110 0010
3 1110 1110 0011
4 11110 1111 0100

To implement the binary mapping process, the CABAC defines a set of seven binarization methods,
some of them are extremely complex. The decision of which the form of binarization will be used is based on
the SE type, macroblock type (or sub macroblock), slice type and in the SE value, that is being treated. The
mainly binarization methods are composed by four basic techniques: Unary (U), Unary Truncated (TU), Fixed
Length (FL) and Concatenated Unary/Kth order Exp-Golomb (UEGk). Beyond these, other three special
binarization forms are defined for specific SEs: Macroblocks and SubMacroblocks (MB&SUB), Coded Block
Pattern (CBP) and Quantized Parameter Delta (QPd). The MB&SUB method uses ROM table to map SE to bin.
The CBP method is given by FL binarization (cMax=4) concatenated with TU binarization (cMax=2). The QPd
method is given by U binarization of the mapped value of SE, because the SE binarized by QPd can admit
negative values.

Tab.2 - Example of UEGk binarization process Tab.3 — The same Tab. 2 binstring but produced by
equations Eq. 1; Eq. 2 and Eq. 3

SE UEGK Bin (k=0 uCoff=14) SE UEGK Bin (k=0 uCoff=14)
[Truncated Unary [Kth Exp-Golomb Unary Fixed Length

0 0 - 0 0 -

1 10 - 1 10 -

13 I1111111111110 |- 13 11111111111110 -

14 LI111111111111 J0 14 |I11111111111110 -

15 II111111111111 [100 15 |I111111111111110 [0

16 II111111111111 [101 16 |I111111111111110 |1

17 II111111111111 |11000 17 |L1111111111111110 (00

18 II111111111111 11001 18 |L1111111111111110 pO1

19 I1111111111111 11010 19 |I1111111111111110 |10

20 1111111111111 J11011 20 |L1111111111111110 |11

21 11111111111111 1110000 21 |111111111111111110 000

22 11111111111111 1110001 22 |I11111111111111110 j001

N TU(SE) cMax=14 |[EGk(SE-14)

The unary method translates the unsigned integer value in a chain of one’s (1) with length defined
by symbol value and concatenated by zero (“0”) in the end. The length of the bin for the truncated unary
method is limited by the parameter cMax, in other words, it means the length of bin binarized by TU should not
be larger than cMax. The fixed length method bypasses the SE’s which are already in their binary
representation. The FL method depends of the parameter cMax too. The table (Tab. 1) below shows an example
about the mapping of the SE’s to U, TU and FL methods.

The UEGK bin string is a concatenated of a prefix and suffix bin string and depends of parameters &
(defines the minimum input value from which exist suffix) and uCoff (defines the maximum prefix length). The
prefix part is defined by TU method and the suffix is defined by Exp-Golomb code as shown below at table
Tab.2.

SIM 2010 — 25™ South Symposium on Microelectronics 47

3. Designed Architecture

Known that the binarization is not the bottleneck of the system, but it can demand more than a half of
total area of CABAC and the arithmetic encoder doesn’t need process 1bin/cycle to be efficient, the strategy
used to develop the design of this work was a multi-cycle implementation which could be able to reuse of some
operators. To get this objective, we focus the efforts in optimize or replace the binarization method more
complex, the UEGk. Analyzing the UEGk bins shown at Tab. 2, it was detected that the same bins could be
generated by using the methods FL and U. The prefix bin is generated by method U as defined as equation Eq.
1 and the suffix method is generated by method FL as defined as equation Eq. 2 and Eq. 3. At table Tab. 3 is
shown how the UEGk bins are generated by these equations. Note that compared with Tab. 2, it’s really the
same bins.

U(SE), SE < uCoff

prefix(SE) = {U(uCoff + size(suf fix) —k — 1), SE = uCof f M
suffix(SE) = FL(2¥ + SE — uCoff) ()
cMaxs,frix = size(suffix) 3)

The architecture developed to implement all binarization methods is presented at figure Fig. 3. The
module called Dec calculates the bin size generated by UEGk method. The registers prefix e suffix are used to
calculate some bin values. The register size stores the bin size. The five memories ROM are used to define bins
without behavior logic generated by MB&SUB method.

—
SEvalue ~| .
—>
SE type =3 SEvalue u 13
-1
suffix —3
1
size =l SE value
e B O
in |]
size €
SEtype € <
value
5 SE value m
ROM’s @
prefix
suffix SEvalue —2

Fig. 2 — The developed binarizer block diagram

The SE can admit many types and each type of SE has its specific binarization process. Apart from
SE type, the control should schedule the SE’s to their correct binarization method and determine their
parameters cMax, uCoff e k, when present. The diagram of figure Fig.4 shows that the binarizer proposed
finishes the processing of SE in maximum three cycles. In one cycle, our architecture executes the FL
binarization, in two cycles it executes the other methods and the QPd, UEGk and MB&SUB can demand three
cycles to generate a bin.

v v '

Unaryikth Cuantized
Truncated Macrobikacks and
EE— Unai Paramete
Eived Léhg[h Iy UI'IEII]-' Suhmacrabiooks N HEE'DE;E_ |r3&|[EI r
-—
1 Unary/Kih Coded Block | | Quantized Macrobiosks and
order Exp- Pattem Parameater -
Golomb Delta o d
2

Fig. 3 — The binarizer functional diagram

4, Results

The architecture developed was described in VHDL and synthesized to FPGA and ASIC. The table
Tab. 4 shows the synthesis results in terms of area and frequency.

48 SIM 2010 — 25™ South Symposium on Microelectronics

Tab.4 — Synthesis results
Leonardo — TSMC 0.18um | Leonardo - TSMC 0.35um ISE — FPGA Virtex I VP30
Area Frequency | Area Frequency Slices | FFs LUTs | Frequency
2013 gates 348.3 MHz | 2258 gates | 205.7MHz 382 238 651 241.1 MHz

The table Tab. 5 shows the comparison of the results with other’s related works. There are some other
works which developed the binarizer or part of the binarizer and they don’t have on the table because a
comparison wouldn’t be fair or accurate [10], [11]. It’s important highlight that [4], [5] didn’t develop all
binarization methods although the their good results. The binarizer presented in [3] demands a lot of area
compared with our architecture. In the other hand, to get the low-cost of area, we needed to decrease the
throughput, but our design is able to process video HDTV in real time too.

Tab.5 — Comparison with related works

Binarizer? |Area Throughput (bins/cycle) Frequency (MHz)
[5] (0.35um) [UEGk e U |Gates: 6500 2 343
[5] (FPGA) [UEGk e U Slices: 403 2 185
[4] (FPGA) [UEGk e U Slices:367 1 100
[3] (FPGA) Yes Slices: 3424 |1 243
Ours (FPGA) Yes Slices: 382 0.66-0.8 241.1
Ours (0.35um) Yes Gates: 2258 0.66-0.8 205.7

5. Conclusions

In this paper, a new hardware architecture design for binarizer of the H.264/AVC CABAC has been
proposed. The related works founded in literature do not focus in architectures for binarizer and we showed the
implementation of all the methods of binarization defined by H.264/AVC standard is essential for application of
the CABAC. Our design is able to process videos FullHD 1080p in real time to main profile and gets the better
results in terms of area compared with related works and supports all binarization processes.

6. Bibliography
[1] RICHARDSON, I. H.264/AVC and MPEG-4 Video Compression - Video Coding for Next-Generation
Multimedia. Chichester: John Wiley and Sons, 2003.

[2] MARPE, D.; SCHWARZ, H.; WIEGAND, T. “Context-Based Adaptive Binary Arithmetic Coding in
the H.264/AVC Video Compression Standard”. In: IEEE TCSVT, Vol. 13, N° 7, July 2003.

[3] DEPRA, D. A. ; ROSA, V. S. ; BAMPI, S. . “Design and Implementation of a High-Performance
Architecture for Binarization Methods of Defined by H.264/AVC Standard”. In: XIV Workshop
Iberchip, 2008.

[4] OSORIO, R. Roberto.; Bruguera, J. D. “Arithmetic coding architecture for H.264/AVC CABAC
compression system.” DSD, 2004. Proceedings. Euromicro Symposium In. pp 62-69. Sept. 2004.

[5] R.R. Osorio and J. D. Bruguera, “High-Throughput architecture for H.264/AVC CABAC compression
system,” [EEE TCSVT., vol. 16, no. 11, pp. 1376-1384, Nov. 2006.

[6] PASTUSZAK, G. “A High-Performance Architecture of the Double-Mode Binary Coder for
H.264.AVC.” [EEE TCSVT, v. 18, n. 7, p. 949-960, July 2008.

[71 L. Li, Y. Song, T. Ikenaga, and S. Goto, “A CABAC Encoding Core with Dynamic Pipeline for
H.264/AVC Main Profile,” in Proc. IEEE APCCAS, Dec. 2006, pp. 761 — 764

[8] H. Shojaina and S. Sudharsanan, “A high performance CABAC encoder,” in Proc. IEEE Int. NEWCAS
Conf., Quebec City, Canada, Jun. 2005, pp. 104—107.

[9] INTERNATIONAL TELECOMMUNICATION UNION. ITU-T Recommendation H.264 (03/05):
advanced video coding for generic audiovisual services. [S.1.]. 2005.

[10] W. Zheng et al.: “Efficient Pipelined CABAC Encoding Architecture” in [EEE Transactions on
Consumer Electronics, Vol. 54, No 2, May 2008

[11] Chien-Chung Kuoel al.: “Design of a Low Power Architecture for CABAC Encoder in H.264” in Proc.
IEEE APCCAS, Dec. 2006, pp. 243-246

SIM 2010 — 25" South Symposium on Microelectronics 49

Adaptive Distortion Metric Architecture for
H.264/AVC Video Coding

'Guilherme Corréa, *Claudio Diniz, ?Luciano Agostini, 'Sergio Bampi
{grcorrea, cmdiniz, bampi} @inf.ufrgs.br, agostini@ufpel.edu.br

! Microelectronics Group (GME) — UFRGS — Porto Alegre, Brazil
2 Group of Architectures and Integrated Circuits (GACI) — UFPel — Pelotas, Brazil

Abstract

Video coding in portable devices is a challenging research subject nowadays. Just recently, the research
for dynamically adaptive video coding systems has been addressed. This work proposes a power-aware
architecture with adaptability to choose a different distortion metric accordingly to the power/energy
constraints, the coding quality and the time required to perform the video coding. With our architecture, it is
possible to trade-off image quality and computational complexity. Three distortion metrics were implemented
and its efficiency was assured through the reuse and sharing of logic resources, such as operators and
registers. Clock gating was also applied to further reduce the power dissipation. Results showed a power
decrease of 65% to 80%, depending on which distortion metric is used. Also, the used area was reduced around
14% through resource sharing. The developed architecture achieves by far the minimum requirements of the
design in which it is used, allowing the encoding of HD 1080p digital videos in real time.

1. Introduction

The last technological advances have brought us a wide range of portable multimedia-capable devices,
although the power supply keeps being one of the main limitations in such designs. As portable multimedia
devices generally do not require the best image quality and present a stronger power constraint than other non-
portable devices, the development of algorithmic and architectural approaches for trading off image quality and
power consumption in such applications can be explored.

The Intra-frame prediction of H.264/AVC [1] is responsible for decreasing the spatial redundancy present
in each video frame. On the other hand, the Inter-frame prediction, composed by the motion estimation and
motion compensation modules, is responsible for the reduction of temporal redundancy of a video. These two
types of prediction are performed in several different modes of operation, which are then compared in order to
select the best one in terms of bit-rate and distortion. H.264/AVC reference software uses a Rate-Distortion
method to select the optimal coding mode, which is extremely expensive due to the large number of candidate
modes provided in H.264/AVC. Several distortion metrics, which are different in terms of quality and
complexity, can be used in this method. As the complexity influences directly in the power consumption, the
choice of which distortion metric is used in the encoding process is related to the power and the energy
requirements of the whole video coding system.

In this paper, we propose a power-aware architecture in which it is possible to choose a distortion metric
used accordingly to the power and energy constraints, the coding quality and the time required to perform the
video coding. This approach can be specially used in devices where these requirements and constraints change
frequently, such as mobiles, palmtops, handhelds and portable televisions. The architecture is, thus, based on an
efficient trade-off between image quality and computational complexity. Three distortion metrics were
implemented in the architecture and its efficiency was assured through the reuse and sharing of logic resources,
such as operators and registers.

The rest of this paper is organized as follows. Section 2 explains the Rate-Distortion method for mode
decision and the mathematical basis for the three metrics used in this work. Section 3 presents the implemented
architectures. Section 4 shows the obtained results in terms of area, performance, power and energy and draws a
comparison between them. Section 5 concludes this work and indicates some future work.

2. Mode Decision and Distortion Metrics

A large number of coding modes is provided by the H.264/AVC standard. The reference software uses a
Rate-Distortion method to select the optimal coding mode. This can be done through the use of Lagrangian
minimization, as proposed by Wiegand [2], which is the most effective method to improve the compression
ratio (a ratio between raw and coded video) with a controlled loss in the output video quality, as shown in (1).

J=D+ AR 1)

In (1), J, D and R are the cost, the distortion and the rate of a mode, respectively, and A is a Lagrangian
multiplier dependent on the quantization parameter (QP) used in the coding process [1]. Rate is the number of
bits per second of coded video and distortion is a measurement of information loss in the coding process. When
considering H.264/AVC, near-optimal rate-distortion optimization is very complex than the video coding

50 SIM 2010 — 25™ South Symposium on Microelectronics

process itself, because of the abundance of coding modes. However, as this stage is a non-normative feature,
mode decision can be designed in a low complexity manner, targeting both real-time and low power
requirements in mobile devices. For high resolution video coding applications, low complexity distortion
metrics are also useful to achieve real-time requirements.

Several distortion metrics can be used to estimate the D value in (1), such as the Sum of Absolute
Differences (SAD), the Sum of Absolute Transformed Differences (SATD), the Sum of Squared Differences
(SSD) [3]. Among the cited metrics, SAD is the less complex and less accurate one, while SSD is the most
complex, since it uses a multiplication unit to calculate the squared differences. In this work, three different
metrics were specifically chosen in order to provide three different levels of quality accuracy and power-
consumption. The chosen distortion metrics are explained in the following paragraphs.

SAD is the most intuitive distortion metric, since it calculates the difference between two blocks based on
simple subtractions between their pixels. The absolute value of the difference between each pixel in the original
block and its corresponding pixel in the predicted block is calculated. All the absolute differences are then
summed in order to provide a single number which represents the block distortion, as shown in (2), where P is
one candidate predicted MB (or block), O is the original MB (or block), m and n are the dimensions of the MB
(or block) in samples.

Although still similar to SAD, the SATD metric includes a frequency transform in its calculation,
increasing significantly its complexity. On the other hand, SATD is more accurate than SAD, since it evaluates
both objective and subjective quality of the video through comparisons performed in the frequency domain.
The most used transform in SATD is the Hadamard Transform [1], introduced in the video coding process of
H.264/AVC through the direct and inverse transform modules (T and T). After the subtraction between the
pixels of the original and predicted blocks, the differences are transformed from the spatial to the frequency
domain. The absolute values are taken from the transformed samples and then summed as in SAD calculation.
The SATD function is shown in (3), where S represents the sample in the (i, j) position of the transformed
block and N is the dimension of the MB (or block) in samples.

In SSD, the differences between the pixels of the predicted and the original blocks are squared and then
summed. As in SAD and SATD, the minimum SSD value defines the smallest difference between two blocks.
As it involves a multiplication, this distortion metric is more complex and time-consuming than the two others
presented. The SSD function is shown in (4), where P, O, m and n present the same meaning as in (2).

1 n— m=1 n—1 2

p,-0,| @ SATDziﬁnSﬂ 3) SSD:ZZ(E,,-—O,»,j) @)
i

i=0 j=0

SAD =

1
i=0 j=0

3. Implemented Architectures

As the distortion calculation is the most used function during the Inter-frame and Intra-frame predictions,
the efforts of this work are all concerned on the architecture of this module.

3.1. Hierarchical SAD+SATD+SSD Architecture

An architectural version containing the three distortions metrics without any optimization was
implemented to be used in comparisons with the proposed solution. The three distortion metrics were
implemented separately and instantiated in a higher-level architecture. As the metrics were designed in a
pipelined approach with one arithmetic operator per stage, a different number of clock cycles is used to
calculate the distortion value in each one of them.

The SAD, the SATD and the SSD architectures receive eight samples per clock cycle (four samples from
the predicted block and four samples from the original block). Then, four subtractions are performed in parallel
and the results are stored in the first set of temporal registers.

In SAD, the absolute value calculators are followed by the adders’ tree. Five groups of temporal registers
are used in the five-stage pipeline. Once filled the pipeline (four clock cycles), the SAD value of a 4x4 block is
generated after four clock cycles.

In SATD, the differences between the input samples are stored in a set of 16 registers during four clock
cycles, since they are all required for the Hadamard transform execution. The Hadamard transform was divided
in four clock cycles, since its 64 arithmetic operations can occur in four steps. The architecture was organized
in 10 pipeline stages.

In the SSD architecture, the multiplication unit was implemented in a shift-and-add approach where the
multiplication terms are generated through AND operations between the bits of the multiplication factors. The
partial products are then added using two by two additions. The SSD architecture was implemented in seven
pipeline stages.

SIM 2010 — 25™ South Symposium on Microelectronics 51

3.2. Optimized SAD+SATD+SSD Architecture

As the three distortion metrics are not used at the same time, an architecture that shares a set of adders,
subtractors and registers was designed in order to reduce the circuit area required and the overall power
consumption. Thus, we have investigated which of the registers and operators can be used in the calculation of
more than one distortion metric.

A group of multiplexers was added before the input of the shared resources in order to allow the selection
of the input values based on the control signal that identifies the metric in use. Figure 1 shows the developed
architecture. Each stage is separated from the previous one by a register barrier, represented by the name
“REG”. As the 4x4 Hadamard transform is composed by a series of arithmetic operations, its four stages are
also separated by registers. For example, the adders’ tree present in the SAD and SATD architectures shown in
the previous subsection are implemented in this optimized architecture with the same registers and adders, since
they are never used at the same time. Five blocks which correspond to adders’ tree are shown in Figure 1.

When the distortion metric used is SATD, the module “4x4 Hadamard transform” is used and the modules
“ANDs”, “Reg Terms”, “Sum Terms Level 1” and “Reg Level 17, which are used just in SSD, are skipped
during the execution. In the same way, the module “4x4 Hadamard transform” is ignored when the distortion
metric used is SSD and the other blocks are used for the distortion calculation.

In order to decrease still more the power consumption of the circuit, the final version of the architecture
also includes the use of a clock gating technique, since not all the registers are used during the computation of
the three metrics. Thus, the clock activity in such registers can be disabled to reduce the dynamic power
consumption. Three clock signals were created, besides the original clock signal: clk SAD, clk SATD and
clk_SSD. The registers used in just one of the metrics were described in processes which are just sensible to
their correspondent clock signals. Registers used in the calculation of two metrics were created in processes
sensible to the two correspondent metrics and registers used in all the three metrics are sensible to the original
clock. The new clock signals are generated by simple logical operations between the original clock and the
control signal that indicates which of the three metrics is being used at the moment.

Orig(0)] J
Pred(0) —

S
e
-

or
SATD
TREE 1

R R
R E E
SUM
E G G
E M G LEVEL 2
G . U g [+ G Sum L M or L
. | :}(lereﬂs N s H+ ANDs [+ o TERMS |4 E |4 U SAD | E
adamar
Pred® 5 A LEVEL1 \éf 3 TREE1 \E/
L L

m
w

o™
wEZ Dm A

Orig(3)
Pred{3)

ol 2 : R
SUM N E E
TERMS G G G G
LEVEL 3 SATD SATD
or L L TREE 4 TREES m
sap - E TSUM El—f o ["L o T I SSE
ERMS SSETREE R SSE R .
TREE 2 W LEVEL 4 W
1 E TREE 2 E
or E — or E ; e
SATD L SATD L
TREE 2
TREE 3
4 1 samn | ?
Fig. 1 — SAD+SATD+SSD architecture with resource sharing

All the three solutions (SAD+SATD-+SSD without resource sharing, with resource sharing and with
resource sharing and clock gating) were described in VHDL and synthesized to TSMC 0.18 pm standard-cells
technology through Synopsys tools. Table 1 shows the obtained results in terms of power dissipation, area and
maximum frequency achieved for the three solutions.

In Table 1, we can observe a reduction of 13.9% in the used area of the second solution, which explores the
resource sharing, when compared to the first solution that only instantiates a separated VHDL description for
SAD, SATD and SSD at the same module. This slight reduction occurred because a large set of multiplexers
was added to the architecture of the two other solutions before the shared registers and the arithmetic operators,
increasing the area of the optimized circuit.

52 SIM 2010 — 25™ South Symposium on Microelectronics

Table 1 - Power, area and frequency results

. Power (mW)
2
Version Area (um?) Fmax (MHz) @ 100 MHz
SAD+SATD+SSD 470,789 281.4 65
27.82 @ SAD
SAD+SATD+SSD w/ resource sharing 405,328 265.1 28.12 @ SATD
28.73 @ SSD
. 12.9 @ SAD
SAD +SAT51;5313C‘12’/ resouree sharing 407,057 265.1 22.9 @ SATD
gating 19.0 @ SSD

Very expressive reduction in power dissipation was achieved by the last two solutions when compared to
the first one, as shown in Table 1. As the first solution does not present resources sharing between the metrics
nor clock gating in some registers, it calculates and provides the three results in its outputs at the same time,
thus resulting in high power consumption. While the area reduction was around 13.5% in the final architecture,
the power consumption decreased about 80% in SAD, 65% in SATD and 71% in SSD operation. This
happened because most of the shared resources are registers, which are elements that consume much more
power than the arithmetic operators. The power reduction was achieved through the sharing of logical resources
such as arithmetic operators and registers. The last solution achieves less power dissipation than the others
because of the application of clock gating technique to the pipeline register barriers. These results were
obtained through the Power Compiler tool, from Synopsys [4], considering the 0.18 pm technology from
TSMC. The power analysis was performed by the application of average sample values as input of the
developed architecture.

The addition of multiplexers has also enlarged the critical path of the circuit, thus increasing the critical
delay. Table 1 shows the reduction of 6% in the maximum frequency of the optimized architecture, which has
dropped from 281.4 MHz to 265.1 MHz.

The developed architecture can be used in both Inter-frame and Intra-frame prediction. In order to encode a
HD 1080p video (1920 x 1088 pixels) in real time (30 frames per second), 244,800 macroblocks must be
encoded per second. This way, considering that the proposed module is part of a complete H.264/AVC encoder
design that operates at 130 MHz, a macroblock must be encoded in at least 531 clock cycles and the proposed
architecture must satisfy this requirement. In the developed architecture, the SAD value of a 4x4 block is
calculated in seven cycles and the complete flow of the Intra-frame coding, composed by the Intra-frame
prediction, the mode decision, the residual calculation and the direct and inverse transform and quantization is
performed in 22 cycles for each block. As a macroblock is composed by 16 4x4 blocks, 352 clock cycles are
used to encode it, satisfying the requirement. An amount of 400 and 432 clock cycles are necessary to encode a
complete macroblock using SATD and SSD metrics, respectively, which also satisfies the requirements.

5. Conclusions and Future Work

This work proposes a power-aware adaptive architecture which allows the use of three distortion metrics
(SAD, SATD and SSD). It was designed using a resource sharing approach which decreases the total area used
and the overall power consumption of the circuit. Clock gating was also applied and resulted in an overall
decrease varying from 65% to 80%, depending on the distortion metric being used.

The used area of the original architecture was reduced around 14% in the final version. On the other hand,
the critical delay has increased 6% due to the insertion of several groups of multiplexers that allow the sharing
of logical resources. The developed architecture achieves by far the minimum requirements of the design in
which it is used, allowing the encoding of HD 1080p digital videos in real time.

As future works, it is intended to expand the idea of the multiple distortion metric architecture through the
development of an algorithm which dynamically chooses the used metric Also, it is intended to use optimized
adders in the trees of the metrics, such as adder compressors.

6. References

[1] RICHARDSON, L. E. G. “H.264 and MPEG-4 Video Compression: Video Coding for Next-generation
Multimedia”, John Wiley & Sons Publishers, USA, 2002.

[2] WIEGAND, T. et al., "Rate-Constrained Coder Control and Comparison of Video Coding Standards",
IEEE TCSVT, Jul. 2003, p. 688-703.

[3] PURI, A., CHEN, X., LUTHRA, A. “Video coding using the H.264/MPEG-4 AVC compression
standard”, Signal Processing: Image Communication 19 (2004) 793-849

[4] Synopsis PowerCompiler, datasheet available at homepage:
http://www.synopsys.com/products/power/power_ds.pdf

SIM 2010 — 25" South Symposium on Microelectronics 53

A New Parallel Motion Estimation Algorithm

'Diego Noble, “*Marcelo Porto, ‘Gabriel Siedler, *LLuciano Agostini
{dnoble. ifm, gsiedler. ifm, agostini}@ufpel.edu.br, {msporto} @inf.ufrgs.br

'GACI, Federal University of Pelotas — UFPel
?Institute of Informatics, Federal University of Rio Grande do Sul - UFRGS

Abstract

In this paper, we present a new algorithm focusing in high quality fast motion estimation process for high
definition video coding. This algorithm provides more efficiency to avoid local minima falls in fast motion
estimation. This algorithm is based on Diamond Search, and it was called Multi-Point Diamond Search
algorithm (MPDS). The multi-point search could be done in a serial or parallel approach. In the parallel
approach, there are no penalties in the performance. This solution could be a good approach for hardware
implementation, since there is no data dependency and the multi-points can be calculated in parallel. The
MPDS algorithm was implemented and evaluated in ten HD video sequences. The results show an average
quality gain of 3.72dB in comparison with original Diamond Search.

1. Introduction

Motion Estimation (ME) presents the highest computational complexity among all steps of the current
standards for video coding. In fact, ME represents 80% of the total computational complexity of current video
coders [1]. The search for best vectors is known to be very expensive in terms of calculations and,
consequentially, in terms of processing time. The Full Search (FS) algorithm must explore all possibilities in a
given search window, which implies in a very high computational cost, especially for high resolution videos.
Based on this fact, it is important to explore new solutions which bring a good tradeoff between objective
quality (PSNR) and complexity.

There are many fast algorithms and techniques in scientific literature which handle with this complexity at
different levels of impact in objective quality (PSNR). Generally, these algorithms exploit the characteristic of
locality among temporal correlated blocks and good results in terms of numbers of calculations could be
accomplished. However, these algorithms have a weak point which is the increase in local minima falls with the
increase of the video resolutions, especially for high activity video sequences. This undesired feature results in
worse motion vectors than the ones which FS algorithm would generate and, consequentially, perceivable
losses in the visual quality. In the H.264/AVC standard [2], the current most efficient video coding standard,
there is no restriction about how the block matching is done in the motion estimation process, so there is a lot of
space to explore new ideas.

In this paper, we propose a new algorithm for fast motion estimation targeting high quality when
processing high definition videos. This algorithm provides an efficient way to avoid local minima falls in the
fast ME algorithms applications and therefore an increase in terms of final quality. This algorithm is not
focused on a specific standard and it can be used with all current standards. The proposed algorithm uses the
Diamond Search (DS) algorithm [3] as basis and it is called Multi-Point Diamond Search (MPDS) algorithm
after it. This algorithm can be a good option for hardware implementation since the multi-points can be
calculated in parallel, without data dependency. This paper presents the new algorithm, its results and
comparisons with other solutions. The MPDS was applied to ten HD 1080p test video sequences and the results
shows that a gain of 7.42dB could be achieved in some sequences in comparison with the original DS. The
computational cost is also increased in comparison with the original DS; however it is more than 485 times
lower when compared with FS algorithm for the same search area.

There are several fast search algorithms in the literature, as [1], [4] and [5], for example. All these
algorithms use some techniques to speed up the search and also to achieve good motion vector, not necessarily
the best ones. The algorithm presented in [4] combines two algorithms and also uses threshold to speed up the
process, as [5] does. None of these algorithms are good solutions to avoid local minima in the search process,
and this is the purpose of this our presented algorithm.

The rest of this paper is organized a follows: Section 2 describes the main concepts related to the ME
process and also some concepts for common fast ME algorithms. The proposed algorithm is showed in Section
3 and the results at Section 4. The comparative results are presented in the Section 5. Conclusions are given at
the section 6.

2. Motion Estimation

Full Search (FS) algorithm generates the optimum motion vector in a given search area, however, it
demands a very high computational cost. There are many fast algorithms for ME in the literature, as Diamond
Search (DS), Hexagon Search (HS), Dual Cross Search (DCS) [6] and others. These algorithms have in

54 SIM 2010 — 25™ South Symposium on Microelectronics

common the use of a search pattern (diamond, hexagon and cross) that is repeated while a stop condition was
not satisfied. When the search ends, a small pattern is applied to refine the final result. In this paper we use the
search engine of the DS algorithm applied in our algorithm.

Diamond Search (DS) algorithm defines two diamond patterns, the Large Diamond Search Pattern (LDSP)
and the Small Diamond Search Pattern (SDSP) [3]. The LDSP consists of nine comparisons around the center
of the search area. The SDSP is used in the end of the search, when four candidate blocks are evaluated around
the center of the LDSP, to refine the final result. The search ends when the best match is found at the center of
the LDSP. So the SDSP is applied and the search is finished. When the best matching is found in a vertex, more
five blocks are evaluated to form a new LDSP. When the best matching is found in an edge, more three blocks
are evaluated, forming a new LDSP.

3. The MPDS Algorithm

The MPDS algorithm starts the search for the best matching in five different positions of the search area.
Each position, except the central one, is inside a sector (A, B, C and D), as presented in Fig. 1. The MPDS
algorithm uses the same search engine of the DS algorithm, when searching for the best block matching. It
starts doing the LDSP until the criterion of termination is found and then it applies the SDSP to obtain a final
refinement. However, the MPDS is not restricted to only one start point, exactly to avoid the same local
minimum which the DS would reach. Moreover, the MPDS defines five different start points and five
independent DS algorithms are triggered in the same search area.

Fig. 1 describes the MPDS algorithm. Each initial search point is defined by its coordinates inside the
sector. The point (0,0) is the central position and it will obtain the same vector which the DS algorithm would
due to the deterministic nature of the algorithm. The search in the sectors A, B, C and D starts according the
distance parameter d. The d parameter is the distance (number of pixels in X and Y axis) from the central point
(0,0). Sectors A, B, C and D start the search respectively at positions (d,d), (-d,d), (-d,-d) and (d,-d). When the
search ends for all evaluated regions, the MPDS algorithm selects the best result from the five applied
diamonds. The variation of d parameter can substantially change the achieved quality result for a given
sequence.

Sector 2 Sector 1

4>y @ &)
(), NZY)

: ;
; 0 ;

' i
| :3 (d-d)
N N
Sector 3 Sector 4

Fig. 1. MPDS algorithm starting search in five points

It is important to notice that the MPDS algorithm could be executed in a parallel or in a sequential manner.
This algorithm was developed focusing on the quality of the results generated by the ME process, so both
implementations, parallel or sequential ones, could be used since the quality results will be the same. Besides,
the MPDS algorithm is an efficient solution to execute in processors with support to multi-thread or multi-core,
exploring parallel programming features. The parallel or sequential implementations could be done also in
hardware, when high throughputs are required. Time related results were omitted since we focused the design
specifically at a high quality motion estimation process.

4. Simulation Results

The proposed algorithm was described in C language and it was evaluated in ten test video sequences [7].
The used search window was defined as 256x256 pixels, the block size was defined as 4x4 pixels and the
similarity criterion is defined as the SAD [3]. The experiments consider the first two hundreds frames of all the
ten HD 1080p sequences. The time spent for all simulations was 432 hours in the sequential way in a Quad
Core Q8200 with 2 GB of RAM.

Fig. 2 show the curves of PSNR for the MPDS algorithm in the ten HD 1080p test video sequences [7],
considering the variation of the d parameter (1 to 20 pixels). This variation was evaluated to find the best
distance for the average case. The effects of this variation are very different to each sequence, depending of the
video characteristics. In Fig. 2, the curve “traffic” is related to the sequence “traffic_dissonving_to_trees”; the
curve “tomatoes” is related to “rolling_tomatoes” sequence and the curve “pedestrian” is related to the

SIM 2010 — 25™ South Symposium on Microelectronics 55

“pedestrian_area” sequence. The names were abbreviated to allow a better representation in the graphic. PSNR
is related to the Y axis and is measured in dbs and d is related to the X axys.

44
43 - e P——— e —— e—]

4 1 i

0 4 W : :

40 > E— . ’) - W — — A
30 / e

38
37

] -7;/‘7,_“?_’_**
35 5 + & — —

34 ; . =
33
32 ;
y —#—blue_sky —®—man_in_car

31

pedestrian_area riverbed

30
29 | —=rush_hour —&— station2
28 sunflower rolling_tomatoes
27 + traffic_dissolving_to_trees tractor
0 1 ? 3 a 5 6 7] 9 10 11 12 13 14 15 16 17 18 19 20

Fig. 2. PSNR curves for the MPDS algorithm with variation of d parameter, =0 means original DS

The value 0 for the d parameter was introduced to show the results of the DS algorithm seeing that the
results are the same for both algorithm when d=0. The curves in Fig. 2 show an important quality gain, in
comparison with original DS. The block size was defined as 4x4 pixels because a higher number of vectors
would be generated and consequently the effect of the multi-point search would be more precisely visible.

As Fig. 2 suggests, the optimal distance from the point (0,0) depends on the characteristic of the considered
sequence. In sequences with high movement as riverbed or traffic, the MPDS outperforms DS with a gain in
PSNR around 7dB. This is a considerable value for objective quality. In this case the optimum values for d
were 19 and 27, respectively. The best results for MPDS algorithm was found for the traffic sequence, with a
gain of 7.4dB

Sequences with low movement, such as rush_hour and station2, where DS achieved a good result, the
quality gain of MPDS was not so expressive. The optimal distances in these cases were 9 and 4, respectively,
with a PSNR gain of 1.7dB for rush_hour and 1.3dB for station2. However, high detail sequences with a
small global movement, as the sun_flower, tractor and blue_sky showed a fast increase in the PSNR for lower
d values, followed by a significant reduction in the gain with the increase in d value. The optimal d values were
7, 8 and 5, respectively.

The analysis of the variation of d parameter and its consequences, presented in Fig. 2, revealed the
possibility of definition of an optimal distance in the average case. Considering the results for the ten video
sequences, the best value for d parameter is 17. It means that the MPDS presents an average gain of 3.72dB in
comparison with the original DS, using d=17 for this set of video samples. This gain over the original DS is
obtained due to the search in the sectors A, B, C and D.

The center sector (original DS) is the best option for 52.01% of the motion vectors. The other 47.99% of
the motion vectors were found at one of the four additional sectors. This evaluation demonstrates the potential
of reduction in the local minima falls when the MPDS algorithm is used, since 47.99% of the vectors were
found in other regions than that defined by DS algorithm. The distribution over the sectors is very similar,
varying from 11.07% to 12.90% (sectors D and A, respectively).

5. Comparative results

The average result of the MPDS algorithm (d = 17) is compared to original DS and FS algorithms in the
Tab. 1 which also presents the average results for quality and computational cost in terms of number of SAD
operations. The quality results were measured in the average PSNR and percentage of residual reduction (PRR)
in comparison with the simple differential coding. The FS algorithm was evaluated in four different search
windows, 16x16, 32x32 and 64x64 pixels.

The MPDS algorithm surpasses the PSNR of original DS in about 3.72dB in the average case. However,
there is an increase in the computational cost. The MPDS computes about six times more SAD operations than
original DS. This increase in the computational complexity may not represent any significant cost in terms of
performance because the parallel nature of the MPDS algorithm makes possible to execute the five diamonds
(the central one and sectors A, B, C and D) at the same time. The only additional cost, in comparison with the
original DS, is the decision step between the five results that comes after the search step.

Comparing to FS algorithm, the MPDS algorithm, in the average, can achieve better PSNR results than the
FS16 (search window of 16x16 pixels) and the FS32 (search window of 32x32 pixels), with a gain of 5.52db
and 1.20db, respectively. Moreover, considering the computational cost, the FS16 uses 1.3 times more SAD

56 SIM 2010 — 25™ South Symposium on Microelectronics

operations than the MPDS, and FS32 uses 6.4 times more SAD operations than MPDS. The FS algorithm can
only outperform the MPDS for the search windows of 64x64 pixels. In this case, the FS64 can achieve a PSNR
1dB higher than MPDS with a computational cost 29 times higher than MPDS. The MPDS algorithm presents a
better tradeoff between computational cost and achieved PSNR in this case.

Tab. 1 - Evaluation results for MPDS, DS and FS

Algorithm PSNR (dB) PRR (%) # SADs x 10°
DS 35.41 73.77 9.28
MPDS 39.13 82.64 54.67
FS16 33.62 32.48 70.09
FS32 37.94 79.77 348.78
FS64 40.78 85.02 1,543.17

Comparisons with published works are very difficult because there is no published work with the same set
of video samples as the used in this work. The most part of the published works uses low resolution sequences
to evaluate its algorithms. In [1], three HD sequences are used for test (station2, pedestrian area and
rush_hour), however, the algorithm was evaluated inside the JM12.4, the reference code for H.264/AVC. Its
results were presented for the whole coding process, and not just for the ME.

6. Conclusions

In this paper, we presented a new algorithm for high quality fast motion estimation called Multi-Point
Diamond Search (MPDS). The MPDS was implemented and ten HD video sequences were used to evaluate it.
Its results were compared to original DS and the FS algorithm. The results show that the MPDS can achieve an
average gain of 3.72dB, in comparison with original DS. The MPDS can also outperform the FS algorithm for a
search window of 32x32, with a reduction in the computational cost of 6.4 times. Consequently, it has a better
tradeoff between computational cost and quality.

The MPDS presents a computational cost increase in comparison with original DS. However it is possible
to use parallelization to speed up the whole process. Thus the MPDS can be faster than FS and as fast as the
original DS. As future work, we intend to adapt the MPDS algorithm for a two-step implementation. Based on
preliminary results, a reduction in 20% of total computations is likely to be achieved. We also intent to develop
a hardware architecture for this algorithm, based on [8] that present a hardware architecture for DS algorithm.
Using four instances of the original architecture we can implement the MPDS algorithm in a high performance
and high quality motion estimation architecture. An implementation of the MPDS inside the most recent
version JM is also planned thus allowing our algorithm to be tested inside whole process of video coding.
Furthermore, a more precise comparison with others algorithms would be possible.

7. References

[1] Cheng, Y., Chen, Z. and Chang, P., “An H.264 Spatio- Temporal Hierarchical Fast Motion Estimation
Algorithm for High-Definition Video”, IEEE International Symposium on Circuits and Systems, ISCAS,
pp. 880-883, 2009.

[2] JVT Editors (T. Wiegand, G. Sullivan, A. Luthra), Draft ITU-T Recommendation and final draft
international standard of joint video specification (ITU-T Rec.H.264 [ISO/IEC 14496-10 AVC), JVT-
GO050r1, Geneva, May 2003.

[3] Kuhn, P., Algorithms, Complexity, Analysis and VLSI Architectures for MPEG-4 Motion Estimation,
Springer, June 1999.

[4] Po, L., et al., “Novel Directional Gradient Descent Searches for Fast Block Motion Estimation”, IEEE
Transaction on Circuits and Systems for Video Technology, Volume 19, pp. 1189-1195, 2009.

[5] Tasdizen, O., et al, “Dynamically Variable Step Search Motion Estimation Algorithm and a
Dynamically Reconfigurable Hardware for Its Implementation”, IEEE Transactions on Consumer
Electronics, Volume 55, pp. 1645-1653, 2009.

[6] Porto, M., et al., “Investigation of motion estimation algorithms targeting high resolution digital video
compression,” ACM Brazilian Symposium on Multimedia and Web, ACM, New York, pp. 111-118,
2007.

[71 Xiph.org: Test media, available at <http://media.xiph.org/video/derf/>, December, 2009.

[8] M. Porto, L. Agostini, S. Bampi and A. Susin, “A high throughput and low cost diamond search
architecture for HDTV motion estimation,” In: IEEE International Conference on Multimedia & Expo,
2008, Hannover. IEEE International Conference on Multimedia & Expo, 2008.

SIM 2010 — 25" South Symposium on Microelectronics 57

A Dedicated Hardware Solution for the H.264/AVC
Half-Pixel Interpolation Unit

'Marcel Moscarelli Corréa, *Mateus Thurow Schoenknecht,
!L_uciano Volcan Agostini
{mcorrea.ifm,mateust.ifm,agostini} @ufpel.edu.br

YUFPel - Federal University of Pelotas

Abstract
This work presents a hardware solution for the H.264/AVC half-pixel interpolation unit. This solution is
able to process very high definition videos as QHDTV (3840x2048 pixels) at 33 frames per second. This
solution can also be integrated to a complete Motion Estimation architecture without limiting the other
modules performance. This architecture was described in VHDL and synthesized to two different Xilinx FPGA
devices and achieved the best results when compared to related works.

1. Introduction

Video coding is an important research area due to the increasing demand for high definition digital video
for applications like the Internet, digital television broadcasting, storage and many others.

A video coding standard primarily defines two things: (1) a coded representation or syntax which describes
the visual data in a compressed form, and (2) a method to decode the syntax to reconstruct the visual
information [1].

The H.264/AVC (Advanced Video Coding) is the most recent and most efficient video coding standard. It
is designed to achieve much higher compression rates when compared to older standards [2]. However, the
H.264/AVC has a very high computational complexity, which makes difficult for software solutions to encode
high definition videos in real time, i.e. 1920x1080 pixels at 30fps. For this reason, dedicated hardware
architectures are being designed.

In a raw digital video there is a lot of redundant information that can be explored in order to compress it.
There are three kinds of redundancy. The spatial redundancy is the similarity in homogeneous areas within a
frame, the temporal redundancy is the similarity between sequential frames, and finally, the entropic
redundancy is the redundancy in the bit stream representation.

The Motion Estimation (ME) is the module that explores and reduces the temporal redundancy of a video.
It works by splitting the current frame in several macroblocks (16x16 pixels) and searching in the previous
coded frames (reference frames) for the macroblock that is most similar to the current one. When the most
similar macroblock is found, a Motion Vector (MV) is generated indicating the motion. In the H.264/AVC
Motion Estimation the macroblock can be partitioned into smaller blocks to find better matches [2].

However, the most similar block can be found in a fractional position, indicating a movement smaller than
one pixel [1]. Our work focuses on a part of the Fractional Motion Estimation.

This paper is structured as follows: Section 2 presents the sub-pixel accurate Motion Estimation; Section 3
presents more details about the half-pixel interpolation process; Section 4 presents a software valuation; Section
5 presents the processing unit design; Section 6 presents the data flow and operation mode of our design;
Section 7 presents some synthesis results and a comparison with a related work, and finally, Section 8
concludes this work.

2. Fractional Motion Estimation

A characteristic that contributes to the high compression rates achieved by the Motion Estimation of the
H.264/AVC standard is the possibility to generate fractional motion vectors [1]. In other words, a movement
that happens from a frame to another is not restricted to integer pixel positions only.

The Fig. 1a shows an integer motion vector pointing to a 4x4 block that is directly present in the reference
frame and the Fig. 1b shows a fractional motion vector pointing to a 4x4 block that is not in the reference
frames. The samples that are used by the Fractional Motion Estimation must be obtained through interpolation
of integer position samples.

The H.264/AVC includes both half-pixel and quarter-pixel accuracy. This process increases significantly
the computational complexity of the ME.

58 SIM 2010 — 25™ South Symposium on Microelectronics

@] V @ © o o O O O O O
(05,-0,5)
o e @ 0 © o) O O 0O O
1L, e @ o
O 0O @ @ @ © O O 0O 0O 0O O
e @ 0 ©
OO0 @ @ @ @ O O 0O 0O O O
e @ 0 ©
O O O O O O O O O O O O
@ @ @ ©
O O O O O O O O O O O O
(a) (b)

Fig. 1 — Two Motion Vectors pointing to different blocks.
3. Half-Pixel Interpolation Process

A single half-pixel y that has adjacent integer positions is derived by first calculating an intermediate value
called y; by applying the 6-tap FIR filter presented in equation (1). In equation (1), A to F represent the nearest
six integer position luminance samples (0-255) in the horizontal or vertical direction. Then, the equation (2) is
applied to y,.

y = A-5B+20C+20D—SE+F (1)
y = Clipy 555 [(yl +16)>> 5] 2

A single half-pixel y that has adjacent half-pixel positions instead of integer positions (because its
diagonally aligned between integer positions) is derived by first calculating an intermediate value called y; by
applying the 6-tap FIR filter (3) using as C and D the y; values of the two adjacent half-pixels and using as 4,
B, E and F the y values of the other nearest half-pixels, and finally, applying (4) to y;.

y;=A—=5B+20C, +20D, -5E + F 3)
¥ =Clipy_pss[(v; +512)>>10] (4)

It is important to notice that to calculate a half-pixel that is diagonally aligned between integer position
samples, either horizontal or vertical nearest half-pixels can be used because these wield an equal result [2]. In
this work, our design uses the horizontal closest half-pixels.

This way, there are three half-pixels types: H Type, calculated using the closest horizontal integer position
samples; V Type, calculated using the closest vertical integer position samples; and D Type, calculated using
the closest horizontal half-pixels (which are V Type half-pixels).

The Half-Pixel Interpolation Unit gets the best match block (composed by integer position samples) from
the ME and interpolates a new search area around these samples. Using this search area the Half-Pixel
Refinement will test all the eight possible matches inside this search area to check if there is a block composed
by half-pixels more similar to the current block than the one that the ME found.

4. Software Evaluation

Several video sequences with different resolutions were coded using the default configuration of the
H.264/AVC reference software [3]. The resolutions are QCIF (176x144), CIF (352x288), 4CIF (704x480) and
1080p (1920x1080). The software evaluation was realized in order to check the utilization rate of each
macroblock partition size in the Motion Estimation. The partition sizes in H.264 are 16x16, 16x8, 8x16, 8x8,
8x4, 4x8, and 4x4 pixels.

It was observed that 94.75% of the chosen blocks had a size greater or equal to 8x8 pixels. This way, this
design works only with 8x8 blocks in order to reduce drastically the circuit complexity and cost.

Giving support to this block size is interesting because it is the same block size used by older video coding
standards, like MPEG2. Some minor changes can make our design compatible with those.

Valuations with different features of the standard were also done. Five QCIF video sequences were coded
and their resultant quality was measured by its bit rate/dB. One at a time, several features of the H.264/AVC
Motion Estimation were activated like different block-matching algorithms, different number of reference
frames and, finally, the sub-pixel refinement (half-pixel and quarter-pixel accurate motion vectors).

The best results were achieved when the sub-pixel refinement feature was activated. It is important to
notice that fast search algorithms achieved the best performance without expressive losses of quality, especially
when the sub-pixel refinement was used.

This way, our design focuses in an Interpolation Unit fast enough to not degrade the performance of the
complete ME architecture.

SIM 2010 — 25" South Symposium on Microelectronics 59

5. Proposed Processing Unit Architecture

For a better hardware implementation, it was necessary to optimize the 6-tap FIR filter by grouping similar
operations and decomposing multiplications into shift-adds in order to get a lower delay path and lower
hardware cost. The Fig. 2 shows the proposed Processing Unit (PU).

The equation (5) is the first step of the processing unit, it calculates the y; value of a half-pixel. For V Type
half-pixels, the y; value must be stored for later use in D Type interpolation.

yi=(4 +F)+4[4(C+D)—(B+E)]+ 4(C+D)-(B+E) (5)

The second step of the processing unit applies (2) if the control unit indicates the interpolation of V or H
Type or (4) if it indicates the interpolation of D Type.

From (5), a combinational circuit was designed. However it achieved a low frequency and we had to use a
three-stage pipeline to make our circuit suitable for high definition video coding. Deeper pipeline
configurations are also possible because a high throughput is more important than a low latency for the
interpolation process.

Nine PUs were used in a module called Filter Line. It is able to interpolate an entire line of H Type half-
pixels, a column of V Type and a line of D Type in a single step.

>>5 19 u 8
or | P > Y
0-255
>>10
1
Type_Sel
Y,
16 (less sig)

Fig. 2 — Processing Unit Architecture.

6. Data Flow and Organization

Five buffers were used to store and shift the integer position samples, V Type samples, V; Type values, H
Type samples and D Type samples. All buffers are connected to the Filter Line.

The buffer for integer position samples stores a 14x14 block (an 8x8 block plus the three-pixel border).
This buffer has two outputs: an entire line used for H Type interpolation and an entire column used for V Type
interpolation. It is able to shift its lines and columns in order to change its outputs.

The buffer for V Type half-pixels stores a 14x9 area (two blocks in an 8x9 area plus a vertical three-pixel
border). The buffer for V| Type values stores a 12x9 area, the y; values for each V Type half-pixel used in D
Type interpolation. Both buffers have an entire line as output and are able to shift it for D Type interpolation.

The buffer for H Type half-pixels stores a 9x8 area (two 8x8 blocks). This buffer for D Type half-pixels
stores a 9x9 area, four 8x8 blocks. Both buffers are used for storage purposes only.

The control unit selects which buffer will store the Filter Line output. It takes 34 clock cycles to interpolate
a half-pixel search area using an 8x8 block.

7. Synthesis Results and Related Works

Our design was described in VHDL and synthesized to the Xilinx Virtex4 XC4VLX15 and Xilinx Virtex2
XC2V80 devices using the Xilinx ISE 10.1 synthesis tool [4].

The tab.1 shows the Processing Unit performance for each tested pipeline configuration and tab.2 shows
the throughput of our complete design. Our interpolation unit can be used to process very high resolutions like
QHDTYV in real time (30 frames per second or faster).

Since the memory hierarchy of the project is not defined yet, our buffers are mapped as register banks. The
tab.3 shows the cost of these buffers. Our interpolation process uses less than 1 kilobyte.

The tab.4 shows the use of FPGA resources. It is important to note that the cost of our Control Unit and
Filter Line is very low when compared to a complex Motion Estimation module.

Tab. 1 — Processing Unit Results

Solution Frequency Latency Critical Path
No Pipeline 69 MHz 0 cycles 14.4 ns
3-Stage Pipeline 153 MHz 2 cycles 6.5 ns

Device: Xilinx Virtex4 XC4VLX15

60

SIM 2010 — 25™ South Symposium on Microelectronics

Tab. 2 — Interpolation Unit Throughput

Frequency Throughput | HD 1280x720 | Full HD 1920x1080 | QHDTYV 3840x2048
(MH2) (Mblocks/s) (frames/s) (frames/s) (frames/s)
141 4.156 288 128 33
Device: Xilinx Virtex4 XC4VLX15
Tab. 3 — Buffers Results (use of hardware elements)
Buffer 8-_bit 16_—bit 8-bit 8-bit 16-bit

Registers Registers 4:1 MUX 2:1 MUX 2:1 MUX

Integer Positions 196 - 196 - -

V Type 126 - 126 - -

H Type 72 - - 72 -

D Type 81 - - 81 -

V, Type - 108 - - 108
Tab. 4 — Interpolation Unit Results (use of the FPGA resources)
Module Slice Slice Flip-Flops | 4-input LUTs
Control Unit 16 6 27
Filter Line (9 PUs) 1386 486 2610

Device: Xilinx Virtex4 XC4VLX15

Works focusing a high performance Interpolation Unit were not found in the literature. The Interpolation
Unit used in [5] gives support to variable block sizes by splitting those blocks into smaller 4x4, 4x8 or 8x4
blocks and then interpolating these blocks. It needs 25 clock cycles to interpolate an 8x4 block. Then, it needs
50 clock cycles to interpolate an 8x8 block. The tab.5 shows that our design needs 32% less clock cycles to
interpolate an 8x8 block. Also, when synthesized to the same FPGA device, our design achieves a 57% higher
processing rate.

Tab. 5 — Comparison with Related Work

Yalcin 2006 [5] This Work
Cycles to process a
8x8 block >0 34
Frequency (MHz) 85 91
Throughput
(Mblocks/s) 1700 2670

Device: Xilinx Virtex2 XC2V80

8. Conclusions and Future Works

This work presented a Half-Pixel Interpolation Unit for the H.264/AVC video coding standard. This
architecture was designed to be part of a Sub-Pixel Accurate Motion and achieved a maximum frequency of
141 MHz when synthesized to a Xilinx Virtex4 FPGA device and it is able to process over 4 million 8x8 blocks
per second. This high throughput makes this architecture able to process very high definition videos as QHDTV
(3840x%2048) in real time.

As future works we plan to design and add the Half-Pixel Refinement Search to our design and then
integrate it to a Motion Estimation module that uses the Diamond Search algorithm.

9. References
[1] L. G. Richardson, H.264 and MPEG-4 Video Compression, Wiley, 2003.

[2] Joint Video Team (JVT) of ITU-T VCEG and ISO/IEC MPEG, Draft ITU-T Recommendation and Final
Draft International Standard of Joint Video Specification, ITU-T Rec. H.264 and ISO/IEC 14496-10
AVC, May 2003.

[3] JM17.“H.264/AVC JM Reference Software.” Mar, 2010; http://iphome.hhi.de/suehring/tml

[4] Xilinx. “FPGA and CPLD Solutions from Xilinx, Inc.” Mar, 2010; www.xilinx.com

[51 S. Yalcin, I. Hamzaoglu, “A High Performance Hardware Architecture for Half-Pixel Accurate H.264
Motion Estimation”, /4th Int. Conf. on VLSI-SoC, October, 2006.

SIM 2010 — 25" South Symposium on Microelectronics 61

A Low Cost Real Time Motion Estimation/Compensation Architecture for
the H.264/AVC Video Coding Standard

Robson Dornelles, Luciano Agostini
rdornelles.ifm@ufpel.edu.br, agostini@ufpel.edu.br

Federal University of Pelotas

Abstract

This work presents a Motion Estimation/Compensation architecture for the H.264/AVC standard, able to
process high definition videos in real time (30 frames per second) with reduced hardware resources usage.
Also, when the Motion Compensation is performed together with the Motion Estimation, there is a reduction in
the number of access to the coder main memory. This reduction speeds up the entire coding process, and also
simplifies the coder project, since the Motion Estimation/Compensation architecture can be more easily
integrated than two separated architectures. The designed solution was described in VHDL and synthesized to
the TSMC 0.18 Standard Cell library, using a total of 51K gates, with a operation frequency of 280.2 MHz,
which is enough to process HDTV videos (1920x1080 pixels) in real time (30 frames per second,).

1. Introduction

In the video coding process, one of the most important techniques is the Inter Frame Prediction. Since
digital videos have a high correlation between its frames, it is possible to explore this temporal redundancy by
coding only the differences between the frames. In the H.264/AVC [1] standard, this task is done by the Inter
Frame Prediction.

In the Inter Frame Prediction, a frame is coded using the already coded frames as references. The process
starts by dividing the current frame in macroblocks (16x16 pixels), and then in smaller blocks. For each block,
an equivalent block is found (predicted), using a search algorithm on the previous frames. The search algorithm
will raise candidate blocks, and the best candidate block must be chosen, using a distortion metric. The most
common distortion metric is the SAD (Sum of Absolute Differences), presented in (1).

=

w=1 h-l

SAD = Z |CurrentBlock(i,j)— CandidateBlock(i, j)| (1)

1
i=0 j

~
Il
(=}

In Eq. (1), w is the width and / is the height of both the candidate and the current block. The candidate
block that presents the lowest SAD value is the best block to represent the current block. The position (x,y) of
the best candidate block and the frame where it was found is the motion vector. The Motion Estimation is the
module that searches for candidate blocks and generates the motion vectors.

The Motion Compensation module takes as input the motions vectors produced by the Motion Estimation,
and retrieves the candidate blocks pointed by those vectors in the reference frame. The residual information that
results from the subtraction of the current block and its best candidate block must be transmitted in the
bitstream along with the motion vector that points to that candidate block. In the decoder, another Motion
Compensation recovers the candidate block using the motion vector, and the current block can be reconstructed
by a sum between the candidate block and the residual information.

This work presents a hardware design that integrates the Motion Estimation and the Motion Compensation,
storing the residual values during the Motion Estimation process, in opposition to the traditional Motion
Compensation, which is performed after the Motion Estimation.

This paper is organized as follow: the Section 2 presents the designed architecture; Section 3 shows the
synthesis results and the comparison among related works; Section 4 concludes this work.

2. Designed Architecture

The designed architecture performs the Motion Estimation using the FullSearch algorithm for 4x4 blocks
[2] in a search area of 19x19 samples, which means that each block in the current frame will be tested against
256 candidate blocks. The main modules of the architecture are the Cyclic Register Bank (CRB), which holds
the reference samples and is connected to four Processing Units (PU) that are responsible to calculate the SAD
of the candidate blocks. Connected to the PUs are the Integrated Motion Compensation (IMC) and the
Comparator, and they are also connected to each other. The Comparator chooses the motion vector that points
to the best candidate block (the one with the smallest SAD) and tells to the MC which residue is equivalent to
that motion vector. Fig. 1 shows the block diagram of the designed architecture

62 SIM 2010 — 25™ South Symposium on Microelectronics

searcharea —m> Cyclic Register Bank

current block

IMC

MA

— Comparator —————> bestvector

bestresidue

Fig. 1 - Block diagram of the design architecture.

2.1. Processing Unit (PU)

The PU takes 16 samples from the current block plus 16 samples from the candidate blocks as input per
cycle. The SAD value between those blocks is evaluated in 5 clock cycles, in a pipeline approach. The first
pipeline stage performs the subtraction and absolute operations. The other four stages are a pipelined tree-based
sum between all values that were processed in the first stage. The output is the SAD value between two blocks,
which will be the input of the Comparator, where the smallest SAD must be chosen.

The results of the subtractions performed in the first pipeline stage are the residual information that must be
recovered by the traditional Motion Compensation if the input candidate block is chosen at the end of the
Motion Estimation process. Thus, this residual information must also be an output of the PU, because the
Integrated Motion Compensation must take this information as input.

2.2. Cyclic Register Bank (CRB)

This module is composed by four lines, each line composed by 19 8-bit registers, to be able to store a 19x4
area of the search area. That area has 16 candidate blocks. Connected in the CRB are four PUs, as presented in
fig. 2.

Line3 >
Line2 >
Linel->
Line0 >

PUO PU1 PU2 PU3

Fig. 2 - Cyclic Register Bank and the Processing Units

This CRB is controlled by a finite state machine (FSM). There is a initial charge state, that lasts 4 cycles
and, in each cycle, line i receives the samples of the linei — 1, i € {3,2,1}, and the line 0 receives the new
input. When the CRB is entirely filled, each PU has an entire 4x4 candidate block in its input, and the rolling
state begins. It lasts 3 cycles, and in each cycle there is a cyclic-left-shift at register level, that changes the 4x4
candidate block in the PUs input. Then, the new charge states begin, when another reference line must enter in
the CRB. This is done as the line i receives the samples of the line i — 1, i € {3,2,1}, and the line 0 receives the
new input. A restart_crb signal must be send to the fsm to when the Motion Estimation for one block is done,
so the CRB can be filled with the new search area for the next block.

2.3. Movement Coordinate Generator

Before a SAD value enters the Comparator, the (x,y) coordinate of the candidate block that resulted in that
SAD value must be concatenated in the SAD value itself. A simple arithmetic circuit can be design to perform
this task. The x coordinate starts in -8 and is incremented at each new charge state, and its last value must be 7.
The y coordinate starts as -8 to the PUO, -4 to the PU1, 0 to the PU2 and 4 to the PU3. Each cycle that the CRB
FSM stays in the rolling state must increment the y coordinate, as presented in tab. 1.

SIM 2010 — 25" South Symposium on Microelectronics 63

Tab. 1 - Values for the y coordinate.
CRB FSM State PUO | PU1 | PU2 | PU3
Initial or New Charge | 1000 | 1100 | 0000 | 0100

Rolling 0 1001 1101 | 0001 | 0101
Rolling 1 1010 | 1110 | 0010 | 0110
Rolling 2 1011 1111 | 0101 | 0111

2.4. Comparator

The Comparator module takes four inputs per cycle: each input is a motion vector concatenated with the
value of the SAD generated by the block pointed by that vector. The Comparator will decide what input has the
smallest SAD value, and will store this value as a partial result, to compare with the smallest SAD of the next
four inputs, and so on. This is done in a 3-stages pipeline. In the end of the Motion Estimation of a block, the
Comparator output is the vector that points to the block that presents the smallest SAD. Fig. 3 shows the RTL
scheme of the Comparator.

vector & SAD UPO _'Z'_r—l_
vector & SAD UP1 —EU

vector & SAD UP2 —m—r_l—

vector & SAD UP3 —EL,_

Fig. 3 - RTL scheme of the Comparator.

—— best vector

4>

.
previous best vector In’
& SAD register --*

2.5. Integrated Motion Compensation (IMC)

The IMC receives the residue that comes from the PUs and stores those residues in four buffers (each PU
has its own buffer). Those buffers are “shift-registers”, where each “register” is composed by sixteen 8-bit
registers. When the Comparator decides which one is the first best vector, the IMC must store the residue
equivalent to that vector. This is done by connecting the buffers last stage to a multiplexer. The logic for the
multiplexer selector is based in the two most significant bits of the best vector’s y coordinate. Tab. 1 shows that
those two bits never change for each PU. Thus, when the first choice is made, the best residue must be stored in
a “best residue register”, because the next best vector can still be the previous best vector. So, the mux selector
is a concatenation between a signal that tells if the best vector changed (‘1’ if has not changed, ‘0’ in the
otherwise), with the PU number, that can be decoded using the two most significant bits of best vector’s y
coordinate. Fig. 4 presents the IMC architecture.

SEERITT T
best vector -—>| bu‘fer_FUll | | | |— 001
= —)l bu‘ferfl’UZ | | | | I 010 best residue
1 Sfedu] [[
00 10
or—it previous -~ > ﬁ
bestresidm_:g_/'

Fig. 4 - IMC architecture.

3. Synthesis Results and Comparison with Related Works

The designed architecture was described in VHDL and synthesized to the TSMC 0.18 pm Standard Cell
Library, using the Leonardo Spectrum synthesis tool [3], resulting in a hardware resources usage of 51K gates
and achieving an frequency operation of 280.2 MHz Since the architecture takes 4 cycles to process each 19x4
range of the search area, and there are 16 of those ranges, the total number of cycles needed to process one
block is of 16*¥4=64, plus 4 cycles in the initial charge state of the CRB, the total number of cycles needed to
process a 4x4 block is of 68. In a 1080HD video, there are 129600 4x4 blocks, times 68 cycles per block times
30 frames per second equals 264.28 MHz needed to process 1080HD videos at 30 frames per second. Since the
architecture achieves a frequency of 280 MHz, it can process high definition videos in real time.

64 SIM 2010 — 25™ South Symposium on Microelectronics

We have not found works in the literature that implement a Motion Estimation architecture with integrated
Motion Compensation. This way, the comparison was made with architectures that implement FullSearch
Motion Estimation with variable block size for the H.264/AVC standard. Among all compared works, ours
present the best relation between the throughput and the cost. This relation, frames per number of gates, means
how much HDTV frames are coded with one gate, so a higher value represents a best usage of the hardware
resources. Also, our work is the second in search area size and low-cost. Tab. 2 shows the synthesis results of
our work and the comparison with related works.

Tab. 2 - Synthesis results and comparison with related works.

Solution # of | Search Technology Frequency| 1080HD 1080HD /Frames/s
Gates| Area (MH2) Frames/s "
of Gates

This Work | 51K | 19x19 TSMC 0.18 pm 280 31 0,00060
Kim [4] 39K | 16x16 |DonbuAnam 0.18 um 416 12 0,00030
Porto [5] 113K | 16x16 TSMC 0.18 um 296 34 0,00030
Yap [6] 61K | 16x16 TSMC 0.13 um 294 8 0,00013
Ou [7] 597K | 16x16 UMC 0.18 um 123 60 0,00010
Liu [8] 486K [192x128| TSMC 0.18 pm 200 30 0,00006

4, Conclusion

This work presented the design of a hardware architecture that performs the Motion Estimation and Motion
Compensation for 4x4 blocks using the FullSearch algorithm. The presented architecture efficiently uses a
cyclic register bank to reduce the number of memory requisitions needed to raise all candidate blocks using the
FullSearch algorithm in a 19x19 search area. Also, the architecture presents an efficient way to manage the
residual information produced in the SAD calculation, in such a way that the Motion Compensation can be
performed in parallel with the Motion Estimation.

The architecture was synthesized to the TSMC 0.18 pum standard cell technology, and resulted in a
hardware resources usage of about 51K gates, a small number when compared to related works in the literature.
In a relation between the throughput (in 1080HD frames per second) and the architecture cost (In hundred of
standard cell gates), the designed architecture presented the best results, which means that the hardware
resources are efficiently used to achieve high throughput.

An ongoing work is about the addition of bottom-up decision modes for the VBSME of the H.264/AVC
standard to the architecture. Also, a solution for the motion vector predictor architecture is being investigated.

5. References

[1T International Telecommunication Union, ITU-T Recommendation H.264 (05/03): Advanced Video
Coding for Generic Audiovisual Services, 2003.

[2] P. Kuhn, Algorithms, Complexity Analysis and VLSI Architectures for MPEG-4 Motion Estimation.
Kluwer Academic Publishers, Boston. 1999.

[3] Mentor Graphics, “LeonardoSpectrum”, Feb. 2009; http://www.mentor.com/products/fpga pld/
synthesis/leonardo_spectrum.

[4] J. Kim, and T. Park, “A Novel VLSI Architecture for Full-Search Variable Block-Size Motion
Estimation”, Proc. IEEE Region 10 Conference (TENCON 2007), IEEE, 2007, pp. 1-4.

[5] R. Porto, L.Agostini, and S.Bampi. “H.264/AVC Variable Block Size Motion Estimation for Real-Time
1080HD Video Encoding”. Proc. 24" South Symposium on Microelectronics (SIM’09). 2009.

[6] S. Yap, and J. McCanny, “A VLSI Architecture for Variable Block Size Video Motion Estimation”,
IEEE Transactions on Circuits and Systems — II: Express Briefs, vol. 51, July 2004, pp. 384-389.

[71 C.Ou,C. Le, and W. Huang, “An Efficient VLSI Architecture for H.264 Variable Block Size Motion
Estimation”, I[EEE Transactions on Consumer Electronics, vol. 51, issue 4, Nov. 2005, pp. 1291-1299.

[8] Z. Liu, et al, “32-Parallel SAD Tree Hardwired Engine for Variable Block Size Motion Estimation in
HDTV1080P Real-Time Encoding Application”. Proc. IEEE Workshop on Signal Processing Systems,
(SiPS 2007), IEEE, 2007, pp. 675-680.

SIM 2010 — 25" South Symposium on Microelectronics 65

Design Automation Tools 2

66

SIM 2010 — 25™ South Symposium on Microelectronics

SIM 2010 — 25" South Symposium on Microelectronics 67

Improvements in the Detection of False Path by using Unateness and
Satisfiability

Felipe Marqgues, Osvaldo Martinello Jr, Renato Ribas, André Reis
{felipem, omjunior, rpribas, andreis} @inf.ufrgs.br

Instituto de Informatica - Universidade Federal do Rio Grande do Sul - Brazil

Abstract

This paper presents improvements on a previous methodology for false path detection using satisfiability.
As the previous methodology, which is referred as node-sat, it is still based on circuit node properties that are
related to non-testable stuck-at faults as well as to false path detection. When compared to traditional
satisfiability methods that generate sets of clauses associated to paths, the node-sat can be more efficient. This
efficiency derives from the fact that most digital circuits have a number of nodes that is smaller than the
number of paths, and therefore, a smaller number of satisfiability instances needs to be solved. This number
can be reduced even more by considering the circuit topology. Experiments comparing the previous node-sat
methodology and the new techniques presented on this paper reveal that the time consumption can be reduced
by 60% on average.

1. Introduction

Timing analysis is an essential procedure in digital circuit design flow. It is heavily invoked in the inner
loop of a performance driven optimization methodology. Each timing analysis can generate thousands of
critical paths with thousands of critical paths being false paths. However, when false paths are dealt in timing
analysis, a large number of constraints need to be created and propagated, leading to loss of efficiency.
Therefore, it is very convenient to detect false paths in order to prevent project time waste.

Satisfiability (SAT) [1] is being very efficient on solving many combinatorial algorithmic problems. It has
been used for test vector generation [2] as well as for false path detection [3]. Usually, false path detection
using satisfiability is performed path by path. This means that in order to determine if a path is functionally
sensitizable, it is necessary to solve a satisfiability instance. As circuits have many paths, due to path
reconvergence, the cost of using satisfiability to detect false paths is increased.

Alternatively, the method introduced in [4], which is referred as node-sat, detects false paths solving
satisfiability instances that are associated to unateness properties of circuit nodes, instead of being associated to
paths. Since most circuits have a number of nodes that is smaller than the number of paths, this method can be
more efficient. A circuit node may be positive or negative unate with respect to each of the variables on which
it depends (primary inputs). When the node is both positive and negative unate in a given variable, it is said that
the node is binate (or mixed) on that variable. As demonstrated in [4], it may be very easy and fast to prove that
a node is binate through logic simulation. However, in order to prove that a node is not binate, it is necessary to
solve a satisfiability instance. In the worst-case scenario, the number of satisfiability instances to be solved is
equivalent to the number of paths of a circuit. It can be very time consuming. This paper presents some pruning
techniques that can significantly reduce the number of needed satisfiability instances, resulting in major time
savings.

This paper is organized as follows. Section 2 discusses false paths and related concepts. The previous work
on node-sat is briefly reviewed in section 3. The pruning techniques to reduce the number of satisfiability
instances are presented in section 4. Results will be shown in section 5, while conclusions are outlined in
section 6.

2. Preliminaries

False paths can be introduced in a digital circuit design through different processes. Some logic synthesis
process, in-place optimizations or unreachable states of finite state machines can establish false paths in a
circuit. Consider a signal s, which is connected to a gate G. It is considered to dominate G if the stable value
and the stable time at G are determined by those at s. This way, a path is considered to be sensitized, under a
certain delay configuration, by a vector pair if each on-input of the path dominates its connected gate. Given a
delay configuration, a path is a true (sensitizable) path if there exists at least one vector pair which sensitizes the
path. Otherwise, it is a false path.

Under a delay configuration, a vector pair sensitizes a path iff each on-input of the path is either the earliest
controlling value or the latest non-controlling input with all its side-inputs being non-controlling inputs. This
criterion is called the exact sensitization criterion [5]. To efficiently check the sensitizability of target paths, a
delay-independent method, using the functional sensitization criterion, is proposed in [6]. If there exists an
input vector v such that all the side-inputs of s; along P settle to non-controlling values on v when the on-input s;
has a non-controlling value, then P is functionally sensitizable. Otherwise, P is functionally unsensitizable.

68 SIM 2010 — 25™ South Symposium on Microelectronics

Because functional sensitization, a delay independent criterion, is only a necessary condition of exact
sensitization, an identified functional sensitizable path might not be sensitizable under certain delay
configurations. On the other hand, the identified functional unsensitizable paths must be false under any
arbitrary delay configuration.

Figure 1 illustrates a combinational circuit with the mutual exclusion problem. The path going from input a
to output o is functional unsensitizable. It is not possible to set all side-inputs to non-controlling values. The
input ¢ needs to assume both Boolean values 0 and / at the same time. The false path can be removed applying
logic duplication all over the path. It results in the circuit of Figure 2. Area optimization algorithms could find
the circuit of Figure 1 as the best solution for area saving. However, it introduces a false path in the circuit.

b=0 lc=11 d= e=1 ic=01

Fig. 2 - False path vs. logic duplication.

A typical design flow of digital circuits optimizes a design through an iterative process. Usually, it involves
a large number of static timing analysis (STA). The STA process verifies if there exist paths in a circuit with
delays that exceed a given timing constraint. Such paths are known as critical paths. When such a critical path
is identified, all elements associated with the critical path may need to be modified to achieve the required
timing. Therefore, each time the design is optimized via synthesis, place and route, in-place optimization and so
one, static timing analysis can be performed.

Each timing analysis can generate thousands of critical paths with thousands of critical paths being false
paths. This way, false paths may be analyzed and constraints can be created for false paths, and fed back it to
the design tools. Generation of false path constraints for a typical design leads to project time waste and is very
error prone.

There are different sensitization criteria and methodologies for false path detection. The sensitization
criteria can be divided into three categories: static sensitization, dynamic sensitization and floating
mode/viability sensitization. Most of all methodologies work at the gate level. More recent approaches are
bringing back methods working at the register transfer level (RTL). The methodology presented in this paper
works at the gate level, using a static sensitization model. Functionally unsensitizable paths are identified
checking the unateness properties of each gate of a circuit.

3. The Detection of False Paths by using Unateness and Satisfiability

In a previous work [4] we proposed a method that is able to detect false paths in combinational circuits. It
computes the unateness properties of each node of a circuit in two ways: topological unateness and functional
unateness. Comparisons among topological and functional unateness can be used to detect false paths.

Consider the combinational circuit of Figure 3. Tables 1 and 2 show the topological and the functional
unateness properties for all nodes of the circuit, respectively. It uses a binary code of 2 bits per variable
representing positive and negative unateness. The topological unateness can be computed in linear time using
dynamic programming. The binary code of a node # is the result of a bitwise OR operation between the binary
codes of the gate inputs. Accordingly to the definition 6 (from [4]), if # is the output of a negative gate, the
generated binary code has to be complemented. The functional unateness is individually calculated for all
nodes. It has been demonstrated that simulation can accelerate this process. However, in the worst-case
scenario, several satisfiability instances will need to be solved. There is only one difference among the tables:
the node f'is binate in all variables of the topological unateness while it is positive unate in all variables of the
functional unateness. This means that any negative path from the inputs a or b to the output fis a false path.

SIM 2010 — 25™ South Symposium on Microelectronics 69

a n1 n3
n5

b—~|>Oﬁ n4 f

a -
b n6

Fig. 3 — Redundant Combinational Circuit.
Tab.1 — Topological Unateness Tab. 2 — Functional Unateness
Node at | a- | b+ b- Node at | a- | b+ | b-
nl 0 1 0 0 nl 0 1 0 0
n2 0 0 0 1 n2 0 0 0 1
n3 0 1 1 0 n3 0 1 1 0
n4 1 0 0 1 n4 1 0 0 1
ns 1 1 1 1 n5 1 1 1 1
n6 1 0 1 0 n6 1 0 1 0
f 1 1 1 1 f 1 0 1 0

4, Pruning Techniques for Node-Sat

The node-sat approach identifies false paths using the unateness properties of each circuit node, rather than
paths. Although the number of nodes is far smaller than the number of paths, in some cases, it is not possible to
analyze a circuit in a short period of time. Simulation can be used to accelerate the analysis. However, it
depends on the choice of input vectors, which is a random procedure. When it does not succeed, satisfiability
instances have to be solved to prove the unateness properties of a given node. In this case, SAT clauses are
generated to represent a sub-circuit going from the primary inputs to the node that should be tested.

There are other techniques that can be used to accelerate the analysis process. Some sub-circuits have
special properties and the method does not need to prove the functional unateness of a node neither by
simulations nor solving SAT instances. In this case, the topological unateness is enough to ensure the unateness
condition of each primary input related to the node. When the topological unateness determines that a node # is
not positive (negative) unate with respect of a given variable v, it means that there are no positive paths going
from the v to n. Therefore, there is no need to compute the functional unateness for the input. It can be directly
coded as zero. This strategy has been used in the previous approach [4]. Nevertheless, there is still a
considerable amount of satisfiability instances to be solved.

This paper presents another possible pruning technique. It considers the path reconvergence to identify
nodes that do not need functional unateness computation through simulation or satisfiability. When there is no
path reconvergence from a given input to a given node, it is impossible to have differences among the
functional and topological unateness. This way, the functional unateness assumes the same values of the
topological unateness. The main point of this pruning technique is to identify the path reconvergence. Searches
over the circuit graph on each iteration of the functional unateness computation would not be practical. A
simple mechanism can extract this information from the topological unateness table. This process is depicted in
Figure 4. The first step converts the 2-bit binary code to a single bit binary code. It is done through an OR
operation between the positive and negative bits of each variable. The second step performs a bitwise AND
between the single bit code of the gate inputs. The resultant binary code indicates when there is path
reconvergence from the primary inputs to a given node. The binary code of the node n3 has at least one input
set as ‘1’ that indicate reconvergence, and the functional unateness has to be calculated for all inputs. When the
code is fulfilled with zeros, it indicates that the node does not generate any reconvergence.

nl —j) n3) _ Node| a [b |c|d
n2 — Single bit ml1l1lol1
code
ﬂ n2 1 1 1 0
Bitwise AND

Node | a+ | a- | b+ | b- | ¢+ | c- | d+ | d-
nl 1 1|1 Node| a | b | ¢
n2 1 0] 1 0 0|0 n3 1 1|10

o
-
(=]
o

-y
o

Fig. 4 — Identifying Path Reconvergence.

70 SIM 2010 — 25™ South Symposium on Microelectronics

5. Results

Table 3 shows a comparison among the previous and the new node-sat methodologies. No simulation was
used to accelerate the functional unateness computation. It is clear that the proposed pruning techniques are
very effective. Since the number of satisfiability instances was reduced, the time consumption was significantly
reduced.

Tab.3 — Comparisons among the previous and the new node-sat methodologies

Node-sat [4] Node-sat using pruning techniques
Circuit # SATs Time (s) # SATs Time (s) | Improvement (%)
c1355 15196 1027,464 13756 907,24 11,70
c1908 12846 208,727 11424 193,414 7,34
c2670 12508 283,212 8292 191,563 32,36
c3540 24850 1437,163 21056 | 1374,293 4,37
c432 7010 78,550 6130 70,895 9,75
c499 14986 1023,630 13546 | 1005,787 1,74
c880 8006 91,464 4846 57,094 37,58
il0 71862 3121,834 49300 | 2244,290 28,11
i4 2752 34,467 1096 14,115 59,05
i5 2636 27,489 160 1,692 93,84
i6 3360 43,586 1258 15,937 63,44
i7 3958 62,103 1798 26,540 57,26
i8 18998 355,798 14282 270,297 24,03
i9 11554 157,171 8460 117,686 25,12
s208 572 5,030 206 1,630 67,59
s27 54 0,458 12 0,109 76,20
$298 638 5,436 276 2,228 59,01
$349 1000 8,433 570 5,154 38,88
$382 1200 9,964 488 4,043 59,42
$386 1192 9,549 298 2,419 74,67
5400 1292 10,664 530 4,697 55,95
5420 1906 15,769 768 7,228 54,16
s444 1296 10,640 534 5,142 51,67
s510 2060 16,826 940 8,555 49,16
8526 1340 10,944 436 3,725 65,96

6. Conclusions

This paper presented pruning techniques to improve the detection of false path by using unateness and
satisfiability. The pruning techniques are very effective on reducing the number of satisfiability instances that
need to be solved to compute the functional unateness. This leads to major time savings. The information of the
differences among topological and functional unateness may be used on a variety of algorithms and methods
that need information about signals observability such as static timing analysis.

7. Acknowledgements

Research partially funded by Nangate Inc. under a Nangate/UFRGS research agreement, by CNPq and
CAPES Brazilian funding agencies, and by the European Community’s Seventh Framework Programme under
grant 248538-Synaptic.

8. References

[1] Marques-Silva, J.P., and Sakallah, K.A., “Boolean Satisfiability in Electronic Design Automation”, Design
Automation Conference, 2000, pp. 675-680.

2] Larrabee, T., Test pattern generation using Boolean satisfiability, /EEE Transactions on CAD, Vol. 11, Issue: 1,
January 1992, pp. 4 — 15.

[3] Ringe, M., Lindenkreuz, T., and Barke, E., “Path verification using Boolean satisfiability”, Design, Automation and
Test in Europe, Feb. 1998, pp. 965 — 966.

[4] Marques, F.; Ribas, R.; Sachin, S. and Reis, A. “A new approach to the use of satisfiability in false path detection”.
Proceedings of the 15th ACM Great Lakes symposium on VLSI, GLSVLSI’05, pp. 308 — 311, 2005.

[5] Chen, H.-C; Du, D. H.-C; and Liu, L.-R. “Critical path selection for performance optimization”, IEEE Trans.
Computer-Aided Design of Integrated Circuits and Systems, vol. 12, no. 2, pp. 185-195, Feb. 1993.

[6] Cheng K.-T. and Chen, H.-C. “Classification and identification of nonrobust untestable path delay faults”, /EEE
Trans. Computer-Aided Design of Integrated Circuits and Systems, vol. 15, no. 8, pp.845-853, Aug. 1996.

SIM 2010 — 25" South Symposium on Microelectronics 71

A Case Study about Variability Impact in a Set of Basic Blocks
Designed to Regular Layouts

Jerson Guex, Cristina Meinhardt, Ricardo Reis
{jpguex, cmeinhardt, reis} @inf.ufrgs.br

Universidade Federal do Rio Grande do Sul (UFRGS)
Instituto de Informatica — PPGC/PGMicro
Av. Bento Gongalves 9500 Porto Alegre, RS - Brazil

Abstract

The new submicron technologies are more susceptible to the effects of process variability, making these
effects very important to the designer in the previous steps of physical synthesis. To deal with this problem,
many authors suggest the adoption of regular methodologies for layout. In this work we investigate the effects
of process variability in a set of basic cells designed to regular layouts. Our methodology adopted a reduced
set of basic blocks, implement two options of layout for each cell: one with only basic cells NAND, NOR and
Inverters and other with complex cells layout. These two descriptions were simulated with variability in the
main parameters and without variability. The results for timing and power are compared with the goal find
witch implementation is less susceptible to process variability effects. The conclusions indicate that this set of
basic cells have suffered 13% less impact in timing parameters observed.

1. Introduction

The circuits’ fabrications in sub-micron technologies are changing the physical design of circuits requiring
complex layout rules and requiring the adoption of a wide range of safe design of the blocks to handle the
increased process variability. The large reduction in scale of transistors size introduced new variation sources
and makes the control of variability more and more complex. The variability already affects the generation of
circuits in the technologies of 180 nm, according to [1], process variability will increase and will decrease the
predictability of performance of nano circuits in future technologies, which directly affects the operation of the
circuit. For example, the leakage current has exponential dependence on the size of gate, so the variance in L
has exponential impact on leakage current.

Above all, the demands for performance, power consumption, cost, manufacturability and time-to-market,
make the designers use some methodologies like as design for performance - DFP or design for
manufacturability — DFM to guarantee the project success. Some researchers say the need for a bidirectional
path between production designers, CAD tools and manufacturing, where the cost and value are the main
guides, especially when built in sub-micron technologies [1]. In DFMs, the projects use techniques to increase
the yield of the project, such as analysis of DFM rules, physical tests, Litho-friendly design and Nanometer
Silicon Modeling [3].

The adoption of regular structures is an alternative to dealing with problems of variability in process steps,
as well as problems related to the sub wavelength lithography and interconnections [2]. The work done is to
find solutions for integrated circuits physical synthesis less susceptible to the effects of variability arising from
the use of nano technologies manufacturing. The aim of this paper is to analyze the effects of variability on a
range of cells taken to compose the basic blocks within a physical synthesis where the generation of regular
layouts is adopted [4]. This tool [4], generate layouts where the geometric regularity is exploited by the
repetition of basic patterns of layout along an array. Regularity is identified as one of the best alternatives for
dealing with current problems of manufacturing in sub-micron technologies. Regular projects are less
susceptible to problems of lithography, increase yield and reduce the time spent on re-design. In addition,
regular layouts have greater predictability of results of power, delay and yield, mainly because the cells are pre-
characterized.

This tool [4] aims working with two types of physical synthesis for regular layouts, producing integrated
customizable circuits by all layers and customizable circuits for few layers. The main objective of this tool is
the ease of conversion and adaptation depending on the matrix approach chosen. This will facilitate comparison
between different alternatives matrix, the adoption of logical blocks and various new technologies [4]. The
following sections present concepts adopted for the generation of regular layouts and the criteria adopted in
choosing the basic blocks studied.

2. Regular Layout Generator

The basic architecture of Structured ASICs is composed of two parts: the basic block, also called the basic

72 SIM 2010 — 25™ South Symposium on Microelectronics

unit or element, and the array of basic blocks [5]. This matrix is prefabricated (also known as array of elements
or sea of components). The basic block contains a small amount of logic, implementing elements such as basic
gates, multiplexers and LUTs. In a single chip, there may be one or more types of elements forming the
Structured ASIC. Each element is designed for different purposes, for example, can be adopted one type of
element for combinational logic and other logic for sequential.

As Gu [6] the granularity of a project is defined by the smallest logic function developed by smaller
logical component. Depending on the granularity of the architecture, these logic blocks may contain registers
and RAMs [7]. The granularity of a component can be thick, large, medium, small, or thin, depending on the
size of the complex logic contained in the component.

The choice of component to be used in the project directly affects issues of routing and area. Projects with
low granularity require more components to perform the same function that projects with high granularity. The
low granularity also implies a greater number of pins to connect to the router. However, projects with great
granularity can result in wasted area inside the component, i.e., greater logical effort is necessary to use all the
logic functions provided by components in architectures with great granularity [8]. Structured ASIC designs
adopt different degrees of granularity, depending on the purpose and flow of synthesis prioritized by the
manufacturer.

The physical synthesis adopts a flow toward a generator of regular arrays composed of basic cells read in
cell libraries. The tool developed aims to work with two types of physical synthesis for regular layouts,
producing integrated circuits customizable by all masks or circuits customizable by few layers. This will
facilitate comparison between different alternatives matrix, the adoption of logical blocks and various new
technologies. The regular matrix generator explores the geometric regularity.

The geometric regularity is achieved by repetition of patterns in the layout. Fig. 1 shows the general
architecture of these arrays. The matrix model used is the uniform. Each cell occupies a position in the array.
All cells are aligned vertically and horizontally. The cells used adopt simple layouts, with short connections and
prioritizing the use of straight lines of polysilicon.

In the synthesis of circuits customizable by a few layers, all positions of the array are determined in
advance. The array can work with a single basic block, a set of building blocks or basic blocks configurable.
The type of basic block used will depend on the logical design of the circuit. The basic blocks used are stored in
libraries of cells. The adoption of cell library enables rapid change of the layout of blocks and technology
migration. The restrictions of the matrix and the cells used are:

1. All cells must have the same height.
2. All cells must have the input pins and output aligned with the grid routing.
3. Width adopted for each position in the array will be the largest width among the cells used.

The design of customizable arrays by all layers generates regular circuit, where each basic cell has a
position lined up horizontally and vertically with neighboring cells, forming an array of cells, as shown in Fig
1. The position of each cell is determined in placement step. In addition, spaces are inserted to make easy the
step of routing. These spaces can be of two types: dummies cells or extra tracks. Dummies cells are empty cells
in the matrix, with size equal to that occupied by the cells. Extra tracks are inserted into vertical tracks in
regions where the routing is congested. These tracks have a width corresponding to a step in the routing grid, in
order to maintain the alignment of cells and pins with the routing grid. In Fig. 1 are shown three basic cell
types: INVERTERS, NANDS and NORs. However, other cells can be inserted in the matrix.

Basic Cell

Dermrsy Cell
—

fﬁ’ ‘I\

Z:H I
I‘ Extra Track

Fig. 1 - Example of Regular Matrix Architecture

3. Experiment

To evaluate the elements front the process variability effects, firstly we choose a subset of basic cells
implemented with complex cells and compare this set with a subset of basic cells implemented only with basic
cells NAND, NOR and INVERTERS. Both subsets represent the same logic functions and the cells are
dimensioned to offer the same delay times of the signal in the out pin cell.

SIM 2010 — 25™ South Symposium on Microelectronics 73

Each cell of the subsets were descript in SPICE, in the PTM 65nm technology. The experiment obeys the
flow showed in Fig. 2. Firstly, according to [1] the random process variability impacts mainly the parameters
Vdd, Vth, L, Leff and W of the transistors in the nano technologies. With this information, the 65nm PTM
models were modified to receive random values according to an statistical normal distribution around the
original values from the 65nm PTM model, with 3 Sigma of Standard Deviations. As the values are modified in
the model, the correlation among the parameters is preserved. After, the circuits were simulated without the
process variability for extract the normal values, i.e., values obtained with the original 65nm PTM model. The
same circuits were simulated with Monte Carlo adopting the 65nm model modified to receive random
parameters. The parameters observed for each circuit after the simulations were total power dissipated in the
same interval t of time in the simulation and low-to-high propagation delay and high-to-low propagation delay.

Fig. 3 shows the complex cells and basic cells used in simulations and their logic functions. To each
experiment, the logic function defined and implemented to obey the logical equivalence between the basic and
complex versions.

The results from the experiments are exposed in Table 1 and 2. The first table, Table 1 descripts the results
from the complex cells. The column Normal show the results from each circuit simulated with the original
65nm PTM model, without variability in the parameters. The column Max, Min, Mean, Variance and Standard
Deviation (SD) present the data provided by the SPICE output as result after 10000 Monte Carlo simulations,
where the parameters VDD, Vth, L, Leff and W of 65nm PTM model were varied according a statistical normal
distribution with 3 Sigma. The same results are showed in Table 2 to the second set of cells: the basic cells.

The results found in Table 1, shows that in average the behavior of complex cells related to power and
Thl (high-to-low propagation delay) and Tlh (low-to-high propagation delay) suffer small variation. However,
it is important to highlight that the most relevant values in this experiments are the maximum and minimum
values because these values indicates possible critical conditions of operation for this set of cells. Observing the
maximum and minimum values for complex gates, note that there are cases where the process variability affects
over 30% the values of Tlh and more than 15% the power results. It is important to highlight that the cct3 have
its logical behavior affected with the process variability and by this reason the results for timing are omitted.

The simulations results of the implemented basic cells circuits were showed in the Table 2. Observe that
the process variability cause maximum alterations around 20% for Tlh. In this case, the results de Tlh and Thl
for Cct4 (correspondent to cct3) have not been take into account because cct3 fail when exposed to variability.
However, the cct4 maintain the logical behavior under effects of process variability.

When we compare the results for the timing parameters observed in the experiments with the two set of
cells, we observe that the timing parameters varied 13% less in the basic cells circuit than the results from the
circuits with complex cells, for this contrast only cctl, cct2, cctS and cct6 were considered because the timing

Random-Variation Input;|

results for cct3 present fail in the logical behavior when exposed to variability.
Ydd, Vi, L, Less, W gll iz Z-(4B)(CD)
Z=(4.B)+(C.D)
Cet2
* Cetl

Change the parameters value

of PTM 65um Model

o0 my
o0 o

oo oy
oo My

:D Z =(4.B)+(C.D)

l l Z=(A+B)+(C+D) Cet4
Cet3

A
E
C
A
E o
Spice Sinulation Snice Simulati
Spice Simulation o E
Local Sonulation Monte Carlo s:D
F
Z=(ABC)+(D.E)+F
Cet5
Fig. 2 - Experiment Flow Fig. 3 - Subcircuits

4, Conclusions

This article presents a study about basic blocks to be adopted in a regular layout methodology. This research
is engaged to find solutions to physical synthesis of integrated circuits less susceptible to process variability
effects in the nano technologies. The main goal of this work is analyze the effects of process variability over a
set of basic cells adopted in the regular layout approach. The procedure used to determine the best cells to be
adopted in this approach, compare logic functions implemented with basic cells with complex cells circuits.
The results demonstrate that circuits composed by basic cells suffer less impact of process variability in our
simulations. This robustness could compensate the area penalties of these circuits.

74 SIM 2010 — 25™ South Symposium on Microelectronics

Tab.1 - Complex Cells Simulation Results

Circuit | Parameter | Normal Max Min Average Variance SD
power 3,24E-05 | 3,34E-05 3,23% | 3,17E-05 -2,23% 3,24E-05 0,13% 4,37E-14 | 1,67E-07
Cetl Tlh 9,43E-11 1,25E-10 32,30% | 7,59E-11 -19,50% 9,42E-11 -0,11% 3,01E-23 | 4,34E-12
Thl 9,75E-11| 1,07E-10 9,52% | 8,82E-11 -9,51% 9,77E-11 0,25% 5,99E-24 | 1,95E-12
Power 8,22E-05 | 947E-05 15,13% | 7,04E-05 -14,37% 8,23E-05 0,08% 9,23E-12 | 2,45E-06
Cct3 Tlh 1,04E-10
Thl 1,27E-11
Power 1,20E-05 | 1,22E-05 1,64% | 1,18E-05 -1,29% 1,20E-05 0,02% 3,56E-15 | 4,76E-08
Cect5 Tlh 9,43E-11| 1,25E-10 32,30% | 7,59E-11 -19,50% 9,42E-11 -0,11% 3,01E-23 | 4,34E-12
Thl 9,75E-11| 1,07E-10 9,52% | 8,82E-11 -9,51% 9,77E-11 0,25% 5,99E-24 | 1,95E-12
Tab.2 - Basic Cells Simulation Results
Circuit | Parameter | Normal Max Min Average Variance | SD
Power 3,58E-05 | 3,66E-05 241% | 3,51E-05 -1,93% 3,58E-05 0,15% | 3,43E-14| 1,48E-07
Cet2 [Tlh 1,77E-11 | 2,17E-11 22,99% | 1,50E-11 -14,90% 1,79E-11 1,38% | 7,46E-25| 6,85E-13
Thl 1,50E-11 1,83E-11 21,43% | 1,31E-11 -12,81% 1,48E-11 -1,44% | 3,09E-25| 4,45E-13
Power 9,67E-05| 1,10E-04 14,16% | 8,32E-05 -13,88% 9,67E-05 0,02% | 1,23E-11 | 2,80E-06
Cetd | Tlh 3,50E-11| 5,84E-11 66,67% | 2,33E-11 -33,59% 3,55E-11 1,40% | 1,28E-23| 2,79E-12
Thl 8,40E-12 | 1,12E-11 3340% | 7,69E-12 -8,47% 9,15E-12 8,95% | 2,68E-25| 4,34E-13
Power 2,88E-05 | 2,95E-05 241% | 2,85E-05 -1,26% 2,89E-05 0,36% | 2,82E-14 | 1,34E-07
Cct6 | Tlh 4,14E-11| 4,92E-11 18,96% | 3,64E-11 -11,91% 4,17E-11 0,88% | 3,92E-24| 1,59E-12
Thl 7,09E-11| 7,58E-11 6,90% | 6,61E-11 -6,79% 7,13E-11 0,46% | 2,66E-24 | 1,29E-12

5. Acknowledgment

This work is partially supported by Brazilian National Council for Scientific and Technological
Development - CNPq — Brazil and Improving Coordination of Senior Staff — CAPES- Brazil.

6. References
[1T P. Gupta, A. B. Kahng, “Manufacturing-Aware Physical Design” in Proc. IEEE/ ACM Int. Conf. on
Computer Aided Design, ICCAD-2003. San Jose, USA, 2003. pp. 681-687.

[2] L. Pileggi, et al., “Exploring Regular Fabrics to Optimize the Performance-Cost Trade-Off” in Proc.
40th Design Automation Conference, Anaheim, USA, 2003. pp.782 — 787.

[3] J. Sawicki, Achieving Better DFM: EDA Tools Pave the Way to Improved Yield. EDA Tech Forum, v.
2,1n. 2, p.28-32, jun. 2005.

[4] C. Meinhardt, R. Tavares, R. Reis, “Logic and Physical Synthesis of Cell Arrays” in Proc. 14th IEEE
Int. Conf. on Electronics, Circuits and Systems, Marrakesh, Marocco, 2007.

[51 K. Wu, Y. Tai, “Structured ASIC, Evolution or Revolution?” in Proc. Int. Symp. on Physical Design
2004, Phoenix, USA, 2004. pp. 103-106

[6] J. Gu, K. F. Smith, “A Structured Approach for VLSI Circuit Design.” Computer, New York, v. 22,
n.11, pp. 9 — 22, nov. 1989.

[71 B. Zahiri, “ Structured ASICs: Opportunities and Challenges” in Proc. 21st Int. Conf. on Computer
Design, San Jose, USA, 2003, pp. 404- 409

[8] A. Weinberger, “Large Scale Integration of MOS Complex Logic”, IEEE Solid State Circuits, SC-
2:182-190. Dez. 1967.

SIM 2010 — 25" South Symposium on Microelectronics 75

A Graph-based Approach to Generate
Optimized Transistor Networks

Vinicius Possani, Eric Timm, Luciano Agostini, Leomar da Rosa Jr.
{vpossani.ifm, erict.ifm, agostini, leomarjr} @ufpel.edu.br

Group of Architectures and Integrated Circuits — GACI
Federal University of Pelotas — UFPel

Abstract

The number of transistors required for implementing a logic function is an essential consideration in
digital VLSI design. While the generation of a series-parallel network can be straightforward once a minimized
Boolean expression is available, this may not be an optimum solution. This paper proposes a graph-based
solution for minimizing the number of transistors that compose a network. The algorithm starts from a sum-of-
products expression and can achieve non-series-parallel arrangements. Experimental results demonstrates the
efficiency of the approach when compared to the quick-factor algorithm implemented in the SIS sofiware.

1. Introduction

Nowadays, VLSI design has definitely established a dominant role in the electronics industry. Automated
tools have held designers to manipulate more transistors on a design project and shorten the design cycle. In
particular, logic synthesis tools have contributed considerably to reduce the cycle time. In full-custom designs,
manual generation of transistor netlists for each functional block is performed, but this is an extremely time-
consuming task. In this sense, it becomes comfortable to have efficient algorithms to derive transistor networks
automatically.

The common technique to optimize a transistor network is based on factorization [1-2]. In this procedure
an input Boolean expression is manipulated in order to reduce the number of literals that compose the
expression. Subsequently, this optimized expression is translated in a transistor network composed by a reduced
number of switches. Alternative methods are also available in the literature. They are based on graph
optimizations, were each edge in the graph keeps an association with a transistor in the network. The main idea
is try to minimize the edges in a existent graph [3] or to compose a new graph with a reduced number of edges
[4].

In this sense, this paper proposes a graph-based method to generate transistor networks. In our approach,
the input Boolean expression is translated into a graph that is later optimized through edges sharing.

The remainder of this paper is organized as follows. Section 2 presents the proposed method to optimize
transistor networks. Section 3 describes the implemented tool and presents the experimental results. The
conclusions are presented in Section 4.

2. Graph-based Approach

The proposed graph-based approach accepts a sum-of-products (SOP) expression as input. In order to
translate the expression to a graph, a parser is needed. The basic idea of this parser consists, initially, in
separating all products that compose the SOP. In the sequence, each literal present in the product is extracted
and stored in a vector. For each product a vector is created. At the end, the parser will delivery ‘n’ vectors for
the ‘n’ products that compose the input Boolean expression. Figure 1 illustrates all vectors obtained from the
Expression 1 that represents an input SOP.

S=ACEF GH + ABFH + ABCGH (1
1A C E F G | H |
1A B F 'H

A 'B C IG H |

Fig. 1 — Vectors representing the products from Expression 1.

Once the list of vectors is obtained, they are organized according to the number of literals that compose
them. Figure 2 exemplifies this situation.

Afterward, it is started the assembly of the graph by removing a vector at a time from this list and creating
a edge in the graph for each literal found in the vector. Notice that this operation will create a set of edges

76 SIM 2010 — 25™ South Symposium on Microelectronics

connected in series. This is demonstrated in Figure 3, where it is also possible to see the vertices that make
connections between the pairs of edges.

1A C E F G H |
A 'B C IG H
1A B F 'H

Fig. 2 — Ordered and organized vectors representing the products from Expression 1.

Fig. 3 — First product as a graph.

In the sequence, another vector is loaded from the list of vectors and placed in the graph. Figure 4
illustrates that for the second vector in the list. All paths in the graph are traversed in order to recognize
identical vertices (vertices that represent same literals). If this condition is verified in the graph, then the
identical edges are shared. This operation leads to a decrease of edges count. This is exemplified in Figure 5,
where the edges ‘C’, ‘!G’ and ‘H’ are merged.

Fig. 5 — Optimized graph for the two first products.

This procedure is performed until the list of vectors is completely empty. Figure 6 shows the last vector
added to the graph, and Figure 7 presents the optimized graph obtained after sharing the edges.

The basic idea behind organizing the vectors consists in permitting the edge sharing for larger products
first. It has been empirically observed that worst solutions are obtained if the sharing process starts using
smaller length vectors (products with less literals).

Fig. 6 — Graph with the last product added.

SIM 2010 — 25™ South Symposium on Microelectronics 77

Fig. 7 — Obtained graph after the final optimization.

To guarantee that sneak-paths (forbidden paths) are not introduced in the graph, a routine that traverses the
graph and compares it to the original products of the expression is regularly invoked. This is necessary because
if a sneak-path is introduced, the graph will not be a true representation of the input Boolean expression.

Notice that all original products of the SOP are present in the graph through the paths !A F B 'H’, !AF E
C!GH’ and ‘A !B C !G H’. However, by sharing edges a new path ‘A !B E B 'H’ was also introduced. This
path is allowed since it not modifies the logical behavior. When thinking in a transistor network, this new path
cannot be sensitized because it contains both literals ‘B’ and ‘!B’. In order words, this is not a valid path.

Another interesting fact is that the proposed approach may derive bridge networks like methods proposed
by [3] and [4]. The example illustrated in Figure 7 presents a bridge configuration (through edge ‘E’). It is a
benefit over optimization approaches based on factorization that can only derive series-parallel networks. For
several Boolean functions the series-parallel arrangement is not the most optimized solution [5].

3. Experimental Results

The proposed method has been implemented in Java language using the NetBeans IDE 6.5.1. A tool
containing the core algorithms and the graphics interface was developed. The graphics interface uses the
Prefuse library [6]. Figure 8 illustrates it for the example from Expression 1. Also, the tool presents a Spice
netlist output module that is capable to print Spice files to be used in electrical simulators.

|£:| Soptimizer 1.0

Fig. 8 — Graphical interface of the developed tool.

In order to evaluate the proposed approach, 10 Boolean functions with 7 input variables were randomly
choose. They were introduced in SIS software [7] and extracted in their SOP form. Table 1 presents the
obtained results. The total number of literals for the SOP form are described in column “# literals SOP form”.
The expressions were factorized using the quick-factor algorithm from SIS. The results are shown in column “#
literals SIS”. Results obtained using the proposed approach are shown in column “# edges Soptimizer”. The
obtained gain over the SIS software are shown in column “% of gain”.

In most cases the proposed approach achieved smaller results. Analyzing the obtained networks we
identified several bridge configurations in the arrangements delivered by the tool. On the other hand, SIS
software delivers optimized expressions composed by ‘AND’ and ‘OR’ operators. In this case only series-
parallel networks can be implemented, representing an overhead in terms of area (transistor count).

For function F7, the proposed algorithm was not able to deliver a smaller solution. The point in that case is
the ability of the proposed algorithm to achieve bridge configuration. For this input expression the algorithm
could not find bridges. We believe that it is related to the SOP ordering that is used to compose and to optimize
the graph. As mentioned before, we starts using products with a larger number of literals. However, when the
products that compose the SOP presents almost same number of literals, we choose them randomly. This
situation could be leading for these kind of result.

78 SIM 2010 — 25™ South Symposium on Microelectronics

Tab. 1 — Results for 10 randomly choose Boolean functions with 7 input variables.

Function # literals SOP form # literals SIS # edges Soptimizer % of gain
F1 133 80 59 26,25
F2 92 70 44 37.44
F3 78 62 39 37.10
F4 150 78 70 10.26
F5 119 82 55 32.93
F6 71 44 38 13,64
F7 170 76 82 -7,89
F8 135 78 62 20.51
F9 111 74 59 18.75
F10 97 64 52 18,75

4, Conclusion and Future Works

This paper presented a graph-based approach to generate optimized transistor networks. The proposed
solution is able to deliver bridge networks. The algorithm was implemented in Java language and a graph
interface using Prefuse library is available. 10 Boolean expressions with 7 input variables were randomly
choose to be used as benchmark. The results demonstrated that the proposed approach can delivery networks
with a transistor reduction up to 37.44% if compared to the quick-factor algorithm from the SIS software.

As future works we intend to investigate the impact of selecting different products ordering to start the
optimization process. Also, we intend to compare the proposed solution with the method described in [4].

5. References
[1] Brayton, R. K. Factoring logic functions. IBM J. Res. Dev. 31, 2 (1987), 187-198.

[2] Mintz, A. and Golumbic, M. C. Factoring boolean functions using graph partitioning. Discrete Appl. Math.
149, 1-3 (2005), 131-153.

[3] J. Zhu et al. On the Optimization of MOS Circuits. IEEE Transactions on Circuits and Systems:
Fundamental Theory and Applications. (1993), 412-422.

[4] D. Kagaris et al. A Methodology for Transistor-Efficient Supergate Design. IEEE Transactions On Very
Large Scale Integration (VLSI) Systems. (2007), 488-492.

[5] Da RosalJr, L. S. Automatic Generation and Evaluation of Transistor Networks in Different Logic Styles.
PhD Thesis PGMicro/UFRGS, Porto Alegre, Brazil. (2008), 147 p.

[6] Prefuse.org. The Prefuse Visualization Toolkit. [Online] Avaliable: http://prefuse.org/ [Acessed: Mar. 25,
2010].

[7] Sentovich, E.; Singh, K., Lavagno; L., Moon; C., Murgai, R.; Saldanha, A., Savoj; H., Stephan, P.;
Brayton, R.; and Sangiovanni-Vincentelli, A. SIS: A system for sequential circuit synthesis. Tech. Rep.
UCB/ERL M92/41. UC Berkeley, Berkeley. (1992).

SIM 2010 — 25" South Symposium on Microelectronics 79

GDLR: a Detailed Routing Tool

Charles Leonhardt, Adriel Ziesemer, Ricardo Reis
{ccleonhardt, amziesemer, reis } @inf.ufrgs.br

Universidade Federal do Rio Grande do Sul

Abstract

Routing is the step of the EDA where the interconnections between different elements of the circuit are
performed. This stage has major consideration because the influence of the interconnection in total delay of the
circuit and the increase of area that a difficult routing can bring. Moreover, the execution time is a limiting
factor that prevents algorithms with greater complexity of being used to solve this problem. So this work aims
to develop a tool for detailed routing that is capable of routing circuits with a significant number of elements
with a good compromise between routing quality and execution time. This is achieved using A*, Pathfinder and
other optimizing techniques that are presented in this paper. The results obtained are 50% faster in execution
time and have similar results for interconnection cost when compared to another tool for detailed routing
called RotDL.

1. Introduction

Despite being one of the first areas of EDA to be automated, VLSI routing remains an area of active
research and development. Furthermore, if compared to positioning problem, there is significantly less
algorithms proposing solutions to this problem.

Routing is a crucial step in the project of VLSI integrated circuits. It is the following step to positioning
that determines the location of each element in the integrated circuit. Summarizing it is the step that connects
all the positioned components obeying to design rules.

It is typically an extremely complex combinatorial problem. It is usually solved by an approach of two
steps: global routing followed by detailed routing. The global router first divides the circuit in regions and
decides the paths between the regions for all nets. After, according to the paths obtained in global routing, the
detailed router assigns channels and vias for all nets.

The GDLR is based on the Pathfinder algorithm [1] to solve conflicts between nets and relies on A* [2] to
perform the routing of each net (signal routing).

For using A* algorithm was used a grid for the data structure of the nodes instead of a simple graph. This is
done because a simple graph would require the use of a lookup table, and the use of a lookup table would add
extra processing and usage of memory.

The article is organized in 5 sections. Section 2 explains the A* algorithm. In section 3 the algorithm
Pathfinder is explained. A technique to improve the results is present in section 4. The results are presented in
section 5. Finally, in section 6 we have the conclusions and future works.

2. A* algorithm

The algorithm is used to find the least-cost path from an initial node to a goal. The key of the algorithm is
the cost function F(x) that take into account the distance from the source G(x) and the estimated cost to the goal
H(x) as shown below:

F(x)=G(x)+ H(x)

By using this formula, the neighbor nodes closest to the goal are expanded first, reducing, in average, the
number of visited nodes needed to find the target when compared to the Lee approach [3].

H(x) must be an admissible heuristic, for this reason it cannot be overestimated. This is necessary to
guarantee that the smallest path can be found. As close H(x) gets to the real distance to the goal, less iterations
will be necessary to find the smallest path between the nodes. This cost is calculated using the Manhattan
distance between the current node and target node. The Manhattan distance is obtained by the sum of the
distances in the 3 axes of the tridimensional grid between the nodes. For our implementation, we considered the
distance between two adjacent nodes as unitary.

For example, consider Figure 1 that shows two searches using Lee and A*. The square identified as S is the
source node and the one identified as T is the target node. The gray squares are the nodes that were expanded
during the execution of the search algorithms. Using Lee, a total of 85 nodes were expanded until the target be
found. Using A*, only 14 nodes were visited until the target node be reached.

80 SIM 2010 — 25™ South Symposium on Microelectronics

a) b)

Fig. 1 — Search using: a) Lee; b) A*.

3. Pathfinder

Pathfinder is a routing algorithm used in the congestion negotiation of nets (NCR). Primarily develop to be
used in FPGA'’s, have been used in several academic routing tools as [4], [5] and [6]. It is commonly used for
global routing, where the edges have capacities greater than 1, but its use for detailed routing has not been
much explored yet.

In this algorithm all the nets are routed using the Pathfinder algorithm to deal with congestion nodes
between nets. The A* algorithm is used in the signal router to perform interconnections between nodes that
belong to the same net.

The Pathfinder router calls the signal router many times to connect all nodes from every net of the circuit.
If a conflict happens, the router adjusts the cost of the use of the congested node accordingly to one of the
equations below to make its use more expensive by the signal router.

C,=B,+(H,*P) (D
Cn :(Bﬂ +Hﬂ)*])ﬂ (2)

These equations takes in dccount the base cost B,, the congestion history in the previous iterations H,, and
the amount of nets using this point in the current iteration P,. It makes the signal router look for alternative
paths to reach the target and themmake the algorithm converge to a feasible solution.

The process happens incrementally and it ends when the router finds no more conflicts between the nets.
The nets that are already solved are not routed again while it is free of conflicts.

4. Source selection

Reviewing the results from the comparison with RotDL [7] (standard of comparison used in this work) it
was possible to see that was necessary to improve the execution time of the algorithm. Within this goal several
techniques have been studied.

One that retrieves good results was setting as initial node (source) to the signal router the one closer to the
geometric center of the net. The reason for this improvement is that starting from the center of the net less
nodes in average are expanded to complete the routing of the net. But for more certainty is necessary a better
study over the topologies generated.

This technique has also been applied to fractions of the total nets. The results we obtained were not as good
as applying it for all nets.

5. Results

In order to illustrate the results, a set of tests has been performed. Tab. 1 compares the results between
source selection technique and the original approach. The Tables 2 and 3 compare the results from the approach
using the source selection technique and RotDL for the same test cases. RotDL is a detailed router from the
Grupo de Microeletronica(GME) from UFRGS.

For comparison two measures were used, total interconnection cost and execution time. The total
interconnection cost is proportional to the wirelength but penalties are set if the preferred layer direction is not
followed. The column #Nets represents the number of nets of each circuit. These nets are composed by an
amount of nodes varying from 2 to 5. The comparison between different approaches is shown by fractions from
the original approach. Between parentheses in each column identifier is the equation used (E1 or E2) and if the

SIM 2010 — 25" South Symposium on Microelectronics 81

source technique is used (+S). Three executions of each test case were performed and the results are the
averages of these executions. For generating the results was used the tool ASTRAN (described in [8] and
obtained in [9]) in a PowerPC G5 2GHz with 4GB DDR SDRAM.

According to the Tab. 1, the best results are obtained when we select the node closer to the geometric
center of the net as the source node for all nets. In this configuration the interconnection cost is approximately
the same and the execution time is 4.4% faster than the original approach.

Tab.1 — Comparison between source selection technique and the original approach considering total
interconnection cost and execution time.

Interconnection cost Time(s) Comparison

Grid | #Nets | GDLR(E2) [GDLR(E2+S)| GDLR(E2) [GDLR(E2+S)| Cost | Time
400x400 120 252034 252352 0,642 0,693 1,001 1,081
400x400 200 415454 413676 3,736 3,356 0,996 0,898
400x400 280 590423 591074 12,965 11,396 1,001 0,879
600x600 180 531329 529873 1,435 1,442| 0,997 1,005
600x600 300 917201 916476 9,268 8,876 0,999 0,958
600x600 420 1335346 1336206 53,562 44,615 1001 o3
800x800 240 997996 995030 3,929 3,776 0,997 0,961
800x800 400 1648364 1648971 23,230 24,608 1,000[1,059
800x800 560 2324052 2327460 98,877 100,066 1,001 1,012
1000x1000 300 1520575 1517268 5,232 5,701] ' 0,908] 1,090
1000x1000 500 2584728 2577709 46,963 43,629] 0,997] 0,929
1000x1000 700 3692922 3696869 208,526 185,193 1,001 0,888
Average 0,999| 0,966

After incorporating the source selection technique to GDLR, the results obtained with the two equations of
Pathfinder are compared with the tool RotDL. The results of this comparison are shown in the Tables 2 and 3.
The results using equation (1) are in Tab. 2 and the ones using equation (2) are in Tab. 3.

Equations obtain similar results in terms of interconnection cost while the second one obtains better results
for execution time. The speed-up of the equation (2) is approximate 50% when compared to RotDL.

Tab.2 — Comparison of the equation (1) for Pathfinder with RotDL.

Interconnection cost Time(s) Comparison
Grid # Nets RotDL GDLR(E1) RotDL GDLR(E1) Cost Time
400x400 120 246731 248387 5 0,778 1,007 0,156
400x400 200 404844 422531 8 15,387 1,044 1,923
400x400 280 576316 592037 11 59,657 1,027 5,423
600x600 180 521273 548652 16 5,954 1,053 0,365
600x600 300 898972 904999 25 18,319 1,007 0,723
600x600 420 1304887 1328778 37 194,155 1,018 5,295
800x800 240 981389 954945 39 4,458 0,973 0,113
800x800 400 1618263 1638575 66 140,199 1,013 2,135
800x800 560 2276922 2332361 95 551,929 1,024 5,789
1000x1000 300 1492669 1566274 107 5,303 1,049 0,050
1000x1000 500 2539368 2679106 197 265,340 1,055 1,347
1000x1000 700 3631745 3516838 241 932,998 0,968 3,866
Average 1,020 2,265

82 SIM 2010 — 25™ South Symposium on Microelectronics

Tab.3 — Comparison of the equation (2) for Pathfinder with RotDL.

Interconnection cost Time(s) Comparison
Grid # Nets RotDL GDLR(E2) RotDL GDLR(E2) Cost Time
400x400 120 246731 252352 5 0,693 1,023 0,139
400x400 200 404844 413676 8 3,356 1,022 0,420
400x400 280 576316 591074 11 11,396 1,026 1,036
600x600 180 521273 529873 16 1,442 1,016 0,088
600x600 300 898972 916476 25 8,876 1,019 0,350
600x600 420 1304887 1336206 37 44,615 1,024 1,217
800x800 240 981389 995030 39 3,776 1,014 0,096
800x800 400 1618263 1648971 66 24,608 1,019 0,375
800x800 560 2276922 2327460 a5 100,066 1,022 1,050
1000x1000 300 1492669 1517268 107 5,701 1,016 0,053
1000x1000 500 2530368 2577709 197 43,629 1,015 0,221
1000x1000 700 3631745 3696869 241 185,193 1,018 0,767
Average 1,020 0,484

6. Conclusions and future works

The GDLR obtain good results in the task of reducing execution time with speed-up close to 50% when
compared to RotDL, with equivalent results for interconnection cost.

Another result is that the equation (2) for Pathfinder is more adequate than the other due better results for
execution time and comparable results for interconnection cost.

One idea to improve this work is to direct the search to use Steiner nodes on finding the path from source
node to target node. Another future work is to develop a global router that supplies smaller problems to the
detailed router. The idea is to also use the algorithm Pathfinder in this solution. The objective of this
development is to allow the tool to route even bigger circuits with reasonable quality in feasible time.

7. References

[1T L. McMurchie, C. Ebeling, “Pathfinder: a negotiation-based performance-driven router for FPGAs,” in
International Symposium on Field Programmable Gate Arrays, Monterrey, Feb. 1995.

[2] P. E. Hart, N. J. Nilsson, “A Formal basis for the heuristic determination of minimum cost paths”, in
IEEE Transactions of Systems Science and Cybernetics, vol. SSC-4, number 2, pp. 100-107, July 1968.

[3] C.Y. Lee, “An algorithm for path connections and its applications,” in IRE Transactions on Electronic
Computer, vol. EC-10, number 2, pp. 364-365,1961.

[4] C. M. Pan, C. Chu, “FastRoute: A step to integrate global routing into placement”, in International
Conference on Computer Aided Design, pp. 464-471, 2006.

[5] Y.J. Chang, Y.T. Lee, T.C Wang, “NTHU-Route 2.0: A Fast and Stable Global Router”, in Computer-
Aided Design, ICCAD, pp. 338-343, 2008.

[6] J. A. Roy, I. L. Markov, “High-performance routing at the nanometer scale,” in Proceedings of
IEEE/ACM International Conference on Computer-Aided Design, San Jose, CA, pp. 496-502, 2007.

[7] G. Flach, R. Hentschke, R. Reis. Algorithms for improvement of RotDL router. in South Symposium On
Microeletronics, SIM, 2004, Tjui, Brazil, 2004.

[8] A. Ziesemer Jr., C. Lazzari, R. Reis, “Transistor level automatic layout generator for non-
complementary CMOS cells”, in Very Large Scale Integration — System on Chip(VLSI-SOC), pp. 116-
121, 2007

[91 A.Ziesemer Jr., "ICPD" [Online]. Available: www.inf.ufrgs.br/~amziesemerj/icpd/, April 2010.

SIM 2010 — 25" South Symposium on Microelectronics 83

A Software Tool for the Analysis of Reliability in Combinational Logic
Circuits

'Mateus Borges, *Rafael Oliveira, *Denis Franco
{mateibor, raf.floretino} @gmail.com, denisfranco@furg.br

YUniversidade Federal do Rio Grande - FURG

Abstract

The manufacturing process of electronic integrated circuits approaches certain limits. With the
implementation of nanometric dimensions technology, combinational logic circuits may present operating
characteristics outside the predefined error margins, making system reliability an important requirement to be
taken into account in the design process, alongside with performance, power consumption and costs of
manufacturing. This paper proposes a system that will evaluate the reliability of combinational logic circuits
generated by synthesis. The proposed tool should be able to support the automatic generation of circuits that
are more resistant to faults. It will use the PBR (Binomial Probabilistic Model for Reliability analysis) circuit
evaluation technique, which provides accurate results with reduced computation complexity compared to other
evaluation approaches. The circuit analysis will be done in a multiple fault environment emulated on a FPGA
device in order to achieve a higher gain in performance, without disregarding the possibility of multiple
simultaneous faults occurrence.

1. Introduction

Integrated Circuits have evolved constantly in the last decades. The continuous reduction in the dimensions
of integrated circuits results in an increase of density and speed obeying Moore’s Law. Due to technological
developments in the manufacturing process, the systems incorporate new features, improving performance,
accompanied by the reduction of manufacturing cost and power consumption. However, the continuous
reduction in the size of integrated structures is leading the process to reach technological, financial and physical
limits, which will result in the break of Moore's Law.

All the above effects can be observed through the difficulty that currently exists in fabricating circuits with
nanotechnology that present the characteristics of operation within the predefined margins of error, as shown by
Franco et al. [1]. For this reason, the scientific community is studying the adoption of fault-tolerant circuits in
the implementation of integrated systems in nanotechnology.

Fault tolerance is an area of study that deals with systems for critical applications where reliability is
extremely vital, such as in military, aviation, space and medical systems. Its implementation in general purpose
systems, however, is not a simple design decision, since the main method of implementing fault tolerance is the
incorporation of redundancy (temporal or material) in the concerned circuits. This causes loss of performance,
increased cost and power consumption, design requirements that are often more privileged in consumer
electronics.

Thus, designers of integrated circuits in nanotechnology are faced with this paradoxical problem. On one
hand smaller dimension circuits must be protected against this loss of reliability. On the other hand the
application of fault tolerance means loss of performance, increased energy consumption and manufacturing
cost. The solution may be a partial implementation of redundancy in the circuits, as shown by Zhou and
Mohanram [2] in order to increase the reliability only on the critical elements reducing the redundancy needed
for reasonable protection of the system.

To implement the partial fault tolerance, the critical elements in question must therefore be determined.
Then, the final system reliability considering the additional protection circuits must be evaluated. Several
techniques have been proposed to evaluate the reliability, but computational complexity and the various metrics
associated with the problem show that exact solutions are not possible yet, which leads to specific solutions for
each system. Furthermore, in most of the proposed techniques only single faults have been considered and no
accurate analysis were made for circuits under multiple faults.

One technique that shows interesting results is called PBR as demonstrated by Vasconcelos et al. [3],
which is based on simulation and / or emulation of the target circuit in the presence of faults. Despite the high
complexity of calculating the exhaustive simulation, exact results may be obtained through the simulation of
specific cases for each type of analysis in order to reduce the complexity involved in the circuit evaluation.
Through the use of reconfigurable substrates like FPGAs, further reduction of computation time is possible, in
order to achieve gains in performance due to the evaluation of the circuit in its actual frequency of operation
and the possibility of replication of the test circuits in order to simultaneously evaluate multiple copies of the
target circuit.

This project aims to develop a tool to evaluate the reliability of logic circuits using the PBR analysis
method and circuit emulation based on FPGA. Thus, it is a proposal to develop a software environment that can

84 SIM 2010 — 25™ South Symposium on Microelectronics

be integrated with other tools used in the design of integrated circuits as well as the hardware platform for the
emulation of the target circuits in the presence of faults.

2. Probabilistic Binomial Model for Reliability Analysis (PBR)

The reliability of a system can be defined as the probability that it will perform the functions that were
proposed under certain conditions and for a certain time, being referred to as R or R (t). Considering the logical
gates as the basic components of circuits, the reliability of these can be expressed through its fault rate, defined
as A or A(t), which is determined by simulations and data obtained from testing after manufacture or during
operation.

The reliability of a logic circuit is a function of the reliability of its individual components, as well as the
entire logic structure of the circuit. Nevertheless, the relationship between a fault in an individual component of
the circuit and a fault in the outputs of the circuit does not occur directly. There may be fault masking of one of
these components caused by the logical values present in the input of the circuit at the time of failure. This
masking mechanism, called logical masking, together with the electrical and temporal masking, allows these
circuits to function correctly many times in the presence of faults, as demonstrated in Miskov-Zivanov and
Marculescu [4].

In the PBR model of reliability analysis, the objective is to determine the probability that a failure occurs in
a certain circuit by evaluating its ability to logically mask certain faults. This way, the evaluation represents the
probability of the output of the circuit being correct in the presence of faults. The PBR model is described by
the following expression (Fig. 1) for a circuit with n inputs and G gates:

Ro—y2-af e T3l n)erlis)
_OFig 1 - The expressii)ii)flt;(e) PBR model.

The model takes into account a binomial distribution of faults in the circuit, considering all the gates with
the same reliability q and fault probability 1 - q, and the ability of masking (logically and electrically) this
faults, expressed through the XNOR function presented in the expression. The ability of masking is calculated
by simulating the circuit in the presence of faults (vector fj) and verification of the correctness of values in the
output of the circuit. The circuit to be evaluated must be modified so that it is possible to inject controlled
faults, according to Fig 2. The vector fj is composed of control signals that, when in level 1, trigger the
injection of a fault in the circuit (inverts the value present at the output of its logical gate).

x(0) 0
r(l)—e—— 4 y(0)
1(2) : R r/
1 . :
r(3) ———— S y(1)
| | : 3 T
.’I'(il) — | [

F0) F) F2) fB) £(4) £(5)

Fig 2 - Target circuit modified for the injection of faults.

3. A Tool for the Analysis of Reliability

To evaluate the reliability of combinational logic circuits, the current work proposes a tool that will work
according to the scheme shown in Fig. 3. The system contains the circuit to be evaluated and its replica,
modified for fault injection purposes. The verification of fault masking is done by comparing the output values
of the circuit simulated in the presence of faults and the values of the original circuit simulation. The
coefficients determined in the simulation reflect the capacity of logical masking occurred for a certain number
of simultaneous faults.

SIM 2010 — 25™ South Symposium on Microelectronics 85

- inputs outputs
geligleﬁon : { fault-free circuit - g
n n m |2
3 -
) = coefficients
inputs outputs | § L
/ fault-prone circuit a ° f f storage
n m
)
fault J | :
generation | ‘ 7 |
G e [

Fig 3 - Testbench structure for the PBR analysis

For circuits with dozens of logical gates, the simulation may have a very long time response or even
prohibitive. The aim is then to simplify the method considering that for certain values of reliability of logical
gates, the set of possible simultaneous faults is very small and can be determined by the expression of the
binomial distribution of faults. Furthermore, applying random input patterns results in good accuracy with a
reduced number of simulations.

This project aims to develop an integrated system to evaluate the reliability of combinational logic circuits
generated from automatic synthesis tools.

The analysis will be done in a tool that aims to integrate several routines for automatic evaluation of logic
circuits. These software routines will be used to interpret the files of the circuit description (in VHDL), generate
the files needed for test bench simulation, and format the results in terms of tables and charts for reliability.
Beyond environmental analysis software, the project foresees the creation of an emulation platform based on
FPGAs, as shown in Fig. 4. The circuit emulation can result in important gains in terms of performance, if
compared with the software simulation.

Beyond environmental analysis software, that has already been implemented in other studies, the
application of PBR model in this tool will stress the emulation using the FPGA board Nios II Embedded
Evaluation Kit, Cyclone III Edition, by Altera, as shown in Fig. 4. The circuit emulation can result in important
gains in terms of performance, if compared with the software simulation.

FPGA host PC
Quartus I1
Nios 2 JTAG interface Nios 2 IDE
PBR testbench [-

processor environment

Fig. 4 — Emulation scheme for the PBR analysis

In addition to automatically evaluate fault-tolerant circuits, this tool will assess the effectiveness of
techniques of fault tolerance in environments with multiple simultaneous faults. Most of these techniques only
take into account that a single fault will occur in each moment, and the probability of multiple faults occurring
in nanometer technologies cannot be disregarded, as demonstrated by Shivakumar et al. [5]. A fault-tolerant
circuit usually has signs that indicate errors, so that the operation must be annulled and rerun. In such cases, the
time penalty must be viewed with caution, so as not to compromise the expected performance of the circuit.

The time penalty is the fraction of useful results generated by the circuit compared to the total number of
results generated. This reading may indicate the inadequacy of the technique of fault tolerance in use for the
application in question indicating the need of other techniques for the solution of the system. The analysis tool
proposed in this project also aims at assessing the time penalty of target circuits, providing an important and
unprecedented measurement in this type of analysis.

The tool will be produced in a Windows environment and implemented in Java. As the simulation has
already been implemented in other studies, the application of PBR model in this tool will stress the emulation
using FPGA board Nios I Embedded Evaluation Kit, Cyclone III Edition, by Altera.

4, Conclusion

In this work is presented a proposal of a tool that will evaluate the reliability of a combinational logic
circuit in a multiple simultaneous faults environment. To do that, it creates an emulation environment based on

86 SIM 2010 — 25™ South Symposium on Microelectronics

FPGA implementation in order to inject controlled faults in the input of the circuit and, than, compare the
output of this circuit and the output of a free-fault one.

The main contribution of this work is the use of the PBR approach, which presents reduced complexity to
evaluate the reliability of a given circuit without losing accuracy. Using this method, it proposes the evaluation
of existing fault-tolerant techniques by computing the time penalty behavior of circuits designed with these
techniques.

5. References

[1] D.T. Franco, J.F. Naviner, and L. Naviner, “Yield and reliability issues in nanoelectronic technologies,”
Annales des télecommunications, 61(11-12):1422-1457, Nov.-Dec.2006.

[21 Q. Zhou, and K.Mohanram, “Transistor sizing for radiation handening,” Reliability Physics Symposium
Proceedings, 2004. 42" Annual. 2004 IEEE International, April 2004, pp.310-315.

[3] M.C. Vasconcelos, D.T. Franco, L. Naviner, and J.F. Naviner, “Reliability analysis of combinational
circuits based on a probabilistic binomial model,” IEEE Northeast Workshop on Circuits and Systems,
2008. NEWCAS-TAISA 2008, June 2008, pp. 310-313.

[4] N. Miskov-Zivanov, and D. Marculescu, “Circuit reliability analysis using symbolic techniches,”
Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on, 25(12):2638-2649,
Dec. 2006.

[5] P. Shivakumar, M. Kistler, S.W. Keckler, D. Burger, and L. Alvisi, “Modeling the eect of technology
trends on the soft error rate of combinational logic, “ In DSN '02: Proceedings of the 2002 International
Conference on Dependable Systems and Networks, Washington, DC, USA, 2002. IEEE Computer
Society, pp 389-398.

SIM 2010 — 25™ South Symposium on Microelectronics 87

Evaluating Power Consumption on Buses under the Effect of Crosstalk

Carolina Metzler, Luigi Vaz Ferreira, Gustavo Wilke,
Ricardo Augusto da Luz Reis
{cmetzler, lvfernandes, wilke, reis} @inf.ufrgs.br

UFRGS - Universidade Federal do Rio Grande do Sul

Abstract

With the continuous scaling of technology, crosstalk increases proportionally due to reduction in metal line
pitch and the increase in the interconnects aspect ratio. The crosstalk effect causes noise in adjacent wire when
switching in opposite directions affecting the switching delay and power consumption of on-chip buses. In on-
chip buses the crosstalk effects is more evident because on-chip bus is a set of long wires connecting two or
more devices intra-chip, due to the long wire length there are more interconnects, thus, it is more susceptible
for crosstalk effects.

In the present paper we study the crosstalk effects in power consumption of two coupled transmission lines
of on-chip buses in accordance with their switching. The bus is modeled as distributed resistance-capacitance
(RC) lines that utilizes 3-& wire model and the transmission lines are capacitively coupled to each other. The
simulation results show that the power consumption in on-chip buses depends not only on the switching but
how transmission lines are coupled as well. Results are collected from electric simulations for a 65nm ptm
technology and indicate a significant difference of 40.95% in power consumption according the switching.

1. Introduction

Throughout the past years, VLSI technology has advanced at exponential rates in both productivity and
performance. Thus, the intra-chip devices grow in complexity and results in more modules in the same chip. To
connect these modules is used on-chip buses which is a set of long wires connecting two or more devices intra-
chip. This implies that the number of intra-chip modules will increases and so will the number of on-chip buses
connecting these modules where there is a need for significant data transfer and power dissipation [1].

A good evaluation on power consumption is crucial in current integrated circuit design, especially for low
power constraints devices. With the continue scaling of the technology the power consumption of on-chip buses
is becoming significant [2]. Due to the long wire length in on-chip buses there are more interconnects, thus, it is
more susceptible for crosstalk effects.

While transistors switch much faster each new technology, meanwhile in wires is narrower because in
many paths the RC delay is bigger than gate delay due to the growth of wire resistance. Furthermore, wires are
packed very close each other and in consequence, part of their capacitance is to their adjacent wires. Thus,
crosstalk is when one wire switches it tend to affect an adjacent wire due to the capacitive coupling between
them, seem in Figure 1 and Figure 2. Therefore, when adjacent transmission lines of on-chip bus are switching
in opposite directions the coupling capacitance between them lead to crosstalk, then, this effect causes noise in
adjacent transmission line impacting in timing and power of a signal on a chip.

Ground
Cgnd L
Cadj gy Cadj
i
and_l_
Ground

Fig. 1 — Coupling lines between two metal ground planes.

In this paper will be presented a evaluation of power consumption on two coupled on-chip bus lines, the
main objective is show how significantly crosstalk affects power consumption in on-chip buses. Most of
techniques that evaluates power consumption due to the number of transitions in on-chip buses [1,]. The aim of
this work is show that power consumption depends not only on the switching but how transmission lines are
coupled as well. The correlation between switching transition lines was evaluate in 50% statistically utilizing
ISCAS 85 benchmarks, and indicates that is possible arrange transmission lines according their switching
correlation.

88 SIM 2010 — 25™ South Symposium on Microelectronics

The paper is organized as follows, in sectionl an introduction about the theme, in section 2 are the related
works and in section 3 the simulation results in two adjacent bus lines switching. Finally, section 4 presents the
conclusion.

2. Related Works

Most of related works deals with the effects on delay due to switching adjacent bus lines as [3],[2], and
papers concerned with the power dissipated there are [1],[2],[5]. In [1] Ghoneima et al proposes a variation-
tolerant low power source-synchronous multicycle (SSMC) it replaces the intermediate flip-flops in the SSMC
their circuits simulations saves up to 20% energy, there, is presented delay models and explains the Miller
coupling coefficient is the value of the contribution of the coupling capacitances to the overall capacitance.
According to [2] Ghoneima and Ismail, as the introduced delay increases the achieved power reduction
increases while decreasing the bus throughput. As shown by Mahmoud et al [3] the improvement of the
performance of an interconnect wire is physically limited when using a reverse-scalling approach, so they make
an analysis of the absolute minimum damping factor and presents expressions that shows the maximum bit-rate
on a wire can be quite limiting for longer wires and scalling trends.

According [5], Ghoneima and Ismail makes an analytical and qualitative analysis of relative delay on
dissipated energy and the Miller coupling factor in coupled lines. In their work skewing the worst switching
case is shown to provide up to 50% reduction in energy dissipation.

Different of related works, here is presented another perspective considering crosstalk in on-chip buses, in
the other works, they aim to decrease crosstalk effects or do not consider it in total power consumption. In
section 3 will be possible observe that crosstalk affects power consumption in on-chip buses and it is related
with the switching in transmission lines.

3. Simulation Results

This section will show simulations results for two coupled adjacent bus lines according their switching. In
this work, a transmission line is simulated with the 3-m model and an inversor as a driver for the switching
process. To analyze how much crosstalk affects the power consumption different switching patterns was
simulated.

With the purpose of quantifying the effects of crosstalk on a bus, was simulated the circuit on Figure 2 that
shows two transmission lines coupled switching. All transmissions are simultaneous, assuming same clock on
drivers. According the dynamic power equation (1) is possible calculate the values of power consumption for
switching lines. All the capacitances, line capacitances, drain capacitances and inversors input capacitances are
denoted by C. C is multiply by the switching frequency f on the load capacitances to obtain the current, and

multiplying again by voltage V/,,, as shown below:
2
I)dyn = C'I/DD f (1)

The simulations results are taken in Synopsis HSPICE, where is described a wire model and an inversor to
simulate a transmission line, all RC values are taken from [6] and the inversors have the following values L=
65nm, W,=lum and W,=2um for a wire length of 100um and the inversors input capacitance is 1.33fF.
Calculating the dynamic power of the circuit simulated in this work, disregarding the drain capacitance, it is
1.1384E-04W for Imm wire length and the simulation, tablel, has 1.2810E-04W for lines switching in same
directions, considering that the drain capacitance was disregard in the first value and not on the simulation
value is possible conclude that data is according the theory.

Regarding table 1 and graph 1, below, is possible understand which is the worst case in crosstalk, it is the
case when switching in opposite directions. Therefore is possible conclude that direction of switching affects
the amount of charge that must be delivered, this can be written as:

0=C,,AV @)

Equation (2) gives the charge delivered to the coupling capacitor, AV is the charge between line A and line
B. If both lines switch in the same direction AV is zero, case 1 and the power dissipated is the same. In case 2,
line A and line B switch in opposite direction AV is 2*VDD that explains why the power consumption is
higher. When line A switches and line B does not, AV is equal to VDD the capacitance effectively seen by A is
just the capacitance to ground and to B [7]. According graph 1, cases 4 and 6 have the proportional dissipated
power value and both switch to a different value that line A is attached. Note that on contrary, in cases 3 and 5
line B switches to the same value that line A is constant. Evaluating graph 1 with equation (2) is possible see
the results and confirm the theory.

The Power consumption in two wires adjacent are estimated in 23.64% bigger in the worst case for a
100um wire length and 40,95% for 1mm, simulations results are showed in tablel. Hence, when the bus lines
are switching in equal directions are adjacent, is possible save power.

SIM 2010 — 25™ South Symposium on Microelectronics 89

Graph.1 — Power consumption when two coupled bus lines are switching in a 65 nm technology for a
100um wire length.

6,00E-04 -

5,00E-04

4,00E-04

3,00E-04

2,00E-04

1,00E-04

0,00E+00 -

case 6

casel case 2 case 3 case 4 case5

BPower Dissipated in line B BPower Dissipated in line A

In second simulation was increasing the line size from 100um to 1mm and maintains the same technology
and inversors size, as expected the RLC values increases according the wire length. Seem below the
corresponding table 1 for a Imm wire length.

Tab.1 — Power consumption when two coupled bus lines are switching in a 65 nm technology for a Imm
wire length.

Case Line A Line B Power Dissipated Power
inline A Dissipated in
line B
1 0—1 0—1 1.2802E-04W | 1.2802E E-04W
2 0—1 1-0 2.1691E -04W 2.1664E -04W
3 0 1—0 4.3848E-05W 1.7241E-04W
4 1 1—0 4.4103E-05W 1.7247E-04W
5 1 0—1 4.4686E-05W 1.7228 E-04W
6 0 0—1 4.4918E-05W 1.7226E-04W

Evaluating the results are possible conclude that power values changes according transmission lines are
coupled; for this reason is very important consider this when designing an on-chip bus.

In Figure 2 is the circuit simulated for 65 nm technology, all RC values are taken from PTM’s web site [6].
PTM’s model card provide accurate, customizable, and predictive model files and are compatible with standard
circuit simulators, and scalable with a wide range of process variations.

e

Fig. 2 — Coupled adjacent bus lines used in simulations.

4, Conclusions

This paper presented a study of power consumption on coupled on-chip bus lines, the main objective was
show how significantly crosstalk affects power consumption in on-chip buses. These results are preliminary and
the maximum difference of 23.64% for 100um wire length and 40.95% for Imm wire length on power
consumption according the switching direction. The simulation results show that the power consumption in on-
chip buses depends not only on the switching but how transmission lines are coupled as well.

90 SIM 2010 — 25™ South Symposium on Microelectronics

As a preliminary study, in this paper is presented simulation results for 65 nm technology utilizing the
predictive technology model RC model. Different switching patterns are included in the model due to evaluate
the changes in power consumption.

5. References

[1] M. Ghoneima, Y. Ismail, M. Khellah, V. De, "Variation-Tolerant and Low-Power Source-Synchronous
Multi-Cycle On-Chip Interconnection Scheme", VLSI Design,vol.2007, article ID 95402, 2007.

[2] M. Ghoneima and Y. 1. Ismail, “Utilizing the effect of relative delay on energy dissipation in low-power
on-chip buses,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 12, no. 12, pp.
1348-1359, December 2004.

[3] N. Mahmoud, M. Ghoneima, and Y. Ismail, “Physical Limitations On The Bit-Rate Of On-Chip
Interconnects,” Proc. Great Lakes Symposium on VLSI (GLSVLSI), pp. 13-19, 2005.

[4] L. Macchiarulo, E. Macii and M. Poncino, “Wire Placement for Crosstalk Energy Minimization in
Address Buses”. Proc. of 2002 Design Automation and Test in Europe Conference and Exibition (DATE
2002) p.158, March 04-08, 2002

[S] Maged Ghoneima , Yehea Ismail, “Delayed line bus scheme: a low-power bus scheme for coupled on-
chip buses”, Proceedings of the 2004 international symposium on Low power electronics and design,
August 09-11, 2004, Newport Beach, California, USA

[6] PTM- Predictive Technology Model http://ptm.asu.edu/

[71 Neil Weste, David Harris, “CMOS VLSI Design: A Circuits and Systems Perspective” 4th Edition,
Hardcover, Mar. 11, 2010.

SIM 2010 — 25" South Symposium on Microelectronics

91

Video Coding 2

92

SIM 2010 — 25™ South Symposium on Microelectronics

SIM 2010 — 25" South Symposium on Microelectronics 93

Low Latency and High Throughput Architecture for the H.264/AVC
Transforms and Quantization Loop Targeting Intra Prediction

Daniel Palomino, Felipe Sampaio, Luciano Agostini
{danielp.ifm,fsampaio.ifm,agostini} @ufpel.edu.br

UFPel - Universidade Federal de Pelotas

Abstract

This work presents a low latency and high throughput architecture for the H.264/AVC transforms and
quantization loop, focusing in the Intra Prediction constraints. The main goal is reduce the Intra Prediction
waiting time for new references to code the next block. The architecture was described in VHDL and
synthesized targeting two different technologies FPGA Stratix III and Standard Cells. Considering the
H.264/AVC main profile, the architecture is able to process 37 QFHD frames per second and 148 HD 1080p
frames per second when mapped to FPGA, easily reaching real time for the two target resolutions. Besides, the
architecture designed in this work reaches the best results considering the Intra Prediction restrictions, when
compared with related works.

1. Introduction

The H.264/AVC standard is the state-of-art in video coding. It was developed by experts from ITU-T and
ISO-IEC intending to double the compression rates, with no quality loss, when compared with previous
standards, like MPEG-2 [1].

The video compression is extremely important considering the great amount of data in high resolution
videos. The H.264/AVC has efficient tools to compress these videos. However, H.264/AVC encoders have high
computational complexity as well. This way, hardware solutions are necessary to process high resolution videos
in real time (24 to 30 frames per second).

The main modules of the H.264/AVC are: Inter-Frame Prediction (composed by Motion Estimation and
Motion Compensation), Intra-Frame Prediction, Forward and Inverse Transforms, Forward and Inverse
Quantization, Deblocking Filter and Entropy Coder.

The Intra-Frame Prediction module exploits the spatial redundancy in a frame, exploring similarities
among neighbor blocks. The predicted block is generated coping neighbor pixels of blocks already coded. The
blocks can be predicted by the Intra Prediction module of three different ways: (1) [4MB (prediction over 4x4
luminance blocks), (2) I16MB (prediction over 16x16 luminance blocks) and (3) chroma 8x8 (prediction over
8x8 chrominance blocks) [4]. In the coding process the H.264/AVC standard defines that the residual data
between the original and the predicted block needs to be processed by the Forward Transforms (T), Forward
Quantization (Q), Inverse Quantization (IQ) and Inverse Transforms (IT), to generate the reconstructed block
that will be used as reference by the Intra Prediction module. While a block is processed by the T/Q/IQ/IT loop,
the Intra Prediction module stays idle waiting for the reconstructed block. It means that there is a data
dependency between neighbor blocks in the Intra Prediction process. Thus, the time that one block needs to be
processed by the T/Q/IQ/IT loop affects directly the performance of the Intra Prediction module.

This work presents a low latency and high throughput architecture for the T/Q/IQ/IT loop to generate the
reference blocks as fast as possible, decreasing the Intra Prediction idle time. Besides, the architectures for the
T/Q/IQ/IT modules were designed intending to exploit the similarities between the transforms and quantization
calculations, with the goal to decrease the hardware consumption. This work is part of the Brazilian research
effort to develop the Brazilian System of Digital Television (SBTVD) [2], since H.264/AVC is the chosen
video coding standard to be used in SBTVD.

This work focus in the main profile of the H.264/AVC standard [1], which works with YCbCr space color
and 4:2:0 format. In this case, a Macro Block (MB) is composed by 16x16 luminance samples (Y), 8x8 blue
chrominance samples (Cb) and 8x8 red chrominance samples (Cr) [1].

Fig. 1 shows the block diagram of an H.264/AVC encoder, where the target blocks are highlighted.

Current Entropy
Coder

Frame
(original)

Reference
Frames | P MC

Current
Frame
(reconstructed)

Fig. 1 — H.264/AVC encoder block diagram.

94 SIM 2010 — 25™ South Symposium on Microelectronics

This work is organized as follows: Section 2 presents the Transforms and Quantization definitions. Section
3 shows de designed architecture. Section 4 shows the architecture pipeline schedule. Section 5 presents the
synthesis results and some comparisons with related works. Finally Section 6 presents conclusions and some
future works.

2. Transforms and Quantization

The forward and inverse transforms defined in the H.264/AVC main profile are: Forward and Inverse 4x4
DCT (FDCT and IDCT), Forward and Inverse 4x4 Hadamard (4x4 FHAD and 4x4 THAD) and 2x2 Hadamard
(2x2 HAD). The Equation (1) represents the calculation of the 4x4 FDCT transform. The multiplication by Efis
performed in the quantization process [1].

b

az%aZ%b

I T 12 1 1 b B ab b

21 -1 -2 [S 5> 1 2 7

Y=CWC| ®E, = w 2 4 2 4

B S el B 1 -1 -1 2 2 @ oab O

1 -2 2 -1 1 -2 2 -1 2 2

ab b ab b

2 4 2 4

The quantization calculation is different accordingly with the target sample. Generically, this process is
controlled by the Quantization Parameter (QP), which is generated by the global encoder control and defines
the quantization step that must be used [3]. Equations (2) and (3) present the forward and inverse quantization
for all luma and chroma AC coefficients and luma DC coefficients that were not predicted in the I16MB mode.

|Z(m [=(W(w.) |-MF + f) >> gbits @
sign(Z,) =sign(W,, ;)

v ZLQP/Q (3)

Wip=2 "

(. "

All the other transforms and quantization definitions are very similar and they are presented in [4].

3. Designed Architecture

The T/Q/IQ/IT loop architecture was designed to generate the reference blocks as fast as possible to the
Intra Prediction module. To achieve this goal, two decisions were taken: (1) to exploit the parallelism in the
transforms and quantization operations as much as possible and (2) insert pipeline stages as less as possible to
decrease the latency. Too many pipeline stages are not efficient, since there is a data dependency between the
T/Q/IQ/IT loop and the Intra Prediction module.

The architectures for the T/Q/IQ/IT modules were designed intending to exploit the similarities between
the transforms and quantization calculations, decreasing the hardware consumption.

Fig. 2 shows the block diagram of the designed architecture.

Intra IDCT
Prediction
Q
[a]
[3)
[] x
D
|i| ’—> IHAD —l E..I:J
=)
28]
FT FQ 1Q
T/Q/IQI/TILoop.

—> CAVLCoutput

Fig. 2 — T/Q/IQ/IT loop block diagram.

In the T/Q/IQ/IT loop architecture each module represents one pipeline stage. The FQ was the only module
designed with two pipeline stages, due to its long critical path.

3.1. Transforms and Quantization Architecture

All transforms defined in the H.264/AVC standard were grouped in three different architectures: FT, IHAD
and IDCT modules. It was possible, since there are similarities among all transforms operations. Actually, all
transforms operations could be grouped in only one module. It was not performed, in order to make the control
unit simpler and the critical path smaller. All these groups are shown with more detail in [5].

All the forward quantization operations were grouped in one module (FQ) and the inverse quantization
operations in another one (IQ). An architecture based in adders and shifts was designed to perform the
multiplication operation in these modules. This way, all possible constants values were pre-calculated and

SIM 2010 — 25" South Symposium on Microelectronics 95

storage in dedicated memories. Thus, it was not necessary design a data path to perform the calculation of these
constants, decreasing the hardware consumption and decreasing the critical path of these architectures.

Both buffer shown in the Fig. 2 (DC and Buffer AC/DC) are used to synchronize the modules of the
T/Q/IQ/IT loop.

4. Pipeline Schedule

The T/Q/IQ/IT loop architecture works in three different ways, according to the operation modes: 14MB,
I116MB to luminance samples and chroma 8x8 to chroma samples [4]. Fig 3 shows the architecture time
diagram considering the three operation modes.

Operation
Module
: |- [1
5| s > 3 4|5]|6]7
FQ oj]o 20 1]t 5
S @© i Operation (e) 8 9 110 lli
o o ?\;5 1 E: Module
= B
- kI - . LT T 12113114 ls
" " x+s Hoycles po olo]s]z2]s]2 (d)
(@) | |
Q ofl1fz2]3 °
Operation -
Module 2
IHAD C
1| D
FTjofaays]z] = |s5]|c et e
. - i }‘ é g #cycles
1|12 |D|
Q 0 1 0 1 4 5 C
(©)
IHAD g
ENN A T A S
IDCT |3|7|1|5I4|3I2|
#cycles

®
Fig. 3 — T/Q/IQ/IT loop time diagram for the three modes: (a) [4MB, (b) [16MB and(c) chroma 8x8. (d)
luma 16x16 block and (e) chroma 8x8 block.

For the I4MB mode, the loop architecture delivers reconstructed blocks in five clock cycles to the Intra
Prediction module. When the prediction mode was 116MB the loop architecture takes 28 clock cycles to deliver
the reconstructed block to the Intra Prediction. Considering chroma blocks, 12 clock cycles are necessary to
process an 8x8 block, 24 clock cycles for both chroma components (Cb and Cr).

5. Synthesis Results and Comparison

The architecture was described in VHDL and synthesized targeting two different technologies: FPGA
Stratix III [6] and TSMC 0.18um standard cells [7]. Tab. 1 shows the synthesis results considering operation
frequency and hardware consumption (ALUTs and DLRs for FPGA and number of gates for standard cells).

Tab. 1- Synthesis Results.

Stratix I11* TSMC 0.18um

Module (';/Tquz') #ALUTs | #DLRs ('Jﬁ"l') #Gates
FT To1.1 1135 528 1853 96K
T 182.7 1131 544 180.4 82K
FQ 1363 7032 | 1.640 1257 202K
10 131.5 3.833 830 136.9 21.9K
IDCT 1803 1,445 688 161.5 103K
Control Unit 532.8 171 39 458.4 0.6K
T/QNQIT loop 125.0 4111 6846 1120 | 155.0K

*Device: EP3SL50F780C3N

Two resolutions were considered, in order to evaluate the architecture performance: HD 1080p (1920x1080
pixels) and QFHD (3840x2160 pixels). Also, it was considered the Intra Prediction worst case, i.e., when the
prediction mode is always I4MB for luminance blocks. This way, the designed loop will take 104 clock cycles
to process one MB.

In the ideal case (when the Intra Prediction mode is able to deliver one 4x4 block per cycle) and
considering the FPGA design, the architecture is able to process until 148 HD 1080p frames per second and 37
QFHD frames per second, reaching real time. In the real case, the Intra Prediction module delivers the predicted
blocks in bursts. This way, to the Intra Prediction module and T/Q/IQ/IT loop reach real time with HD 1080p
videos, the Intra Prediction module can takes until 410 clock cycles per MB.

96 SIM 2010 — 25™ South Symposium on Microelectronics

It was not found works in the literature that implements only the T/Q/IQ/IT loop. However, there are works
as [8], [9], [10] and [11] that implements Full Intra Coders, where the T/Q/IQ/IT loop is an internal module.
Since these works do not show results only for the T/Q/IQ/IT loop, the comparison was made considering the
latency for the T/Q/IQ/IT loop. Tab. 2 shows the number of clock cycles that each work takes to process the
three different Intra Prediction modes: I4MB, 116MB and chroma 8x8.

Tab. 2- Comparison with related works.

Mode Thiswork | Kuo[8] | Chuang[9] | Suh[10] | Hamzaoglu [11]
14MB 5 16 17 34 100
116MB 28 159 - 441 1,718
Chroma 8x8 24 77 - 242 -

The architecture designed in this work presents the lowest latency considering all modes when compared
with the related works. In the worst case the design architecture is 3.2 times lesser than [8], when chroma 8x8
blocks are processed. When compared with [11], the latency of the architecture designed in this work is 61.4
lesser, when 16x16 luminance blocks are processed.

6. Conclusions and Future Works

This work has presented an architecture for the T/Q/IQ/IT loop of the H.264/AVC standard with low
latency and high throughput, in order to decrease the time that the Intra Prediction module stays idle waiting for
the reconstructed blocks. The architecture was described in VHDL and synthesized targeting two different
technologies: FPGA Stratix III and TSMC 0.18um standard cells. The synthesis results shows that this
architecture is able to process until 148 HD 1080p frames per second and 37 QFHD frames per second
considering the FPGA design, reaching real time (24 to 30 frames per second) when high resolution videos are
targeting. Besides, the architecture presented in this work shows the best results of latency than all related
works.

The next step of this work is integrating the T/Q/IQ/IT loop architecture with the Intra Predictor module
and the Entropy Coder in order to design a Full Intra Coder.

7. References

[1T ITU-T Recommendation H.264/AVC (05/03): advanced video coding for generic audiovisual services.
2003.

[2] Forum of Digital Television. ISDTV Standard. Draft. Dec. 2006 (in Portuguese).

[3] T. Wiegand, et al, “Overview of the H.264/AVC Video Coding Standard”, IEEE Trans. On Circuits and
Systems for Video Technology, v. 13, n.7, pp. 560-576, 2003.

[4] I Richardson, H.264 and MPEG-4 video compression — Video Coding for Next-Generation Multimedia.
John Wiley&Sons, Chichester, 2003.

[5] Sampaio, F. et al (2009) “A Multitransform Architecture for the H.264/AVC Standard and Its Design
Space Exploration”. In ICECS 2009, pages 711-714.

[6] Altera Corporation. “Altera: The Programmable Solutions Company”. Available at: www.altera.com.
[7] Artisan Components. TSMC 0.18 um 1.8-Volt SAGE-X™ Standard Cell Library Databook. 2001.

[8] Kuo, H and Lin, Y. (2008) “An H.264/AVC Full-Mode Intra-Frame Encoder for HD1080 Video”. In
IEEE Int. Conf. on Multimedia & Expo, pages 1037-1040.

[91 Chuang, T-D., et al (2007) “Algorithm and Architecture Design for Intra Prediction in H.264/AVC High
Profile”. In PCS 2007.

[10] Suh, K., et al (2005) “An Efficient Hardware Architecture of Intra Prediction and TQ/IQIT Module for
H.264 Encoder”. In ETRI Journal, pages 511-524.

[11] Hamzaoglu, I., et al (2007) “An Efficient H.264/AVC Intra Frame Coder System Design”. In IFIP/IEEE
Int. Conf. on Very Large Scale Integration, pages 1903-1911.

SIM 2010 — 25" South Symposium on Microelectronics 97

Efficiency Evaluation and Architecture Design of
SSD Unities for the H.264/AVC Standard

Felipe Sampaio, Gustavo Sanchez, Robson Dornelles and Luciano Agostini
{fsampaio.ifm, gsanchez.ifm, rdornelles.ifm, agostini} @ufpel.edu.br

Universidade Federal de Pelotas - UFPel
Grupo de Arquiteturas e Circuitos Integrados - GACI

Abstract

This paper presents the design and evaluation of architectures that performs the SSD (Sum of Squared
Differences) similarity criterion calculation. The comparison was made with other widely used criterion: the
SAD (Sum of Absolute Differences). In order to compare the impact of both criteria in the coding process, a set
of executions using the JM 16.0 reference software were performed. In these tests, SSD almost ever got a better
video quality than SAD. Three architectures are proposed to perform SSD: (a) the first one uses a multiplexer,
(b) the second uses a memory and (c) the last one uses a dedicated multiplier. One architecture to perform SAD
is proposed to be compared with the architectures using SSD. Each solution was described in VHDL and
synthesized to an Altera Stratix II FPGA. The video quality gain using SSD over the SAD encourages the use of
SSD calculators even with a lower operation frequency when compared with an SAD implementation. In the
best case and considering HDTV 1080p videos (1920x1080 pixels), it is possible to reach real time processing
(30 frames per second) by putting 12 SSD calculators working in parallel.

1. Introduction

The H.264/AVC [1] is the newest and the most efficient video compressing standard. The main objective
of H.264/AVC standard is to ally high compression rates with high quality of the compressed videos. In the
Inter and Intra Frame Prediction [2], it is needed to define a similarity criterion which provides the information
of how similar is the predicted block in relation to the current block that is being encoded. The similarity
criterion chosen has a big and direct impact in the quality of the generated video and in the bitstream final size
[3]. This paper considers two widely used metrics in video processing: the Sum of Absolute Differences (SAD)
and the Sum of Squared Differences (SSD).

To obtain the similarity result between two blocks using SAD is necessary to perform the summation of the
modules of the differences of each corresponding sample. The SSD value is calculated by the summation of the
squared differences between each corresponding sample. The mathematical expressions that defines SAD and
SSD are presented in Equation (1) and (2) , where the matrix O represents the original block and the matrix R
represents the predicted block [3].

n-=1n-1

SAD(R,0) =) Y |RG,) - 0,) (1)
Jj=0 i=0
n-=1n-1

SSD(R,0) = Y (RG.j) = 0G.)Y @
j=0 i=0

Both criteria direct the decision for the block that is most alike the original block. The difference is that
using SSD, the chosen block is going to have more homogeneous values. That occurs just because the SSD
assigns really big weight for large errors, whereas those differences are squared. Then, blocks with
homogeneous values tend to have SSD values smaller than those blocks where the values are distant from the
general average of the block values. The residual treatment path, which is formed by the operations of
transforms and quantization, acts in a better way over the homogeneous error and it generates a video with
more satisfactory objective quality [3].

This paper presents a comparison between these two similarity metrics widely used in video coding (SAD
and SSD). The comparison was done considering the encoded video quality and the reached compressing rates.
Three different implementations for SSD calculation were designed and compared to a basic SAD calculator
implementation. The goal is to encourage the use of the SSD architectures for Inter or Intra Predictors as the
similarity criterion in its decision modules. This way, the trade-off between the quality gain (using PSNR that is
measured in dB units) and the hardware performance is analyzed.

This paper is organized as follows: Section 2 shows an evaluation of both criteria efficiency; Section 3
presents three different architectures designed to calculate the SSD; Section 4 discusses about the synthesis

98 SIM 2010 — 25™ South Symposium on Microelectronics

results and the performance results reached and also compares them with a SAD calculator; Section 5 concludes
this paper.

2. Software Evaluation

A total of 1440 executions were performed to evaluate the criteria. The H.264/AVC JM 16.0 reference
software was used to allow this evaluation [4]. Several standard video sequences for the video compression
community have been used as inputs for the JM executions. The target resolution was QCIF (352x288 pixels)
with 30 frames per second as the frame rate.

The QP directly impacts in the video quality and in the bitstream size. This way, several typical QP values
were used in the simulations in order to cover the most coding scenarios as possible.

The graphics and results presented in this paper consider the JM executions using the Full Search (FS)
algorithm in the Inter Frame Prediction [5]. The FS executes the complete search in the delimited search area.
This way, this algorithm always finds the optimal result considering the target search range.

The Fig. 1 present the graphic corresponding to the evaluation results with fifteen different QP values using
search ranges of 16x16, 32x32 and 64x64 samples.

0,80 1
0,70
0,60
0,50

0,40

16x16

Gain

0,30 32x32

0,20 -
0,10 /\
0,00 S

0,10 40 3 6 9 121518 21 24 27 30 33 36 39 42
QP

64x64

Figure 1 - SSD PSNR gain (in %) over the SAD for using 16x16, 32x32 and 64x6 search range

The graphic shows that the PSNR gains vary in small percentages. The best result, for example, is 0.71% in
the scenario with search range of 16x16 samples. However, an unit variation in the PSNR value (express in dB)
represents an expressive gain in the video quality. Then, it is possible to conclude that the use of the SSD
criteria caused a real and important increase in the compressed videos quality.

The highest SSD gain was reached when high QP values are used. This is explained by the own
characteristic of the SSD calculation, where homogeneous residual blocks generate smaller SSD results than
heterogeneous residual information. The homogeneity is a property that increases the efficiency of the
transforms and quantization process, allowing the generation of videos with better quality.

Typically, the QP range used is far from the minimum value, which is zero, assuming intermediated
ranges. This fact justifies even more the employment of the SSD error metric in the decision modules in
H.264/AVC encoders, since this criterion allows better results in higher QP ranges.

Considering the final bitstream size generated by the encoding process, the use of SSD impacts in little
increases in the compressed video when compared with an SAD approach. The use of SSD metric directs the
search algorithm to small block sizes, which will generate an increase in the final bitstream.

3. Designed Architectures

Three different architectures were designed in this paper to calculate SSD between two 4x4 blocks. The
main objective of these designs was to find the best hardware solution to the SSD calculation. This is also to
encourage the use of the designed architectures to calculate SSD in Intra Frame Prediction and Inter Frame
Prediction instead of the SAD. It was also designed a SAD calculator with the goal of measure how efficient in
terms of performance and hardware resources consumption is the SSD calculator compared to SAD calculator.

It is expected that the solutions that perform the calculation of SDD did not reach better processing rates
than the SAD calculator. It is also expected that the SSD solutions uses more hardware than the SAD. However,
this is a low price if considered the quality gain in the compressed videos. It is important to notice that we
expected that the SSD designs will be able to reach a processing rate high enough to process high resolution
videos in real time.

The adder tree (which is responsible for the summation of the differences) parallelizes all SAD/SSD
operations for each 4x4 block position. Furthermore, the architecture remains the same regardless of using the
sixteen SAD or SSD calculators. The only two differences would be in the SAD/SSD calculators and in the
adders bit width. All the solutions assume input samples represented with 8 bits.

SIM 2010 — 25™ South Symposium on Microelectronics 99

address

MEMORY data— 55D;

|i
=

(a) (c)
Figure 2 - Designed SSD Architectures: (a) SSD Multiplexer,
(b) SSD Memory and (c¢) SSD Multiplier

3.1. Multiplexer SSD Architecture

This architecture realizes the operation of square through the implementation of a multiplexer. This
multiplexer is selected by the module of the difference between the correspondent samples of two blocks. For
each value inside the possible value interval the multiplexer selects the respective output for squaring the
difference. Fig. 2(a) presents the designed architecture.

This architecture performance is limited by the critical patch formed by the subtract operation, the module
operation (block ABS in Fig. 2) and the multiplexer combinational logic.

3.2. Memory SSD Architecture

This architecture consists in a read only memory which stores all the possible values that represents the
square of the module values of the difference between the input samples. The error values are used to access the
memory correct position. The output will receive the squared difference. Fig. 3 shows the designed architecture.
In this case, the architecture performance depends of the time that is spent accessing the memory.

3.3. Multiplier SSD Architecture

This architecture uses one multiplier that is used to multiply the subtraction output by itself. This will
produce the squared value. Fig. 4 presents the architecture diagram. The critical path of this architecture is
determined by the architectural scheme used for the multiplier implementation. The advantage of this solution
is that it is not needed an ABS operation in the subtract operation output, since two values with the same signal,
when multiplied, always will generate positives values.

4. Results

The designed architectures were described in VHDL and synthesized targeting the Stratix II
EP2S180F 150814 FPGA [6]. Table 1 presents the synthesis results of the architecture for the FPGA device. The
solution for the SSD that uses a memory to store all the square values achieves the best operation frequency
among all designed SSD calculators, 275.71 MHz. This solution uses the on-chip memories available in the
FPGA devices and this fact increases its performance, since this memory is located inside the FPGA. So, the
communication between the data path and the memory is as fast as possible.

Table 1 - Synthesis Results

ALUT | ALM | DLR E?I(?:k '\g‘?[: Freq. MHz
Muﬁﬁ)l:l)exer 1173 900 496 - - 197.71
Mgr?lgry 640 390 257 - (6<5'150i)6) 275.71
Musltsipl?lier 128 128 256 16 (2%) - 190.29
SAD 257 193 384 - - 391.85

All solutions used less than 1% of the device total capacity. In the best case, the architecture which uses
multipliers consumes less logic elements than the SAD calculator. This is possible because the multipliers were
mapped for multipliers structures available in the dedicated DSP blocks of the FPGA. The Memory SSD
Calculator consumes memory bits, instead of Logic Elements (LEs) of the target FPGA device. On the other
hand, the multiplexer solution for the SSD calculation is whole mapped into LEs.

The performance evaluation was performed considering the Inter Predictors’ blocks that are needed to be
processed by the SSD unities, since the Motion Estimation (one step into the Inter Prediction) represents the
most complex module in the encoding path. This way, the worst case is considered. The FS algorithm using a
search range of 32x32 samples was assumed. Considering this scenario and HDTV 1080p videos (1920x1080

100 SIM 2010 — 25™ South Symposium on Microelectronics

pixels), there are 108,993,600 4x4 blocks that must be compared with original blocks in order to measure their
similarity. This performance analysis is presented in Tab. 2.

Table 2 - Performance Results

Solution Throughput HDTV Num. of Calc.
(billions of samples) frames/s (30 fps HDTV)
SsD 4.41 2.529598 12
Memory
S-SD 3.26 1.813960 17
Multiplexer
SSD
Multiplier 3.10 1.745882 18

The best case of the designed SSD architectures is achieved by the memory approach, as it can be seen in
Tab. 2. In this case, this architecture is able to process around 4.4 billion of samples per second. This
throughput rate allows a processing of 2.53 HDTV frames per second, when using only one SSD unity to
perform all calculations. Then, it is possible to reach real time processing (30 frames per second) using 12 SSD
architectures working in a parallel way.

Considering a FPGA implementation of the SSD calculators designed in this work, all versions reached the
performance that justify their employment in Intra or Inter Predictors decision modes with the goal to increase
the PSNR results in the encoding process, when compared with an simple SAD calculator.

5. Conclusions

This paper presented the efficiency evaluation and the architectural design for the SSD (Sum of Squared
Differences) similarity criteria on H.264/AVC video coding standard. A set of executions of the JM 16.0
Reference software proved the increase of compressed video quality using SSD as similarity criterion when
compared to other criterion widely used, the SAD (Sum of Absolute Differences). This evaluation shown more
specifically that for big QPs range, the SSD provides a more expressive gain than for small QPs. The quality
criterion used was PSNR. Three architectures were designed for SSD calculators. They were described in
VHDL and synthesized for a Stratix II Altera FPGA. As expected, the operation frequency reached by the
designed SSDs calculators was worse than that reached when using SAD. Nevertheless, FPGA dedicated
internal structures (multipliers, memories, etc) can be used to reach a high throughput solution for the SSD
calculation. This way, considering the PSNR gain verified with the software evaluations and the hardware
results, it is possible to conclude that the use of SSD in Inter or Intra Predictors is a good solution when the
video quality is the main goal. Even with lower operation frequencies, the best solution for SSD unities
designed in this work can deal with real time constraints by using several instances in order to parallelize the
processing, which is typically done in related works in the literature.

6. References

[1T ITU-T Recommendation H.264/AVC (03/05): advanced video coding for generic audiovisual services,
2005.

[2] T. Wiegand, et al, “Overview of the H.264/AVC Video Coding Standard”, IEEE Trans. on Circuits and
Systems for Video Technology, v. 13, n. 7, pp. 560-576, 2003.

[3] I. Richardson, H.264 and MPEG-4 Video Compression — Video Coding for Next-Generation
Multimedia. John Wiley&Sons, Chichester, 2003.

[4] Joint-Video Model (JM 16.0). Available at: http://iphome.hhi.de/suehring/tml/

[5] P. Kuhn. Algorithms, Complexity Analysis and VLSI Architectures for MPEG-4 Motion Estimation.
Boston: Kluwer Academic Publishers, 1999.

[6] Altera Corporation. “Altera: The Programmable Solutions Company”. Available at: www.altera.com.

SIM 2010 — 25™ South Symposium on Microelectronics 101

Evaluating the Ginga Media Processing Component for Implementation of
a Video Player

Marco Beckmann, Tiago H. Trojahn, Juliano L. Gongalves, Lisane Brisolara, Luciano
V. Agostini

{marcob.ifm, tiagot.ifm, juliano.lucas, lisane.brisolara, agostini} @ufpel.edu.br

Group of Architectures and Integrated Circuits — GACI
Federal University of Pelotas — UFPel
Pelotas — Brazil

Abstract

Nowadays the middleware of the Brazilian digital TV system (SBTVD) consists of two different paradigms;
the procedural using Java language and named GingaJ, and the declarative one using the Nested Context
Language and called GingaNCL. To provide the communication between these approaches the Ginga
Commom Core (GingaCC) has created as part of the project Ginga Code Development Network. The GingaCC
has a set of components, like components for video and audio reproduction. One of these components is the
Media Processing, which provides functions directly involved in rendering video streams. This paper presents
the development of a video player application using methods provided by the Media Processing component and
discusses facilities to integrate modules using the FlexCM component model.

1. Introduction

To provide a transmission of the Brazilian digital TV system, a device called set-top-box is used. This
equipment has a middleware implementation, called Ginga, whose function is providing an abstraction of the
hardware work (transmissions protocols, for example) to developers of applications for digital TV [1].

The Ginga middleware can be subdivided into three main parts: Ginga Nested Context Language
(GingaNCL) [2], Gingal [3] and Ginga Commom Core (GingaCC). The GingaNCL subsytem is based on
Nested Context Language (NCL) and uses a declarative approach. This subsystem has created by Pontifical
Catholic Universty of Rio de Janeiro and has recommended by International Telecommunication Union (ITU)
for use in Internet Protocol Television (IPTV) systems [4]. The Gingal subsystem is based on the Sun Java
language and uses a procedural approach. It has built by Lavid laboratory from the Federal University of
Paraiba. GingaCC has as objective to make the bridge between the procedural and the declarative approaches
provided by GingalJ and GingaNCL, respectively, as illustrated in Fig 1. To develop the GingaCC, a
development effort has created, called Ginga Code Development Network (GingaCDN), which links 13
Brazilian universities and is headed by Federal University of Paraiba. Each university is responsible for
building a number of components. In order to facilitate the integration of these components, they must be
developed following a component model called FlexCM [5].

As part of this collaboration, our group has developed the Media Processing component. To validate this
component, we have developed a video player built using its methods. This paper describes this development
work and discusses the modules integration infra-structure. Beside the validation, this study has as objective to
evaluate the use of FlexCM to turn easier the components integration and also create a more pleasant interface
to test the functions offered by the Media Processing component.

Ginga Middleware

GingaNCL GingaCC |<>‘ Ginga)

Fig. 1 — Ginga Middleware subsystems

The remaining of this paper is organized as follows. Section 2 presents a background for the discussion,
presenting the Media Processing component and FlexCM component model. Section 3 describes the video
player development used as case study. Section 4 concludes the paper and points out directions for future work.

102 SIM 2010 — 25™ South Symposium on Microelectronics

2. Background

2.1. Media Processing Component implementation

The Media Processing Component [6] has developed using C++ language and the libVLC library [7] and
can be responsible for handle video and subtitles streams. For that reason, our implementation also follows the
Java Media Framework (JMF) version 1.0 [8], which is an API that specifies an architecture to synchronize and
control audio, video and other time-based data structures like subtitles.

The current Media processing implementation provides a set of basic functions to other components, that
are:

Support resources allocation and media flow control,

Media stream receiving and decoding;

Load, select and show subtitles;

Screenshots;

Provide video stream information, like total duration, actual time position, resolution and
frame rate per second;

e Support for streaming video using Hypertext Transfer Protocol (HTTP), File Transfer

Protocol (FTP), User Datagram Protocol (UDP) and Real-Time Transfer Protocol (RTP).

2.2, FlexCM

The components provided by the GingaCDN, including the Media Processing, have built using the FlexCM
component model. The use of this model garantes the integration among the modules and facilitates the
distribued development of modules, what is essential for the GingaCDN project.

Following this model, each component must inform about interface(s) provided to other components as
well as required interface(s) (endorsement by another module). Besides, every component must have two files
each:

e Architecture file: Describes the data for execution, including the path for the dynamic library and the

component unique identification code.

e Registry file: Specifies the conections made by the component, considering both provided as required

interfaces and using the unique identification of components.
The use of this model obliges developers to adopt well-defined interfaces, guarantying the integration
among modules. After these interfaces are defined, the integration is done by the FlexCM infrastructure, which
reads the information from Registry file and connects the modules in run-time.

3. Case study: Video Player Application

The player application, written in C++, uses the methods provides by the Media Processing Component,
detailed in [6]. This system was run on the operating system Ubuntu 9.10, using the FlexCM to make the
connection between the video player application and the module Media Processing. When the application is
started, a list of functions provided by the application is listed on the command prompt. In order to request the
execution of an operation, the user should type the name of the desired function.

The application provides the following functions, divided in six groups in the illustration from Fig 2, which
are: manipulate video, video information, video dimension, manipulate subtitles, screenshot, and exit.

. Manipulate Video:

a) play: Tries to set the player status to the state “play”. As pre-condition for this operation, the
player needs to be in the states “stop” or “pause”. This operation requires also a correct
allocation of player resources provided by the method. “load”

b) pause: Setting the player to the state “pause”. There is no effect for the activation of this
operation if the player is not playing a video;

c) stop: It stops the reproduction of an allocated player and also clear charged resources;

d) load: charges the video from the folder selected by the user. If a video is playing, the method
“load” uses the method “stop” and deallocates resources;

. Video Information:

a) fps: Returns the frame rate of the current video. This return value can change sometimes if
the video stream is encoded with variable frame rate (VRF);

b) time: Gives the time of the current frame in microseconds;

¢) duration: Informs the total duration of the current allocated video stream when available.
Some internet streaming data and TV broadcast videos do not provide this information;

d) info: Provides miscellaneous information such as file name, artist, album, etc;

. Video Dimensions:

SIM 2010 — 25™ South Symposium on Microelectronics 103

a) dimension: Returns the integer representations of height and width resolutions of the current
allocated video;
b) getscale: informs the actual scale size of the video, showing a value between 0 and 1,
equivalent to the window size in percentage;
c) setscale: modifies the scale size, with a value between 0 and 1, equivalent to the window size
in percentage;
e Manipulate Subtitles:
a) addsubtitle: Adds a new libvlic compatible subtitle to the current allocated video stream. It
supports a wide range of subtitles formats, like the basic SubRip (SRT), the Advanced Substation
Alpha (ASS), and the ISDB-TB standard subtitle format;
b) numsubtitle: Returns the number of current subtitles available for selection or 0 if no one is
present;
c) getsubtitle: Returns the subtitle ID number. There is not effect if no subtitle is present in the
stream or if the player is not allocated;
d) setsubtitle: Sets the subtitle ID specified to be played with the video. The subtitle must be a
valid subtitle ID number and the player should be allocated before the invocation of “setsubtitle”
operation;
e Screenshot
a) screenshot: Takes a screenshot of the current frame being displayed by the player. The file
created uses lossless compression of the Joint Photographic Expert Group (JPEG) format. There is
no effect if the player is not in the state “Play” or ‘“Pause”;
e Exit:
a) exit: Calls functions used to deallocate resources;

. P
Player Media
Requires Processing

Functions

Application
Manipulate Subtitles

Fig. 2 — Application Functions and its interaction with Media Processing

Using the corresponding command, the Player Application calls functions from the module Media
Processing, as illustrated in Fig. 2. The link between the two modules is provided by the FlexCM component
that promotes the connection, as illustrated in Fig. 3.

GingaCC

o Media
Application @ Processing

Fig. 3 — Communication between modules made by FlexCM

104 SIM 2010 — 25™ South Symposium on Microelectronics

4. Conclusions and Future Work

This paper presents a case study of implementation of a video player using the Ginga Media Processing
component, in which the FlexCM component model is adopted to facilitate the integration between both
modules. In this way, this study allowed us to evaluate the integration facilities provided by the FlexCM model
and also to validate the functions provided by the Media Processing component as well. This validation was
facilitated, because using the application we can directly test the provided functions without any changes to the
source code.

As future work, we plan to develop a new version of the player in which a graphical interface will be used
to improve the application usability. The Player Application also could be used as the video player for TV
showing video recorded on the set-top-box (if they offer this function), for example. Another possible use for
the video player is the playing of videos from the internet, using an HTTP protocol, if it is offered by the set-
top-box. While this hardware equipment is not available, we plan to test the player running in an embedded
platform to check its portability and required resources.

5. References

[1] S.D.J. Barbosa, & L.F.G. Soares, “TV digital no Brasil se faz com Ginga”. Kowaltowski e K. Breitman,
Atualizacdes em Informatica 2008. Rio de Janeiro, RJ:Editora PUC-Rio. pp.105-174

[2] L.F.G. Soares, R.F. Rodrigues, M.F. Moreno, “Ginga-NCL: the Declarative Environment of the
Brazilian Digital TV System”. Journal of The Brazilian Computer Society, SBC — Agosto de 2007

[3] G.L.S. Filho, L.E.C. Leite, C.E.C.F. Batista, “Ginga-J: The Procedural Middleware for the Brazilian
Digital TV System”. Journal of the Brazilian Computer Society. No. 4, Vol 13. P47-56. ISSN: 0104-
65000, Porto Alegre, RS, 2007.

[4] ITU, “ITU-T Recommendation H.761: Nested Context Language (NCL) and Ginga-NCL for IPTV”,
2009

[5] M. Filho, et al, "FLEXCM - A Component Model for Adaptive Embedded Systems", in Proc.
COMPSAC (1), 2007, pp.119-126.

[6] T. H. Trojahn J. L. Gongalves; J. C. B. Mattos; L. S. Da Rosa Junior; L. V. Agostini. “A Media
processing Implementation using Libvlc for the Ginga Middleware”. The 5th International Conference
on Future Information Technology (FutureTech), 2010, Busan, Korea.

[71 VLC Documention 1.0.0 [Online] Avaliable:

http://www.videolan.org/developers/vic/doc/doxygen/html/index.html [Acessed: Mar. 19, 2010].

[8] Sun Microsystems, Silicon Graphics, Intel Corporation. “1.0 Programmers guide” May. 11, 1998.
[Online] Avaliable: http://java.sun.com/javase/technologies/desktop/media/jmf/1.0/guide/index.html
[Acessed: Mar. 17, 2010].

SIM 2010 — 25™ South Symposium on Microelectronics 105

An Implementation of Media Processing Component Using
LibVLC Library for the Ginga Middleware

Tiago H. Trojahn, Juliano L. Gongalves,
Leomar S. da Rosa Junior, Luciano V. Agostini
{tiagot.ifm, juliano.lucas, leomarjr, agostini } @ufpel.edu.br

Group of Architectures and Integrated Circuits — GACI
Federal University of Pelotas — UFPel
Pelotas — Brazil

Abstract

The Brazilian middleware for Digital TV, known as Ginga, is currently divided in two subsystems: the
declarative, named Ginga Nested Context Language (Ginga-NCL), and the procedural, called Ginga-J.
According to recent researches there is an increase need of a unique procedural and declarative middleware.
To fulfill this need, a project to develop a unique, modularized and fully integrated middleware was created
with the name of Ginga Code Development Network (GingaCDN), headed by Federal University of Paraiba. In
this project a common core will be developed, named Ginga Common Core (GingaCC), to provide a set of
methods, like video reproduction and channel tuning, to be used by both GingaNCL and GingaJ. The Media
Processing is one of the components of the GingaCC and the main focus of this work is to show an
implementation of that component using the LibVLC library and the FlexCM component model.

1. Introduction

The middleware for the Brazilian Digital Television System (SBTVD), named Ginga, is an effort to create
a middleware using both a declarative, known as Ginga Nested Context Language (GingaNCL), and a
procedural environment, known as Ginga-J. The GingaNCL is based in the Nested Context Language (NCL), a
declarative language developed by PUC-Rio and was recommended by International Telecommunication Union
(ITU) for use in Internet Protocol Television (IPTV) systems [1]. The Ginga-J is a procedural environment built
to support the Sun Java language.

Actually, there is two available Ginga environments to a developer build his applications: the GingaNCL,
an upgrade from a low-cost declarative middleware named Maestro built in 2001 by Moreno [2]; and the
OpenGinga [3], an upgraded version of FlexTV [4], used nowadays as reference for the procedural middleware.
Unfortunately, applications developed in GingaNCL cannot run in OpenGinga, and vice-versa.

A common core, named Ginga Common Core (GingaCC) is being developed to provide compatibility
between GingaNCL and Ginga-J, forming a unique middleware for SBTVD. For this task, it was created the
Ginga Code Development Network (GingaCDN), a network of 13 Brazilian universities, coordinated by
Federal University of Paraiba (UFPB), where each university is responsible for the development of a pre-
determined number of components. The Media Processing is one of these components and has a main role in
GingaCC: the video decoding. The Ginga middleware being developed by GingaCDN project is presented in
Fig. 1.

Ginga

. .)
Gingal]<:::>[GingaNCL]

K

GingaCC

Y

Operational System]

_/

Fig. 1 — The Ginga middleware by GingaCDN project.

106 SIM 2010 — 25™ South Symposium on Microelectronics

2. The Media Processing Component

The Media processing component is one of the main modules of GingaCC, and it is directly involved in
rendering video streams. The sub-components involved in this task are described below:

e Tuner — Component responsible for the channel tuning and the capture of the Transport
Stream that is transmitted in the channel. The tuner output is redirected to the Information
Service;

e Information Service — Component responsible to analyze the Transport Stream, to obtain the
stream information, and to add some relevant information to reproduction;

e Demux — Component responsible to demux the streams, which compose the Transport
Stream, using the information retrieved from Information Service component. The Demux
output (video, audio and subtitle streams) is sent to Media processing;

e Media processing — Component responsible to decode the stream received from Demux
component. The output is sent to Graphics component;

e Graphics — The Graphics component is responsible to control and to show the decoded video
in the display. This is the last component involved directly in video player.

The Media processing component was developed in C++ language using the libVLC library. To being
integrated with other components, the FlexCM [5] model component was used. The Media processing follows
the Java Media Framework (JMF) version 1.0 [6]. The JMF is an API that specifies an architecture to
synchronize and to control audio, video and other time-based data structures like subtitles. The 1.0 version
specifies the media reproduction known as “Java Media Player”. The first Media processing implementation is
responsible for handle video and subtitles streams. To make possible the distributed development, all
GingaCDN components are being implemented using encapsulation. Only an interface is provided to other
components. This approach makes easier the distributed development and enables a fast error correction. Fig. 2
illustrates the connections between the Media processing and the components directly connected to him, the

Demux and the Graphics components.
=

Demux Graphics

Media

Processing

Interface

o
Bt

Interface ::>

Fig. 2 - Component connections and data flow to media rendering.

The current version of Media processing provides a set of basic functions to other components. A high
level description of it is described below:
e Resources allocation and media flow control;
Load, select and show subtitles;
Media stream receiving and decoding;
Screenshots;
Provides video stream information, like total duration, actual time position, resolution and
frame rate per second;
e Support streaming video using Hypertext Transfer Protocol (HTTP), File Transfer Protocol
(FTP), User Datagram Protocol (UDP) and Real-Time Transfer Protocol (RTP).
The current version of the component was implemented only to provide the desired functionalities. Wasn’t
applied any optimizations to improve the performance, reduce memory cost or processor usage, in the
implementation.

2.1. LibVvLC

LibVLC is a graphic library developed by VideoLAN under GNU General Public License (GPL) version 2.
The choice for this library to implement the Media processing component is due to its large list of features, like:

e Compatibility with various media formats, including the standard H.264/AVC (defined in
MPEG-4 Part 10), the audio standard MPEG Layer 2, MPEG Layer 3 (MP3), MPEG-4 part 3
(Advanced Audio Coded - AAC) and AC3,;

e Portability to a wide range of operating systems, like Microsoft Windows, GNU Linux, Mac
0OS, BeOS and FreeBSD;

SIM 2010 — 25" South Symposium on Microelectronics 107

e Support to several video outputs, like DirectX, OpenGL, X11, Xvideo, SDL and Frame
Buffer;

e Written in C language, offering a high performance needed for a Media processing.

e The library operate in a multithread environment, creating, joining and destroying threads
when some events occurs, like the start (play) of the video stream.

2.2. FlexCM

The GingaCDN components were developed using the FlexCM component model. Each FlexCM
component must specify the required interfaces and the interfaces provided to other components. The
responsibility for connecting the components is done by FlexCM during the execution time.

Each component implementation has to specify two archives:

e Architecture: This file describes the essential data for execution, like the path to the dynamic
library of each component and a unique identification for the component;

e Registry: Specifies which connections are used by the component, using the unique
identification numbers defined in the component implementation.

This methodology helps the distributed development and also guarantees an easy integration process. The
version used in Media processing implementation was the v0.2.

3. Tests and Results

The current version of Media processing was submitted to a video evaluation set in order to investigate the
processor and memory usage in real use cases. The evaluation computer was a Intel Core 2 Duo 6300
(1.86Ghz) processor with 2 Gigabyte (GB) of RAM running the Ubuntu 9.10 operating system.

Three tests were performed for each sample, and the samples were captured every second using the Procps
application, for a time of one minute. The component evaluated was compiled using the version 4.4.1 of GNU
GCC compiler without any optimizations available in the compiler and used a default build of the 1ibVLC, to
evalue the component in an high compatible environment.

The samples were collected from three videos available in two different resolutions. Both videos are
progressive (p) and follows the H.264/AVC standard. The results are being show in minimum (Min.),
maximum (Max.) and average (Av.). The memory consumption is shown in Megabytes (MB) and the processor
use in percentage.

The data includes the FlexCM loading platform, the libVLC objects allocation, the libVLC default demux
and the X11 default rendering component for GNU Linux. The data for processor usage show the average
values of all cores of the processor.

Three videos were used as benchmark. The STS-117 Launch video, named STS-117 [7]. The Speed and
the Stormchasers videos [8]. The detailed description for 1080p videos can be viewed in Tab. 1. The 720p
video details can be found in Tab. 2. Results obtained for 720p videos are presented in Tab. 3, and results
obtained for 1080p videos are illustrated in Tab. 4.

Tab. 1 — Video Information: Size (in MB), the total duration (minutes and seconds), resolution, frame rate
per second and container for 1080p videos.

. 1080p
Video Name Size Duration Resolution FPS Container
Speed 128 2:07 1440x1080 23.98 WMV
Stormchasers 90.8 1:31 1440x1080 23.98 WMV
STS-117 67.4 1:08 1920x1080 29.97 WMV

Tab. 2 — Video Information: Size (in MB), the total duration (minutes and seconds), resolution, frame rate
per second and container for 720p videos.

. 720p
Video Name Size Duration Resolution FPS Container
Speed 96.5 2:07 1280x720 23.98 WMV
Stormchasers 68.8 1:31 1280x720 23.98 WMV
STS-117 35.2 1:08 1280x720 23.98 WMV
Tab. 3 — Memory cost and processor use for 720p videos.
. Memory Use CPU Use
Video Name Min. Max. Av. Min. Max. Av.
Speed 65.88 69.20 68.93 30.2 67 33.34
Stormchasers 67.51 70.27 69.47 31 78 32.85
STS-117 64.74 73.08 69.75 20.6 52 25.94

108 SIM 2010 — 25™ South Symposium on Microelectronics

In terms of memory use, the data for 720p show a difference of 1.18% between Speed and the STS-117,
the video with the greatest memory use. The low memory usage is important in low-cost equipment, like a set-
top-box, to reduce the total price of the system. Moreover, the results show a reduced CPU use, important to
multitask environments and also to a reasonable energy use for embedded systems.

Tab. 4 — Memory cost and processor use for 1080p videos.

. Memory Use CPU Use
Video Name Min. Max. Av. Min. Max. Av.
Speed 83.92 86.78 86 493 80.5 52.34
Stormchasers 84.17 87 86.12 42 84 47.95
STS-117 99.81 101.78 100.84 58.3 83 63.72

The memory use of each video between the lowest and the greatest are of 16.2%. This little variation
shows a stability to reproduce a large amount of videos in that resolution. The increase CPU use of STS-117
can be explained with the video resolution (1920x1080), wider than the other two 1080p videos, and the FPS of
29.97, larger than the 23.98 of other two videos, requiring more CPU use to decode and render the frames in
real-time.

Finally, it is important to say that it was not possible to compare the performance with other Media
processing implementations at this time, because there is a lack of other components following the same
specifications.

4, Conclusion and Future Works

The componentized version of Ginga middleware, supporting both procedural and declarative application,
will play a main role for Digital TV applications developers because this kind of development will be more
flexible. The developer can choose between procedural and declarative environment without any concern. This
facilitated the development of applications for Digital TV, strengthening the technology at national level.
Contributing to that, Brazil is beginning to exporting it to other countries in South America such as Peru, Chile,
Argentina and Venezuela [9] which will increase the national demand for qualified professionals to work with
this new technology.

Regarding future works, it is necessary to add support for audio streams and some other related features,
like volume control, audio stream selector and so on. It is also intended to make performance comparisons with
other Media processing component implementations and tests with other machine configurations, like to
notebooks and computers with low memory capacity.

5. References

[1] 2%)’1(“)8, “ITU-T Recommendation H.761: Nested Context Language (NCL) and Ginga-NCL for IPTV”,

[2] M. F. Moreno, “A declarative middleware for Interactive Digital TV Systems”. M.S Thesis, PUC-Rio,
Rio de Janeiro, 2006. p.105. (In Portuguese).

[3] pplications Laboratory of Digital Video, Telemidia. “OpenG1n§a — Middleware reference
1mp ementation of Brazilian Digital TV”, openginga.org 008. [Online] Available:
http://www.openginga.org/index.html. [Accessed: Mar. 12, 201].

[4] L. E. C. Leite, et al, “FlexTV, a pro gosal for middleware architecture for Brazilian Digital TV System”.
Journal of Computer Englneermg and Digital Systems, 2005, vol.2, pp.30-49. (In Portuguese).

[5] S.M. Filho, et al, "FLEXCM - A Component Model for Adaptive Embedded Systems", in Proc.
COMPSAC (1), 2007, pp.119-126.

[6] SUN MICROSYSTEMS, Silicon Graphics, Intel Corporation. “1.0 Programmers guide” May 11,

1998. [Online] Available:
http //java.sun.com/javase/technologies/desktop/media/jmf/1.0/guide/index.html [Accessed: Mar. 11,
20107.

[7] NASA, "NASA High Definition Video", nasa.gov, Dec. 16, 2009. [Online]. Available:
http: //Www .nasa. gov/multimedia/hd/index.html. [Accessed Mar. 11 2010]

[8] MICROSOFT "WMV HD Content Showcase", microsoft.com, 2004. [Online]. Available:
http://www. microsoft.com/windows/windowsmedia/musicandvideo/hdvideo/contentshowcase. aspx.
[Accessed: Mar. 11, 2010].

WIKIPEDIA, Mar. 10, 2010. [Online] Available: http://en.wikipedia.org/wiki/ISDB.

SIM 2010 — 25™ South Symposium on Microelectronics 109

A Media Processing Implementation Using
Xine-Lib for the Ginga Middleware

Rafael L. Pereira, Juliano L. Gongalves, Julio C. B. Mattos, Luciano V. Agostini
{rpereira.ifm, juliano.lucas, julius, agostini} @ufpel.edu.br

Group of Architectures and Integrated Circuits — GACI
Federal University of Pelotas — UFPel
Pelotas — Brazil

Abstract

The Brazilian middleware for Digital TV, known as Ginga, is currently divided in two subsystems: the
declarative part, named Ginga Nested Context Language (Ginga-NCL), and the procedural part, named
Ginga-Java (Ginga-J). A project was created, named Ginga Code Development Network (GingaCDN), to
develop a modularized and fully integrated middleware combining the two subsystems: Ginga-NCL and Ginga-
J. One of the main objetives of this project is to implement a common core, named Ginga Common Core
(GingaCC), to provide a set of methods to manipulate videos and channel tunning to be used by both
GingaNCL and Ginga-J. This work shows the implementation of the Media Processing component (one of the
components of the GingaCC) using the Xine-Lib and the FlexCM component mode.

1. Introduction

Ginga - the middleware for the Brazilian Digital Television System (SBTVD) — is an effort to create a
middleware using two environments, the declarative environment, named Ginga Nested Context Language
(GingaNCL)[1] and the procedural environment, known as Ginga-Java (Ginga-J)[2]. The Ginga-J is a
procedural system to support programs written in Java Language. On the other hand, GingaNCL is based in the
Nested Context Language (NCL), a declarative language developed by PUC-Rio and recommended by
International Telecommunication Union (ITU) for use in the Internet Protocol Television (IPTV)[3] systems.

Nowadays, there are two environments to develop applications for the SBTVD: GingaNCL, an upgrade
from a low-cost declarative middleware named Maestro [4] and OpenGinga[5], an upgraded version of
FlexTV[6] used as reference for procedural middleware. Applications developed for GingaNCL can not run in
OpenGinga, and vice-versa.

A commom core, named Ginga Common Core (GingaCC), is being developed to provide compatibility
between GingaNCL and Ginga-J, producing a unique middleware for SBTVD. For this purpose, Ginga Code
Development Network (GingaCDN) was created. This development network is composed by 13 Brazilian
universities, coordinated by Federal University of Paraiba (UFPB), where each university are responsible to
development certain number of components. The Media Processing is one of GingaCC components and it is
responsible for the video processing. Figure 1 presents communication between the subparts and GingaCC.

Ginga-J GingaNCL

GingaCC

Operational System

Fig. 1 — The Ginga middleware by GingaCDN project

The aim of this paper is to present the Media Processing implementation used in GingaCC. During this
development process, the FlexCM is the model component used to make the middleware modularized and
Xine-lib is a multimedia library used to implement this media processing version. The paper also shows some
results in terms of CPU performance and memory usage.

110 SIM 2010 — 25™ South Symposium on Microelectronics

This paper is organized as follows: Section 2 presents the Media Processing component functions and the
resources used to implement this component (Xine-Lib and FlexCM). Section 3 describes the tests and results
and section 4 concludes the paper and presents some future works.

2. The Media Processing Component

The Media processing component is one of the main components of GingaCC directly involved in

rendering video streams. This component is involved in several tasks described below:

e Tuner — component responsible for the channel tuning and the capture of the Transport Stream that is
transmitted in the channel. The tuner output is redirected to the Information Service;

e Information Service — component responsible to analyze the Transport Stream in order to obtain the
stream information and add some relevant information to reproduction;

e Demux — component responsible for demux the streams, which is composed by the Transport Stream,
using the information retrieved from Information Service component. The Demux output (video, audio
and subtitle streams) is sent to Media processing;

e Media processing — component responsible to decode the stream received from Demux component.
The output is sent to Graphics component;

e Graphics — The Graphics component is responsible to control and to show the decoded video in the
display. This is the last component involved directly in video player.

The Media Processing componet was developed in C++ language using the Xine-lib[7]. To be integrated
with other GingaCC components, the FlexCM [8] model component was used. The GingaCDN components are
being implemented using encapsulation and only the interface is provided to other components. This approach
makes easier the component integration and testing.

The Media processing implementation follows the Java Media Framework (JMF) version 1.0 [9]. The IMF
is an API that specifies the architecture to synchronize and control audio, video and other time-based data
structures like subtitles. The JMF 1.0 version specifies the media reproduction known as “Java Media Player”.
The connections between the Media processing, the Demux and the Graphics components are presented in
Figure 2.

interface interface
Media .
Demux . Graphics
Processing

Fig. 2 - Component connections.

The implemented Media processing (current version) provides a set of basic functions to other components.
These functions are:
Resource allocation and media flow control;
Load, select and show subtitles;
Media stream receiving and decoding;
Screenshots;
Provide video stream information, like total duration, actual time position, resolution and frame rate
per second,
e Support streaming video using Hypertext Transfer Protocol (HTTP), File Transfer Protocol (FTP),
User Datagram Protocol (UDP) and Real-Time Tranfer Protocol (RTP).

2.1. Xine-Lib

Xine-lib is a free high-performance (GNU General Public License - GPL), portable and reusable
multimedia playback engine[10]. The choice for this library to implement the Media processing component is
due to the following features:

SIM 2010 — 25" South Symposium on Microelectronics 111

e Compatibility with several media formats, including the standard H.264/AVC (defined in
MPEG-4 Part 10), the audio standard MPEG Layer 2, MPEG Layer 3 (MP3), MPEG-4 part 3
(Advanced Audio Coded - AAC) and AC3,;

e Portability to a wide range of operating systems, like GNU Linux and FreeBSD;

e Written in C Language, providing high performance for a media processing implementation.

2.2. FlexCM

The GingaCDN components were developed using the FlexCM component model. Each FlexCM
component must specify the required interfaces and the interfaces provided to other components. The
responsibility for connecting the components is done by FlexCM during the execution time.

Each component implementation has to specify two files:

e Architecture: This file describes the essential data for execution, like the path to the dynamic
library of each component and a unique identification for the component;

e Registry: Specifies which connections are used by the component, using the unique
identification numbers defined in the component implementation.

This methodology helps the distributed development and guarantees an easy integration process. The
version used in Media processing implementation was the 0.2.

3. Tests and Results

The current version of Media processing was submitted to a video evaluation in order to investigate the
processor and memory usage in real use cases. The computer used to do the tests was an Intel Core 2 Duo 6300
(1.86Ghz) processor with 2 GigaByte (GB) of RAM running the Ubuntu 9.10 operating system.

Three tests were performed for each sample, and the samples were captured every second using the Procps
application, for one minute. The component evaluated was compiled using the GNU GCC compiler version
4.4.1 without any optimizations available.

The samples were collected from three videos available in two different resolutions. Both videos are
progressive (p) and follow the H.264/AVC standard. The results are being shown in minimum (Min.),
maximum (Max.) and average (Av.). The memory consumption is shown in MegaBytes (MB) and the
processor usage in percentage. The data includes the FlexCM loading platform, the xine-lib objects allocation,
the xine-lib default demux and the X11 default rendering component for GNU Linux.

Three videos were used as benchmark: the STS-117 Launch video (STS-117), the Speed video and the
Stormchasers video. Table 1 shows the detailed information about 1080p videos and Table 2 shows the detailed
information about 720p videos.

Tab. 1 — Video Infomation: Size (in MB), the total duration (minutes and seconds), resolution, frame rate
per second and container for 1080p videos

. 1080p
Video Name Size Duration Resolution FPS Container
Speed 128 2:07 1440x1080 23.98 WMV
Stormchasers 90.8 1:31 1440x1080 23.98 WMV
STS-117 67.4 1:08 1920x1080 29.97 WMV

Tab. 2 — Video Infomation: Size (in MB), the total duration (minutes and seconds), resolution, frame rate

per second and container for 720p videos

] 720p
Video Name Size Duration Resolution FPS Container
Speed 96.5 2:07 1280x720 23.98 WMV
Stormchasers 68.8 1:31 1280x720 23.98 WMV
STS-117 352 1:08 1280x720 23.98 WMV

The test results are presented in Table 3 and Table 4 for 720p and 1080p videos, respectively. For 720p
videos, there is not a significant difference between the three analyzed videos in terms of memory use. The
memory usage variation was only 0.3% between the highest average and the lowest average, while the
difference between a highest maximum use and the lowest minimum use of memory was only 1.4%.

The results in terms of CPU usage show a difference that can be noticed in the video speed. There is a
difference between the minimum and the maximum CPU usage however on average the three videos shown a

low cost, which is important to multitask environment and also to low energy usage for embedded systems.

112 SIM 2010 — 25™ South Symposium on Microelectronics

The results for 1080p videos show a expected increase in terms of memory usage and CPU comparing to
720p videos. However, the results show a good performance in terms of memory and CPU usage in both 720p
and 1080p videos making the Media Processing using Xine-lib feasible for a wide range of video resolutions.

Tab. 3 — Memory Cost and Processor Use for 720p videos.

Video Name _ Memory Use . CPU Use
Min. Max. Av. Min. Max. Av.
Speed 44.85 45.06 45.05 32.9 69 34.52
Stormchasers 44.76 45.03 44.97 30.8 49 32.06
STS-117 44.44 44.91 44.88 22.2 41 26.92
Tab. 4 — Memory Cost and Processor Use for 1080p videos.
. Memory Use CPU Use
Video Name Min. Max. Av. Min. Max. Av.
Speed 60.7 60.75 60.75 51.5 62.7 53.24
Stormchasers 60.33 60.65 60.52 44.7 63 48.77
STS-117 52.03 73.05 72.89 60 77 65.80

4. Conclusion and Future Works

The componentized version of Ginga middleware shows a flexible solution for developers to support
declarative and procedural applications. Moreover, this componentized version enables to build a customized
middleware for different solutions. This paper presented a Media Processing component implementation based
on Xine-lib. The paper also showed results in terms of CPU performance and memory usage.

Regarding future work, it is necessary to add other features, like audio support, volume control, audio
stream selector and so on. It is also intended to do performance comparisons with others Media processing
component implementations and tests with other computer configurations, e.g. computers with low memory
capacity.

5. References

[1] L. F. G. Soares; R. F. Rodrigues; M. F. Moreno, “Ginga-NCL: the declarative environment of the
Brazilian digital TV Sytem”. Journal of the Brazilian Computer Society, 2007, pp.37-46

[2] G. L.S. Filho; L. E. C. Leite; C. E. C. F. Batista. Ginga-J: The procedural middleware for the Brazilian
digital TV system”. Journal of the Brazilian Computer Society, 2007, vol 12, pp.47-56

[3] ITU, “ITU-T Recommendation H.761: Nested Context Language (NCL) and Ginga-NCL for IPTV”,
2009.

[4] M. F. Moreno, “A declarative middleware for Interactive Digital TV Systems”. M.S Thesis, PUC-Rio,
Rio de Janeiro, 2006. p.105. (In Portuguese)

[5] Aplications Laboratmg of Digital Video, Telemidia. “OpenGinga — Middleware reference
implementation of razillian =~ Digital TV”, openginga.org. 2008. [Online] Avaliable:
http://www.openginga.org/index.html. [Acessed: Mar. 12, 2010].

[6] L. E. C. Leite, et al, “FlexTV, a proposal for a middleware architecture for Brazilian Digital TV
System”. Journal of Computer Enginering and Digital Systems, 2005, vol.2, pp.30-49. (In Portuguese).

[7] The Xine Project, “A free video player”, [Online]. Available: http://www.xine-project.org/home
[Acessed: Mar. 23, 2010]

[8] S.M. Filho, et al, "FLEXCM - A Component Model for Adaptive Embedded Systems", in Proc.
COMPSAC (1), 2007, pp.119-126.

[9] Sun Microsystems, Silicon Graphics, Intel Corporation. “1.0 Programmers guide” May. 11, 1998.
[Online] Avaliable: http://java.sun.com/javase/technologies/desktop/media/jm{/1.0/guide/index.html
[Acessed: Mar. 11, 2010].

[10] The Xine Project, “About xine”, [Online]. Available: http://www.xine-project.org/abou.t [Acessed:
Mar. 24, 2010]

SIM 2010 — 25" South Symposium on Microelectronics 113

Proposal of a Diamond Search Design with Integrated Motion
Compensation for a Half/Quarter-Pixel H.264/AVC
Motion Estimation Architecture

'Gustavo Freitas Sanchez, *?Robson Sejanes Soares Dornelles, *Luciano Volcan
Agostini
{gsanchez.ifm, rdornelles.ifm,agostini } @ufpel.edu.br

Federal University of Pelotas
’Federal University of Rio Grande do Sul

Abstract

This paper proposes a new way to improve the encoded digital video quality from Diamond Search
Algorithm through the use of the small diamond search pattern for the previous iteration and so getting a better
video quality than the regular Diamond Search. This proposed architecture also generates the samples
necessary to perform the half and quarter pixels interpolation. This is useful to perform a search of a fractional
vector with a quarter pixel precision at most and then accomplishing a better encoded video quality. The
architecture also performs the motion compensation process during the motion estimation. It makes the video
coding faster because it allows skip a step.

1. Introduction

With the growing demand of digital videos with high quality and high compression rate, the effort in
research is increasing and then a lot of video coding standards are emerging. In this context the H.264/AVC [1]
arises as the newest and most efficient video coding standard.

The main goal of the H.264/AVC standard is to ally high video quality to high compression rates. For
doing this, it is necessary to perform extremely complex algorithms. This high complexity does not allow, at
least in the current technology, software video coding solutions when it is needed to deal with real time (24 to
30 frames per second), mainly when encoding and decoding digital videos with high resolution (like HDTV
720p and 1080p). This way, hardware solutions are really necessary.

This work is part of the Brazilian effort in hardware solution for the Brazilian System of Digital Television
(SBTVD) [2], since the H.264/AVC was chosen to be the standard of the SBTVD.

To encode digital videos in an efficient way, the video redundancies must be explored. There are 3 types of
redundancies: temporal (similarity between neighboring frames), spatial (similarity within the same frame),
entropy (redundancy in the binary encoding).

Fig. 1 shows the block diagram of the encoder, where the current frame is the frame that will be encoded,
and the reference frames are already encoded. The motion estimation (ME) is responsible to exploit the
temporal redundancy and is the focus of this work. The motion compensation is used to reassemble the encoded
block and is also focus of this work. The intra prediction exploits the spatial redundancy and entropy encoder
exploits the entropy redundancy. The standard also has a block of transform and quantization which is
responsible for increasing compression on digital videos in exchange of a small loss of quality. The inverse
transform and inverse quantization are used to reassemble the frame and the reduction filter effect of block is
required by the standard.

Entropy
il Il o I e

Inter-Frame Prediction

»
~ | ME

® » MC

)

Fig. 1 - H.264/AVC encoder block diagram

il Bt

This paper presents a proposal of an architecture for motion estimation based on the Diamond Search (DS)
algorithm. Besides, it proposes some modifications to obtain better quality and speed during the encoding
process by doing the motion compensation while the motion estimation is being performed. This architecture
also generates the samples for the half and quarter pixels interpolation, which will increase the video quality.

114 SIM 2010 — 25™ South Symposium on Microelectronics

The paper is organized as follows: section 2 presents how motion estimation works; the section 3 presents
the Diamond Search algorithm and the proposal of this work; the section 4 shows the proposed architecture.
The section 5 concludes this paper and show some future works.

2. Motion Estimation

The motion estimation uses the temporal redundancy to find the best way to represent a frame by using
previously encoded data [3]. To do this, a frame is divided into several blocks. Each block is compared with
blocks of the reference frame (already encoded) using a criterion of similarity. Then, when this block is found,
it is created a motion vector for this position.

A search algorithm is used to go through the reference frame searching for the most similar block. The
most known algorithms are: full search, that always finds the best block match, and some iterative algorithms
such as diamond search and hexagon search. These algorithms find similar blocks, but not always the best [3].

A similarity criterion is used to compare the similarity between two blocks. One of the most used is the
Sum of Absolute Differences (SAD) which is used in this architecture. Its equation is represented in eq. 1,
where R represents the reference frame and O represents the original frame.

n-1n-1

SAD(R,0) = 22|R(i,j)—0(i,j)| i

Jj=0 i=0

3. Diamond Search

The diamond search is an iterative search algorithm that achieves a good match between the block that will
be encoded and the blocks from the reference frames. The algorithm can find a good match. However, the best
match is not guaranteed because it does not calculate all the possibilities. Even so, it is possible to find a match
with a little difference. This algorithm follows two patterns shown in Fig. 2 [5].

Fig. 2 - Diamond Search Patterns

Firstly, the pattern represented by the letter L, Large Diamond Search Pattern (LDSP), is processed
applying a criterion of similarity between the blocks of these points and the block of the current frame. When
the most similar block is not found in the center, the algorithm is reapplied using the position which obtained
the better result as the new center. If the smallest error is found in the center, then a refinement is applied and
the blocks are compared by the pattern represented by the letter S, Small Diamond Search Pattern (SDSP),
which also compares the block in the center [5]. So, it is created a motion vector for this position.

This algorithm achieves lower quality results when compared to Full Search. However, the search can be
done in a very short time, needing a lower number of operations.

This work proposes the use of two SDSP: one that is regularly used, and another to refine the previous
iteration. Thus, the video can have an increase in quality, as this area is close to the vector that was chosen by
the normal DS and nearby areas tend to be similar.

4. Proposed Architecture

This work proposes an architecture to perform the motion estimation with the DS search algorithm and two
diamond search SDSP. The search area was considered 42x42 pixels, the similarity criterion chosen was SAD.
The block size used was 8x8 pixels.

The architecture block diagram is represented in fig. 3, where the current frame memory contains the
samples from the frame that should be encoded and the samples for interpolation, the reference frame memory

SIM 2010 — 25" South Symposium on Microelectronics 115

has the data that should be compared. The processing units (PUs) perform the SAD calculations for the blocks
to be encoded and also the samples for interpolation.

The comparator finds the best block and generates a signal that tells which is the best block from the blocks
that are being compared. The position updater starts in the center of the reference frame. As the architecture
processes the data, the current vector points to the center of the new position that will be the center of the
diamond search next iteration. Finally, the position updater SDSP generates the final motion vector.

The previous vector always holds the result of the previous iteration of the current vector and so it is
possible to calculate the previous SDSP.

Current Frame Memory
8x8 + Samples for
interpolation

Reference Frame Memory
42x42 + Samples for
Interpolation

Address

Residue

PU PU PU PU PU PU pU PU PU

i

E = ; i +Samples for
Interpolation

Chosen Block

Position Updater] Position Updater SDSP Moviment Vector

| . '
!Eun:m Vector | | Previgus Vector |

Fig. 3 - Diamond Search block diagram

Comparator

Initially, the current frame memory and the reference frame memory receive the video data, then the data is
compared in the processing units (PU), each PU is responsible for calculating one position of LDSP. The
comparator finds the block that had the lowest error and sends a signal to the updater position, which informs
where the new iteration will start from.

This position is used as the center where of the new DS. When the best block is found in the center, then
the position updater SDSP generates the final motion vector.

The motion compensation is performed during the motion estimation. It is done by saving the values of the
difference between the original block and the reference block. When the block is chosen the multiplexer
chooses the PU that saved the residue and put it as an output.

This process also happens with the samples for the interpolation that are saved in the PU and then are sent
to the output by the multiplexer according with the chosen block.

The architecture of the reference memory was described in order to optimize the use of the data already in
it. As each vector is generated, the reference area needs to move. In each movement, a lot of data that were in
memory, need only to be moved horizontally or vertically. The vectors from the current frame are generated in
a spiral form as shown in Fig. 4 to get a better performance.

116 SIM 2010 — 25™ South Symposium on Microelectronics

- e I
A

Fig. 4 - Flow encoding a frame

5. Conclusions and Future Works

This paper has presented a proposal of an architecture for a modified diamond search algorithm. This
algorithm uses two SDSP: one as regularly used and the other one to refine the previous iteration. By doing
this, it might be possible to get a better digital encoded video quality.

The proposed architecture also generates samples for the half and quarter pixels interpolation. It results in a
big increase of encoded video quality. The architecture also performs the motion compensation while the
motion estimation is being performed. It saves time in the whole encoding process, since after the motion
estimation, it would be necessary to perform the motion compensation.

As future works are necessary to synthesize and validate the architecture. It is also important to evaluate
the reference software and analyze the quality gain by using the idea of two SDSP. Besides, it is planned to
integrate this architecture with a half pixel interpolator [4] and then integrate with another search algorithm for
this interpolated area. After this, it is interesting to integrate with a quarter pixel interpolator and a quarter pixel
search architecture, in order to have a complete quarter pixel motion estimation architecture.

6. References

[1] ITU-T Recommendation H.264/AVC (03/05): advanced video coding for generic audiovisual services,
2005.

[2] Brazilian Forum of Digital Television. ISDTV Standard. Draft. Dec. 2006 (in portuguese).

[3] L Richardson, H.264 and MPEG-4 Video Compression — Video Coding for Next-Generation
Multimedia. John Wiley&Sons, Chichester, 2003.

[4] M. Corréa, “Desenvolvimento de uma Arquitetura para Interpolagdo de Half-Pixels segundo o padrao
H.264/AVC”. Proc. 16th Iberchip, 2010.

[51 L. Rosa, “SDS-DIC Architecture with Multiple Reference Frames for HDTV Motion Estimation”. Proc.
24th SIM, 2009

SIM 2010 — 25" South Symposium on Microelectronics 117

NOCs and MPSoCs

118 SIM 2010 — 25™ South Symposium on Microelectronics

SIM 2010 — 25" South Symposium on Microelectronics 119

Wire Length Evaluation of Dedicated Test Access Mechanisms in
Networks-on-Chip based SoCs

'Alexandre Amory, “Cristiano Lazzari, *Marcelo Lubaszewski, ‘Fernando Moraes
alexandre.amory@pucrs.br

'PPGCC, Faculdade de Informéatica, PUCRS, 2 INESC-ID, Lisbon, Portugal
¥ PGMICRO, Departamento de Engenharia Elétrica, UFRGS

Abstract

The use of existing Networks-on-Chip (NoCs) for test data transportation has been proposed to avoid
conventional dedicated Test Access Mechanism (TAM), reducing the chip global wiring length, however, it is
not known how much wiring is saved by reusing NoCs as TAMs. This paper addresses this problem by
presenting a wire length estimation method used to evaluate the cost of dedicated TAMs for NoC-based SoCs.
The proposed method does not required layout information for the test optimization, thus, the test architecture
can be defined earlier in the design flow. The experimental results demonstrate that dedicated TAMs require,
on average, 24% of the global wires. On the other hand, results can vary depending on the SoC, from 5% to
58%, demonstrating the need of a fast wire length estimation to help the designer to decide the best test
architecture for his design: dedicated TAM or NoC TAM.

1. Introduction

With the scaling of microchip technology, computation is becoming cheaper than communication. The
main reason is that global wires do not scale as transistors do [1]. Global wires can be found in the chip-level
communication infra-structures such as buses. Networks-on-Chip (NoCs) [2] may replace global buses in near
future due to scalability and parallel communication features. NoCs alleviate the issues related to long global
wires because NoCs consist of shared and segmented wires [3]; sharing wires reduces the number of global
wires, while segmenting wires reduces their sizes.

Modular testing has been proposed as a solution to test such complex SoCs [4]. The conceptual model for
modular testing consists of: test wrappers, used to switch between functional and test modes; and Test Access
Mechanisms (TAMs), used to transport test data from/to the test pins to/from the Core-Under-Test (CUT). The
most common practice for TAM design is to include dedicated and global test buses used only for test data
transportation. Since these TAMs consist of long global wires, dedicated test buses are also subject to the same
interconnect problems such as signal integrity, delay, and power dissipation. In an attempt to avoid the long
global wires related to the TAMSs, Cota et al. [5] proposed the use of the NoC to transport test data. Doing so,
the NoC would avoid long global wires both in functional and in test modes.

The problem is that it is not know how much wiring could be actually saved by using NoCs as TAMs. The
goal of this paper is to evaluate the amount of wiring required to implement dedicated TAMs in a NoC-based
SoC with regular network topologies. For this purpose a new wire length estimation model is presented. As far
as we know, this is the first paper to evaluate the amount of wiring required to implement dedicated TAMs. The
prior works with closest motivation are related to test scheduling algorithm which optimizes both test length
and TAM wire length [6, 7]. However, they do not actually evaluate the amount of TAM wires and they require
layout information to perform the optimization, which means that first there should be a complete layout of the
design to finally generate the test solution. The proposed wire length estimation model does not require layout
information, thus, the test architecture and optimization can be concluded earlier.

This paper is organized as follows. Section 2 introduces the proposed wire length estimation method.
Section 3 evaluates the wire length of dedicated TAMs for several SoCs. Section 4 presents the conclusion of
the paper.

2. Wire Length Estimation Model for Dedicated TAMSs

This section presents the proposed model used to estimate the wire length required to implement dedicated
TAMs.

2.1. Introduction to the Proposed Model

The proposed model assumes that the SoC is represented by tiles ' which are evenly distributed in the
entire SoC area such that the distance between any two neighbor tiles is the same. Each tile can have zero or
more cores and exactly one network interface. The rest of the system (clock and reset tree, test wires, and NoC)

'The use of tiles is common in physical synthesis of NoC-based systems [8].

120 SIM 2010 — 25™ South Symposium on Microelectronics

are distributed among the tiles. This description is coherent to homogeneous NoC-based systems, where the tiles
have similar logic, like in a homogeneous MPSoC system. This subject is further discussed in Section 2.3.

The proposed method counts the minimal number of hops required to reach all modules within a dedicated
TAM. The wire length between cores within the same tile is supposed to be zero, while the wire length between
cores in different tiles is equivalent to the number of hops between these two tiles. Fig. 1 represents a NoC-
based SoC using three dedicated TAMs, and it is used to illustrate the proposed wire length estimation method.
Each box represents a tile which consists of one router (identified by the number outside parentheses)
connected to zero or more cores (identified by the number within parentheses).

The total number of wires to implement the set of TAMs of a SoC is defined as

W = Z(h.l +1) xw; x2 (1)
i=1

where 7 is the number of TAMs, hl_ is the minimum number of hops to implement TAMZ, plus one hop
representing the wires from the input test pins to the first core of the TAM. Finally, w, is the width of the TAMI_.

Since there must be wires also for the test responses, then, the number of wires is multiplied by two.

Let us assume the following TAM assignment, illustrated in Fig. 1, created by a conventional test
scheduling algorithm: TAMI1={cl,c5,c6,c8,c9}, TAM2={c4,101,r11,r12,:02}, TAM3={c0,c2,c3,c7,r00
,r10,r20,r21,r22} assuming 16 test pins to connect the chip to the ATE. The width of these TAMs are 7, 5, 4
wires, respectively.

For instance, TAM1 has five cores where two of them are located in the tile 01 and the remaining cores are
located in tiles 11, 10, and 20, thus, the minimum distance between these four tiles is three hops (see the
continuous fat line in Fig. 1). Since the width of TAMI is seven test wires, then it results in (3+1)x7x2=56
wires to implement the TAM1. The minimum number of hops for TAM2 and TAM3 are 4 and 5 hops,
respectively. Finally, the total TAM wiring for this example is 154 wires ((3+1)x7x2=56 for TAMI,
(4+1)x5%x2=50 for TAM2, and (5+1)x4x2=48 for TAM3).

r02 r2 r22
() (c0) (c3)
1

1

1

o1 =11 .
(€1,06) | (C5) (c2,04,7
'

1

1

ro0 r10 r20
() jaad (€8) | (c9)

TAM 1 (w=7)
.............. TAM 2 (w=5) _— W
------ TAM 3 (w=4) Fig. 2 - Layout of the d695 SoC with
Fig. 1 - Example of a d695 SoC connected to a NoC used to dedicated TAMs. The squares are the
estimate the wire length required to create the dedicated TAMs. HeMPS tiles while the horizontal and
rXX represent the router and cX represent the cores connected vertical lines are the Hermes NoC with
to the router. /¥ represents the TAM width. dedicated TAMs.

2.2. Wire Length Estimation Model
Finding the minimum number of hops hl, between the cores of a TAM i is equivalent to the Minimum

Rectilinear Steiner Tree problem which is NP-complete [9]. The problem can be modeled as follows: given N
points in the plane, find a minimum length tree of rectilinear edges which connects the points.

2.3. Limitations and the Scope of the Model

The actual TAM wire length in a chip also depends on the layout congestion. Congested layouts might
require longer TAM wiring from one point to another than non-congested layouts. Since the proposed model
does not capture layout congestion, the model represents the shortest wiring length required to design dedicated
TAMs. The actual TAM wiring is expected to be longer than the estimated wire length. On the other hand, this
model is much easier to estimate wire length since it does not require physical synthesis of large NoC-based
SoCs.

The model is best suit for homogeneous SoCs where all tiles have similar sizes and the NoC has a regular
topology, like mesh or torus. Although it is well known that there are other types of SoC architecture, an
homogeneous SoC with regular NoC is still the most popular design style, where the proposed wire length
estimation model could be applied. For instance, homogeneous SoCs have been used in both academic and
commercial chip designs [3, 10-12]. In addition, it makes sense to use this model since most of the prior work

SIM 2010 — 25" South Symposium on Microelectronics 121

on testing NoC-based SoCs is based on regular NoC topology. It makes the proposed model suitable for
measuring wire length of TAMs.

2.4. Evaluation of the Model

Let us take the d695 SoC presented in Fig. 1 as an example to compare the actual and the estimated wiring
for dedicated TAMs.

As calculated in Section 2.1, the estimated number of test wires required to implement dedicated TAMs is
154. In an i-by-j mesh, there are 2x(ix(j—1)+jx(i—1)) channels. For example, the system d695 is a 3-by-3 mesh,
thus, it has 24 channels of 32 bits or 24x32=768 wires’. Thus, according to the proposed model, close to
154/768 = 20% of the global wires of the chip are required to implement the dedicated TAMs.

Layout analysis is required to evaluate the actual wiring for dedicated TAMs. We implemented in VHDL
the system presented in Fig. 1 using dedicated TAMs. The tiles are supposed to be hardcore while the NoC and
the dedicated TAMs are softcore. Both the tile and the NoC are based on the HeMPS MPSoC [13] configured
with buffers of size 16 and 32-bit channel width. The system has been synthesized to the library UMC 130nm.

The layout consists of two steps. The first step is to create the blackbox of the HeMPS tile with a 32-bit
MIPS processor, network interface, DMA, and 16KB dual-port memory. It resulted in a box of 2560x2550um
of area. The second step connects the tile to the HeMPS NoC (named Hermes), which is automatically
generated by the Atlas environment [13], to the blackbox. Finally, the dedicated TAMs, depicted in Fig. 1, are
included into the SoC.

After the SoC setup, Cadence™ tools were used for logic and physical synthesis. Fig. 2 illustrates the
resulting layout of the SoC based on dedicated TAMs. The resulting wires are classified into four classes of
wires: local, global, clock, and TAM wires. “Local wires” are required to implement the internal router logic.
“Global wires” are used to connect the routers to each other and the router to the tile, excluding TAM and clock
wires. “Clock wires” are used to implement clock and reset trees. Finally, “TAM wires” represent the dedicated
TAMs. Tab. 1 shows the distribution of wire length among these types of wires.

Tab. 1: Distribution of wires in a NoC-based SoC with dedicated TAMs.

local wire global wire clock wire TAM wire
length (%0) length (%0) length (%0) length (%0)
67.32 19.42 8.11 5.15

The overhead of dedicated TAMs is small (5.15%) compared to the total wire length of the NoC. However,
it consists of 5.15/19.42 = 26.5% of the global wires. Recall that the proposed model estimated that 20% of the
global wires would be used to implement dedicated TAMs. The difference between the actual (26.5%) and
estimated (20%) TAM wiring is due to routing congestion which is not captured in the proposed model.

3. Experimental Results

3.1. Experimental Setup

The first step is to build the NoC-based SoCs for the evaluation. The following systems from ITC’02 SoC
Test Benchmarks [14] have been modified to include a NoC (the NoC size, i.e. the number of routers, for each
system is in parentheses): d281 (3,3), d695 (3,3), g1023 (4,3), h953 (3,3), p22810 (5,5), p34392 (4,4), p93791
(6,5),u226 (3,3). The size of the NoC has been selected based on the number of cores of the system. The SoCs
2126 and q12710 have been excluded because they have only four cores and the SoC a586710 has only seven
cores. It does not make sense to evaluate TAM wire length in such small SoCs. The t512505 SoC has been
excluded because it has a bottleneck core, core 31, which requires about 88% of the entire SoC test data.

There is also the so called ‘big(9,9)’ SoC which has been created to test the scalability of the proposed
model. This SoC is placed in a 9x9 mesh with 117 cores. These cores are the cores of the five biggest ITC’02
SoC Test Benchmarks, which are the SoCs p22810, p34392, p93791, t512505, and a586710.

The ITC’02 SoC Test Benchmarks were modified to include the NoC into the SoC. First, each core
receives two OCP-like ports, one port to receive and the other to send data from/to the NoC. Each port has 39
control terminals and 32 data terminals plus the original number of terminals of a core defined in the ITC’02
SoC Test Benchmark. For example, the original module 1 of d281 SoC has 60 inputs and 26 outputs, thus, the
modified module has 60+26+(2x(39+32)) terminals.

Second, the routers and the NoC are generated. For the sake of simplicity we assume that all routers in a
system are identical, i.e. they have five bi-directional ports and the same number of test patterns. The number of
terminals of a router is 5x(2x(2+32)) (two control terminals and 32 data terminals multiplied by five bi-
directional ports). Moreover, the router has 50 scannable flip-flops related to internal control logic. Recall that
the test scheduler considers the routers as soft-cores.

Third, the cores of each SoC are placed on the NoC. Ten random placements have been generated for each
SoC because the placement has an impact on the TAM wire length. The cores have been placed in the NoC
randomly such that if the number of cores is greater than the number of routers, it makes sure that all routers

*This wire count does not consider control wires used to implement the protocol.

122 SIM 2010 — 25™ South Symposium on Microelectronics

have at least one core and no router receives more than two cores. It also makes sure that all placements are
different from each other. At this point the SoCs have been generated. Next, the TR-Architect [4] is used for
SoC test scheduling.

3.2. Wire Length Savings
This section uses the model presented in Section 2 to evaluate the amount of wiring spent in systems based
on dedicated TAMs. In other words, it evaluates the amount of wiring that could be saved by using NoC TAM.
First, we calculate the number of wires to implement a NoC with 32-bit width channels for each SoC. For

instance, system d695 has nine routers, thus, it has 24 channels of 32 bits, then, the NoC requires 24x32=768
wires. The column “NoC Wires” of Fig. 3 presents the amount of wires to implement the NoC channels. The

parameter w represents the number of test pins available for the test architecture.

SoC Wrnaz NoC avg diff (%) best diff (%) worst diff (%)
wires | TAM TAM TAM
wires wires wires
16| 768 | 255 323 | 232 3021 | 72 3542
2| 768 | 205 2661 | 164 2035 | 234 3047
2| 7es | 147 1919 | 130 1693 | 156 2031
281 40 | 768 | 208 2706 | 196 2552 | 230 2995
48 | 7es | 216 2807 | 184 2396 | 244 3177
56 768 242 3155 202 26.30 264 3438 350 600
64 | 768 | 277 3602 | 226 2943 | 302 3932 200 %0
lo| 768 | 202 2635 | 168 2188 | 212 2760 50 00
24 | 68 | 257 3345 | 22 2969 | 288 3750 2 5
2| 7es | zor siya | 300 asis | 452 s8ss £ 200 200
4695 40 768 222 2891 170 2214 284 36.98 * *
48 | wes | 308 siss | a4 4479 | 440 5729 150 200
se | 7es | 330 4297 | 268 3490 | 410 5339 o o
64 | 768 | a5 s7oa | 356 4635 | s 6933 6 2% om0 w wm e 6 m m w w w e
16| 1088 | 243 2233 | 216 1985 | 262 2408 # test pins #test pins
24 1088 277 25.50 266 24,45 302 27.76 (a) d281 (b) d695
32| 1088 | o283 2603 | 260 2206 | 34 2058 -
1023 40 | 1088 | 337 a0 | 2 2508 | 374 34.38 hood o
48 | 1088 | 428 3038 | 300 3585 | 466 4283 pood o5
56 | 1088 | 361 3316 | 304 2794 | a2 3879 prod 80
64 | 1088 | 156 1436 | 148 1360 | 164 1507 5
g 350 2 5
16 | 768 56 7.34 50 631 62 8.07 2 20 2
M| 7068 56 734 50 651 62 8.07 =m0 "0
32| 768 56 7.34 50 651 62 8.07 20 o
K953 40 | 708 56 7.34 50 651 62 8.07 - m
a8 | 708 56 734 50 651 62 8.07
s6 | 708 56 73 50 651 62 807 o= ms:d:ns wowow o= les“’:"s wome.
64 | 768 56 7.34 50 6.51 62 8.07
(¢) 21023 (d) 953
16| 2360 | 415 1623 | 374 461 | 458 1789
24| 2560 | 419 1633 | 382 1492 | 438 1701 1000 60
32| 250 | a8 2022 | ace 1813 | 530 2070 %00 500
p22810 40 | 2560 | 582 2274 | 536 2094 | 628 2453 800
48 | 2360 | 419 1638 | 366 1430 | 4 19.14 700 400
s6 | 2560 | 628 2452 | s 22327 | 6712 2625 g o I3
o4 | 2560 | 910 3sss | 848 3313 | 968 378) = 50 = %0
400
16| 1536 | 274 1785 | 250 1628 | 204 1979 20 200
2 | 1536 | 27 1479 | 214 1393 | 236 1536 20 0
2| o156 | 192 1249 | 160 1042 | 206 14.06 6 2 w4 4 = e 6 24w a0 4 = e
34302 40 | 1336 | 283 1844 | 238 1549 | 312 2031 .
§ 48 | 153 | 431 2805 | 372 2422 | 298 1 testpins it e
s6 | 1536 | 431 805 | 31 222 | 498 3242 () p22810 (034392
64 1536 431 2808 kre) 2422 408 3242 1400 450
16 | 2880 | 499 1734 | 454 1576 | s32 18.47 1200 pod
24 | 2880 | 4s; 1566 | 402 1396 | 522 18.13 1000 00
32| 2880 | 903 w37 | 84 2895 | 1010 3507 . 250
pO3791 40 | 2880 | 1eos 3400 | 904 3139 | 1088 3778 g W £
48 | 2880 | 897 314 | 812 2210 | 904 3481 = 600 ® 150
s | 2880 | 1154 s006 | 1080 37s0 | 1290 4479 0 100
61 | 2880 | 1324 4507 | 1256 436l | 1380 4792 50
16 | 768 96 1250 96 1250 96 12.50 e s wm owm as s e Y o m a0 s w e
24 | 768 | 184 1875 | 144 1875 | 144 1875 1 st pins #test pine
s2 | 7es | 192 200 | 192 2500 | 192 2500 5 093791 1 0226
w226 40 | 768 | 290 25 | 290 3125 | 240 3125 (@) p9 {hyuz2
48 | 768 | 288 3750 | 288 3750 | 288 3750 1800
s6 | 76s | 350 4557 | 30 4557 | 30 4557 1600
64 | 768 | a4 saor | a4l szor | 414 5391 1400
1200
16 | 9216 | 1159 1258 | 1104 198 | 1224 1328 1000
24 | o216 | 1668 1810 | 1578 17.12 | 1758 19.08 £ 'm0
32 | o216 | 470 520 | 278 300 | 60 7.49 * 600
big 40 | o216 | 77 842 | 661 720 | 898 9.74 400
48 | 9216 | 382 414 | 3% 367 | 43 47 200
56 | 9216 | 804 872 | 418 451 | 1182 1283 [}
64 | 9216 139 1236 902 979 1566 16,99 16 24 32 40 48 58 B4
averge | 0 — | — | — 43| — 297 | — 2700 ::s:ilfns

Fig. 3 - Wire length for dedicated TAMs. The line represents the average wire length for the ten

placements

while the error bars represent the wire length for the worst and best placements. The number of hops (the
distance between two adjacent tiles) is used as a relative wire length unit. The actual wire length in p can be
casily calculated by multiplying the tile length by the number of hopes determined by the proposed model.
Second, the TAM wire length of a system based on dedicated TAM depends on how the cores are placed
into the NoC. For this reason we evaluate ten placements for each system. The column “TAM Wires” of Fig. 3
presents the average/best/worst TAM wire length for each system considering different number of test pins.
The column “diff” of Fig. 3 represents the relative number of wires to implement dedicated TAMs compared to
the number of wires of the 32-bit NoC. For instance, the 202 wires (see Fig. 3, SoC d695, wmax:16) correspond

to 26% (202/768), of wires of a 3x3 NoC considering channels of 32-bit width. The illustrations of Fig. 3

SIM 2010 — 25™ South Symposium on Microelectronics 123

represent the same results of the table, but, it is more intuitive and less detailed. The rest of this section
discusses these results individually.

The number of test pins does not change the wire length of h953 SoC because TR-Architect generated the
same scheduling for different number of test pins >. On the other hand, different placements cause a small wire
length variation in the same SoC (see the error bar for the best and worst placements). The opposite happens for
the u226 SoC. It can be observed that more test wires cause more TAM wire length, however, different
placements have no effect on wire length. It happens because, for the same number of test pins, the test
scheduler generated the same scheduling despite of the different placements.

The g1023 SoC has reduced TAM wiring when the number of test pins is 54 and 64. It happens because, in
this SoC, the test scheduler assigns almost one core per TAM. These cases require a smaller amount of wiring
since there are wires only between the chip test pins and the CUT test ports. Most other SoCs have TAMs with
more than one core.

Other cases, which have not been mentioned, fall in one of the following situations: the test scheduler
assigns most of the test wires to a TAM with only one core or it assigns few test wires to a TAM with most
cores of the SoC. In these cases the TAM has wires only from/to the test pin to the/from the CUT, requiring
wide and short wires. The remaining cores of these systems are tested by narrow but long TAMs. The
combination of TAMs with wide and short wires and TAMs with narrow but long wires leads to shorter TAM
wire lengths, globally. For this reason these systems require fewer wires.

The average results for the average/best/worst placements are, respectively, 24.6%, 22%, and 27% (bottom
of Fig. 3). It means that, on average, about 24.6% of the SoC global wires are used to implement dedicated
TAMs. For some systems, like d695 with 64 test pins, the TAM wiring can be about 58% of the SoC global
wires. Note that the model is optimistic, as explained in Section 2.3. It means that the actual wiring for
dedicated TAMs is larger.

Finally, Fig. 4 has been generated by grouping the results in Fig. 3 (columns 5, 7, and 9) in terms of
number of test pins and taking the average results. It presents the average usage of TAM wires (for the average,
best, and worst placements) per number of test pin considering all SoCs. It shows that the TAM wire length
increases as the number of test pins increases, demonstrating that dedicated TAM might not be viable for large
number of test pins. It also shows that the error bars are increasing as the number of test pins increases. It
means that the impact of placement on the wire length tends to increase as the number of test pins increases.

Average impact on TAM wire length

40

TAM wire length (%)
8

16 24 32 40 48 56 64
test pins

Fig. 4 - Average amount of test wiring compared to the global wires. The line represents the average
percentage of wires used to implement dedicated TAMs. The error bars represent the average percentage for the
worst and best placements.

4, Conclusion

The previous papers about testing NoC-based SoCs claimed that NoC TAM saves global wiring but it was
not known how much wiring was actually saved. This paper addresses this problem by proposing a wire length
estimation model used to evaluate the amount of wiring required to implement dedicated TAMs. To the best of
our knowledge, this is the first paper to estimate the amount of wiring saved by using NoC as TAM.

The proposed model has been used to evaluate several ITC’02 SoC Test Benchmarks SoCs, including a
large SoC with 117 cores. It has been concluded that the TAMs increase the total number of global wires of the
chip in 24%, on average, but the variation can be large, depending on the SoC; in some cases it can be 58%
while for others cases it can be less than 10%. With the proposed model the designer can quickly decide,
without requiring information from the physical synthesis, whether NoC TAM is a good approach for his
design.

5. Referéncias

[1] ITRS, International Technology Roadmap for Semiconductors, Semiconductor Industry Association,
2005.

[2] T. Bjerregaard and S. Mahadevan, “A survey of research and practices on network-on-chip,” ACM
Computing Surveys, vol. 38, no. 1, 2006.

3This is not a limitation of TR-Architect, but a feature of the SoC. Goel and Marinissen [4] have proved
that this SoC reaches the theoretical lower bound with less than 16 test pins.

124 SIM 2010 — 25™ South Symposium on Microelectronics

[3] F. Angiolini, P. Meloni, S. Carta, L. Raffo, and L. Benini, “A layout-aware analysis of networks-on-chip
and traditional interconnects for MPSoCs,” IEEE Transactions on CAD of Integrated Circuits and
Systems, vol. 26, no. 3, pp. 421-434, 2007.

[4] S. K. Goel and E. J. Marinissen, “SOC test architecture design for efficient utilization of test
bandwidth,” ACM TODAES, vol. 8, no. 4, pp. 399-429, Oct. 2003.

[5] E. Cota, C. A. Zeferino, M. Kreutz, L. Carro, M. S. Lubaszewski, and A. A. Susin, “The impact of NoC
reuse on the testing of core-based systems,” in Proc. VTS, 2003, pp. 128—-133.

[6] S. K. Goel and E. J. Marinissen, “Layout-driven SOC test architecture design for test time and wire
length minimization,” in Proc. DATE, 2003, pp. 738—743.

[71 E. Larsson and H. Fujiwara, “Test resource partitioning and optimization for SOC designs,” in VLSI
Test Symposium, 2003, p. 319.

[8] D. Bertozzi and L. Benini, “Xpipes: a network-on-chip architecture for gigascale systems-on-chip,”
IEEE Circuits and Systems Magazine, vol. 4, no. 2, pp. 18— 31, 2004.

[91 B. T. Preas and M. J. Lorenzetti, Physical Design Automation of VLSI Systems. Benjamin Cummings
Publishing Company, 1988.

[10] A. Banerjee, R. Mullins, and S. Moore, “A power and energy exploration of network-on-chip
architectures,” in Proc. NoCs, 2007, pp. 423-425.

[11] B. Li, L. Peh, and P. Patra, “Impact of process and temperature variations on network-on-chip design
exploration,” in Proc. NoCs, 2008, pp. 423-425.

[12] S. R. Vangal et al., “An 80-tile sub-100-w teraFLOPS processor in 65-nm CMOS,” IEEE Journal of
Solid-State Circuits, vol. 43, no. 1, pp. 2941, 2008.

[13] E. A. Carara, R. P. Oliveira, N. L. V. Calazans, and F. G. Moraes, “HeMPS - a framework for NoC-
based MPSoC generation,” in Proc. ISCAS, 2009, pp. 1345-1348.

[14] E.J. Marinissen, V. Iyengar, and K. Chakrabarty, “A set of benchmarks for modular testing of SOCs,”
in Proc. ITC, 2002, pp. 519-528.

SIM 2010 — 25" South Symposium on Microelectronics 125

Model-based Power Estimation of NOC-based MPSOCS

Luciano Ost!, Guillerme Guindani!, Leandro Soares Indrusiak?,
Fernando Moraes!

Pontificia Universidade Catélica do Rio Grande do Sul (PUCRS)
Av. Ipiranga, 6681 - prédio 32 - Porto Alegre - Brazil - CEP 90619-900
{luciano.ost, guilherme.guindani, fernando.moraes}@pucrs.br

2Universily of York
YO10 5DD, York, United Kingdom
leandro.indrusiak@cs.york.ac.uk

Abstract

Networks-on-Chip (NoCs) can use more than one third of the power budget of the chip they are embedded
in. Thus, design decisions that impact NoC power dissipation can be crucial to the success (or failure) of a
product, more so for battery-powered embedded systems. This paper covers the integration of a power
estimation model into an abstract model of a NoC-based MPSoC. Results present the design space exploration
of a system with 4 real applications running simultaneously. The integration of the power estimation model into
the proposed design flow enabled to analyze different design parameters to reach the most power-efficient
architecture.

1. Introduction

NoC-based MPSoCs are a trend for future portable systems (e.g. mobile internet devices - MIDs) that
require high performance while maintaining low power dissipation. Fourth generation (4G) systems are
examples of MIDs with limited power budget (battery operated), which must be efficiently used for executing
several high performance applications. Examples of expected 4G applications for future portable systems are:
(i) three dimensional (3D) and holographic gaming, (if) 16 megapixel smart cameras and (iif) high-definition
(HD) camcorders [1]. In this scenario, the impact of the power dissipation by the NoC interconnect becomes a
critical challenge in the design space exploration of such systems [2]. For example, NoC infrastructure of two
real systems reported by [3] and [4] are responsible for 36% and 28% of the total power dissipation,
respectively.

The detailed estimation of NoC power dissipation at transistor or gate levels is very time-consuming due to
their size and complexity. Thus, simple and accurate high level models became necessary to achieve acceptable
results within the time-to-market frame of complex systems. Modeling at higher abstraction levels is a common
practice to increase and simplify development and validation of complex systems as MPSoCs. The simulation
speed, the improved observability, and debugging capabilities provided by higher-level models reduce design
decisions that impact NoC power dissipation, which can be crucial to the product life-time [3].

This paper presents the integration of a power estimation model into an actor-oriented model of a NoC-
based MPSoC, aiming to enable fast design space exploration and to provide an accurate estimation of the
power dissipated by the NoC on each design alternative. The proposed approach allows the co-validation of
complex applications (modeled as UML sequence diagrams) mapped onto the platform model, considering
power constraints early at the design process [5].

2. Rate-based Power Model

The rate-based power model considers data volume, but computed as a transmission rate within a given
sample period; and accuracy is guaranteed from a physical calibration step, which defines the power dissipation
for each transmission rate [6]. Such model is highly customizable, and can be easily applied to different NoC
architectures and technologies.

The rate-based power estimation model comprises of two steps: calibration and application. The calibration
step (step 1 in Fig. 1) defines the relevant model parameters. This step starts with the synthesis of the NoC
router, generating an HDL description of this router mapped to the target technology. This new HDL code
replace one router of the original NoC description for the next simulations (2). This NoC description is then
simulated (3) with different traffic scenarios, each of them with a fixed injection rate (4). The switching activity
of each simulation run is analyzed by Synopsys PrimePower estimation tool (5), which computes the average
power dissipation of each router element: (i) buffers (responsible for at least 80% of the average power
dissipation); (ii) internal crossbar and (iif) control logic.

After the calibration phase, a power dissipation table is generated for each injection rate and for each router

126 SIM 2010 — 25™ South Symposium on Microelectronics

element (6). Using linear approximation, an equation that gives the power dissipation as a function of the
injection rate is obtained for each table.

In the application step (7), the NoC is simulated to obtain the reception rate at each buffer (8). This is
measured with monitors inserted at each router buffer. The monitors count received flits in a parameterizable
sample window. For each reception rate, the associated power dissipation (Pbuffer) is annotated, applying the
equations obtained in the calibration step (9). The power dissipation of the control logic (Pcontrol) and the
crossbar (Pcrossbar) are obtained using the average buffers reception rate.

HERMES NoC and traffic
ion using the ‘

Central router
(5 input buffers)

Traffic
description

ATLAS

Physical R~ Q
synthesis simulation

Traffic with fixed
injection rate - from
5% to 50% of the Injection rate of the
available link input buffers
bandwidth /|

Central router
mapped
description

Calibration step Using the model

1 __3 7

rout

Switching activity
of the central
router (VCD file)

Power estimation’
from PrimePower.

Average power
dissipation for a
given injection rate

Compute the
router power
dissipation

Repeat for every injection rate

Total NoC
power
dissipation

Equations derived from
the power dissipation | }

obtained from each
injection rate

10

Fig. 1 - Rate-based power estimation model flow.

The power dissipation of a router is given by Equation (1), where m represents the number of sampling
periods and n is the number of buffers in this router. The NoC average power dissipation is given by the
summation of the dissipation values of every router.

" Z Pbuffer, (1)
P,.= ; % + Pcrossbar + Pcontrol

3. Actor-oriented Power Model

The proposed power estimation method can provide basic figures, but it needs a proper platform model to
adjust those figures according to the power consumption patterns of each application. This work integrates that
power model to an actor-oriented platform model, which is abstract enough to allow fast simulation but
provides sufficient information to the power estimation algorithm. It also enables application modeling using
multiple models of computation (e.g. finite-state machine, process networks, discrete events), allowing
applications to be described using time and concurrency primitives which better reflect their nature.

An actor-oriented NoC model was developed for this work using was reference model the HERMES
infrastructure [7]. It has a 2D mesh topology and wormhole switching, and all its buffers, arbiters and routers
are modeled as actors, which communicate by exchanging tokens. Ptolemy II was used as the modeling
framework here, but other environments supporting actor semantics could be used as well. The flit-by-flit
transmission of packets over the NoC is modeled by token exchanges by the actors. A 1-to-1 mapping of flits to
tokens can provide high accuracy, but it leads to long simulation times. Instead, in this work the packet payload
is abstracted using PAT [8], which reduces simulation time while still obtaining accurate results for latency and
throughput.

To support the rate-based power estimation model, the proposed actor model also includes the following
features:

1. Each buffer computes its average reception rate - avrr, according to Equation 2, where:
recPkts, number of received packets in the sample window; flit, is the flit size; T, the clock
period; and sw the sample window, in clock cycles.

e recPkts x pktSize x flit (2)
T x sw

SIM 2010 — 25" South Symposium on Microelectronics 127

2. The power dissipation of the links (LinkPD) is calculated according to the following
Equations:

link zp,, = C, g < fNoC xVec? (3)

oa

Link,, = (link g, x (wx a))x avrr 4)

where:
Cioad represents the total switching capacitance of the wires
fNoC is the NoC frequency
W is the number of the wires used for data transmit ion
o is the link switch activity

3. A monitor collects the average reception rate of each buffer, avrr (Equation 2), and the
switching activity of its associated link, which are sent to PowerScope at the end of each
sample period. The power dissipation is obtained applying avrr to the individual power
equations (6 in Fig. 1, Pbuffer, Pcrossbar and Pcontrol). The power dissipation of the router
is then computed from Equation 1.

PowerScope generates graphics and a report including energy consumption, maximum, minimum and
average power per router. PowerScope uses the following power parameters: (i) switch control base dissipation;
(if) switch control variable dissipation; (iii) buffer base dissipation; (iv) buffer variable dissipation; (v) link
switch activity.

4, Results

In terms of accuracy, results indicate that the difference error in the average power dissipation between both
actor-oriented and RTL models is negligible [9]. These results prove that the proposed simplified NoC power
estimation model can accelerate the power estimation (when compared to RTL models) due to the design
flexibility, setup and debugging features, without any loss of accuracy.

In terms of evaluation time, the rate-based power estimation is slower than volume-based estimation models
(e.g. Hu [10] that applies simple equations) and faster than commercial tools (e.g. Synopsys PrimePower), that
has to generate the switching activity for the entire NoC, which can be unfeasible [9]. Considering Synopsys
PrimePower as reference model, the rate-based model (VHDL implementation) has an average error (relative
difference) of 5% while the volume-based model (algorithmic model) presented an error up to of 50% for
power estimation analysis [9].

Four applications were modeled (using actors and UML diagrams) in Ptolemy II: (i) HDTV, comprising end-
to-end transmission of 10 HDTV channels, modeled as 2 application blocks, with frames obtained from real
application traces; (ii) VOPD (Video Object Plan Decoder), modeled as 12 application blocks; (iii) MPEG4
decoder, modeled as 12 application blocks [3]; and (iv) an automotive application, modeled as 10 application
blocks [5].

The NoC infrastructure has the following parameters: 6x6 mesh topology, XY routing algorithm, 32-bit flit
size, packets with 128 flits and handshake control flow. The rate-based power model was calibrated using the
XFAB XCMOS 0.18 um (XCO018) 1.8V technology, adopting clock-gating, and a 250 MHz clock frequency.

The MPSoC power estimation was obtained for different application characteristics and two different
mapping heuristics. The simulation scenario has all four applications executing simultaneously in the same
platform for one second and the design space exploration varies:

e switching activity in the NoC links: 10%, 20%, 30%, 40% and 50%;

e mapping heuristic : random (reference worst-case mapping) and GI (greedy incremental).

Fig. 2 shows the NoC average power dissipation for two different mapping heuristics, when varying the link
switching activity. As expected, the impact of the mapping heuristic on the average power dissipation can be
clearly seen. The power dissipation increases with the increase of the switching activity: for a switching activity
of 50%, the difference between GI and random mapping reaches 48.16%. Such results show the importance of
profiling an application’s average switching activity, and using it to guide design choices. The heuristic GI
presents less NoC average power dissipation because applications are mapped in one region, minimizing
network congestion.

128 SIM 2010 — 25™ South Symposium on Microelectronics

200,00 Gl W Rand
180,00 ancom
— 160,00
=
= 140,00
= 120,00
& 10000
¢ 8000
© 60,00
Z
40,00 +—
20,00
0,00 - . . . |

10% 20% 30% 40% 50%
Link Switching Activity

Fig. 2 — NoC average power dissipation for two mappings and link switching activity.

5. Conclusions and Future Work

The most promising technique to explore the complex design space of NoC-based MPSoC platforms is to
build simpler, more abstract models of applications and platform components, and to evaluate the impact of
alternative compositions on performance and power dissipation. The accuracy and speed of such evaluation
must be high, and the effort to build and compose such models must be very low, so that they can provide
meaningful results early on the design flow.

This paper addressed an import issue in this scenario: the accuracy of power estimation of high-level NoC-
based MPSoC models. By integrating the rate-based power model into an abstract model that can be use to
obtain accurate NoC power results of multi-applications mapped onto NoC-based MPSoCs platforms.

Additional work will also be done on extending the power estimation model so that it considers also the
power dissipation due to the switching activity in the router buffers.

6. References

[1] Krenik, B. 4G wireless technology: When will it happen? What does it offer? In: IEEE Asian Solid-
State Circuits Conference (A-SSCC'08), 2008.

[2] Atitallah, R. B.; et. al. MPSoC Sower estimation framework at transaction level modeling. In: Int.
Conference on Microelectronics (ICM'07), 2007.

[3] Lee S. E. at. al. A high level power model for Network-on-Chip (NoC) router. Computers & Electrical
Engineering, 35(6), 2009.

[4] Kahng, A.; et. al. ORION 2.0: A Fast and Accurate NoC Power and Area Model for Early-Stage
Design Space Exploration. In: Design, Automation and Test in Europe (DATE’09), 2009.

[5] Maittd, S. et al. Validation of Executable Application Models Mapped onto Network-on-Chip
Platforms. In: IEEE Symposium on Industrial Embedded Systems (SIES'08), 2008.

[6] Guindani, G. et al. NoC Power Estimation at the RTL Abstraction Level. In: Computer Society Annual
Symposium on VLSI Design (ISVLSI'08), 2008.

[7] Ost, L. et al. A Simplified Executable Model to Evaluate Latency and Throughput of Networks-on-
Chip. In: Symposium on Integrated Circuits and Systems Design (SBCCI’08), 2008.

[8] Moraes, F. et al. HERMES: an Infrastructure for Low Area Overhead Packet-switching Networks on
Chip. Integration the VLSI Journal, 38(1), 2004.

[9] Ost, L.; et. al. A high abstraction, high accuracy power estimation model for networks-on-chip. In:
Symposium on Integrated Circuits and Systems Design (SBCCI'09), 2009.

[10] Hu, J.; Marculescu, R. Energy-aware mapping for tile-based NoC architectures under performance
constraints. In: Asia South Pacific Design Automation Conference (ASP-DAC'03), 2003.

SIM 2010 — 25" South Symposium on Microelectronics 129

Implementation and Evaluation of a Congestion Aware Routing Algorithm
for Networks-on-Chip

Leonel Tedesco, Thiago Gouvea da Rosa e Fernando G. Moraes

Pontificia Universidade Catolica do Rio Grande do Sul (PUCRS)
Av. Ipiranga, 6681 - prédio 32 - Porto Alegre - Brazil - CEP 90619-900
{leonel.tedesco, fernando.moraes}@pucrs.br

Abstract

The goal of this work is to propose and evaluate an adaptive source routing algorithm, where the path
between source and target PEs may be modified due to congestion events. The proposed method requires QoS
session establishment and traffic monitoring. A QoS session establishes a connection between two IPs, applying
application constraints. Traffic monitoring carries congestion information to the target, leading to a global
view of the routing path. Evaluated performance figures include latency, traffic distribution and the delay to
switch to a new path. For hot-spot traffic scenarios, the average latency is reduced by 10%. The proposed
routing method also achieved a better network occupation. The delay to switch to a new path defines how fast
the algorithm reacts to a congestion event. The proposed algorithm modifies the path in average after few
messages, conduction the flow to a new path with minimal latency.

1. Introduction

The heterogeneity of applications on the emerging embedded systems is an important feature to consider on
the MPSoC design. Processing elements, which perform distinct functions and produces different traffic
patterns, bring dynamicity and unpredictability to the overall chip communication events. In addition, different
QoS requirements and levels are found 0, which are usually specified in terms of throughput, latency and
deadlines 0. Due to this dynamic behavior, the treatment of unpredictable events and QoS constraints should be
carried out at run time. Monitoring units, which collect statistical traffic information, are largely employed in
NoCs. Such units can notify some modules of the system that abnormality in the network traffic has occurred.
If the monitored parameter is out of its bounds, some action is taken. Examples of actions driven by monitoring
include: data injection control 0, dynamic priorities for QoS packets 0, dynamic buffer allocation 0, adaptive
routing algorithms 000.

The major part of the state of the art proposals for adaptive routing algorithms considers local traffic
monitoring, i.e., each router analyses their immediate neighbors to choose the output port. This approach
presents a limited view of the network traffic, being suitable for traffic workloads with a high degree of locality,
where nodes communicate with those that are closer to them. In traffic patterns with lower locality, the local
monitoring may induce the routing of a given traffic to other congested areas. The main contribution of this
work is a method that uses information collected on the source-target path to execute adaptive source routing.
To avoid hot spots produced by dynamic traffic events, the proposed method is summarized as follows: (i)
traffic monitoring, done in a distributed way, with information collected on the routing path; (i7) transmission of
congestion information to the traffic source; (ii7) modification of the path to the target at the source, if a
congestion path is detected.

2. Monitoring and Congestion Detection

Two packet classes are employed: DATA and ALARM packets. ALARM packets are used to notify the
source router the congestion points in the source-target path. The ALARM packet is a high priority packet,
containing only 1 flit. Three tables store congestion information: (i) SCT (Source Congestion Table), inserted at
the source NI; (i7) RCT (Router Congestion Tables), available in all routers of the NoC; (iii) TCT (Target
Congestion Table), inserted at the target NI. The SCT contains, for each hop, 3 fields: ~op number; path, which
identifies the output port taken at each hop; cong, which indicates if the hop is congested or not. The RCT has a
set of entries, each one for a given QoS flow passing through the router. Each entry stores the flow
identification (flow number), the hop number (identification), and the metric used to identify congestion. The
TCT stores the congestion level at each router of the source-target path.

The first packet of the flow establishes a session between the source-target pair. Each session contains one
or more messages, and each message are composed by fixed size packets. Although a session is established,
there is no resource reservation, as in circuit switching. This first packet initializes the field identification of all
RCTs in the path, and the TCT.

After session initialization, each DATA packet is transmitted with a different ident value (varying from 1 to
the number of hops in the path). When a router in the path receives a DATA packet, it verifies the ident field,
and if its matches with the router address, ocup information is inserted into to packet. This field is filled with

130 SIM 2010 — 25™ South Symposium on Microelectronics

the value of the parameter adopted for QoS evaluation. This parameter can be, for example, the amount of used
buffer slots, the output data rate or the average time spent by packets to traverse the router.

At the end of each message, the NI compares the TCT congestion levels to a given threshold, previously
defined according to the QoS requirements of the application that generates the flow, back propagating an
ALARM packet. If there is no congestion, all congestion bits of the ALARM packet are zero. Otherwise, the
ALARM packet contains the address (hop number) of the congested routers. When the source router receives
the ALARM packet, a new path is computed (if it is necessary) and used for the next message. No packet
reordering mechanism is necessary since (i) all packets of a given message use the same path; (ii) packets
belonging to different messages are not mixed, because an ALARM packet must be received before the
transmission of a new.

3. Path Computation Algorithm

The definition of the new path adopts the following assumptions: (/) minimal routing, all paths have the
same number of hops to the target; (ii) the new path should use, if it is possible, routers near to the oldest path
to minimize the impact of the new flow in other existing flows; (iii) the x direction has higher priority when
computing a new path; (iv) the search in the x direction continues until a y column in the present x position is
congestion free. Two data structures are used in the proposed method, being localized in the NI of the source
router. A matrix stores the congestion history of the routers that were part of the paths computed by the routing
algorithm. Considering that adaptive minimal routing is used, these routers are those inside the rectangle
defined the by addresses of the source-target pairs. A vector is used to store the current congestion level of the
path.

The method for adaptation is exemplified by the Fig. 1. The objective is to obtain a partial path with lines
and columns of the mesh without congested routers. The adaptive algorithm starts seeking non-congested
routers in the x direction (as in the XY routing algorithm). The y direction is taken when a congested neighbor
in the x direction is congested. If so, the next hop must be the next located in the y direction, as illustrated in (a).
If not, routers in the x direction are analyzed. The next step is to define the search space for the present y
address. In (b) all routers in y=2 are not congested. The columns for each router on the current y coordinate are
analysed. For each router in an x position, it is verified all routers which belong to the correspondent x
coordinate, and that can make part of the new routing path. If there is at least one congested router, the column
related to its x coordinate is considered not congestion free. The goal is to find the closest congestion free
column to the target router. Fig. 1 (b) illustrates that there are two columns that are congestion free, in the x
coordinates 1 and 3.

1 - First hop of the new path 3 - Route untillast targety
must be in the y direction target Two columns with no congested routers coordinate and complete the path|
4

First router in the x 2- Route until last congestion | Group of routers

rection i free column which are
direction is congested °

(a) (b) (c)
Fig. 1 — New path definition algorithm.

Once an x coordinate congestion free is found, the path is incremented with the horizontal and vertical
routing directions, until the y coordinate of the target is reached. In the example shown in Fig. 1(b), the path is
completed with 3 routes on the x direction. In Fig. 1(c) is shown 3 routes in the y direction. This is done
between the lines 24 and 33. Once the partial path is completed, it is necessary to complete the path until the
target node, if the target is not already reached, which may occur. Due to the fact that an alignment in x or y
direction with the target router will be achieved after the execution of new path function, only routing in the
vertical or horizontal direction will be done. Fig. 1(c) illustrates a path completion until the target, with one
routing hop in the x direction (in the example, the east direction). Before the adoption of the new path, a special
DATA packet is sent to the target using the previous path to clean the congestion tables. The new path is than
initialized with a DATA packet to open a new routing session, identifying the routers of this path. Considering
that minimal routing is adopted, the TCT on the target remains with the same size.

4, Results

The implementation of the presented methods is in SystemC TLM. The main features of the used NoC are
are: (i) source routing; (if) wormhole packet switching; (iii) flit size equals to 32 bits; (iv) end-to-end credit

SIM 2010 — 25" South Symposium on Microelectronics 131

based flow control. Fig. 2 illustrates the spatial traffic distributions. A CPU, responsible to control the traffic
generators, is placed in the NoC central position. The QoS flows, generated by S nodes, execute the method for
adaptive routing, generating each one 500 16-flit packets. Traffic targets, labeled as T, analyze the congestion
condition of the QoS paths and generate ALARM packets. In both traffic distributions QoS flows are SI>TI
and S2->T2, and the shadowed routers generate disturbing flows. Each router monitors the time each flit waits
in the input buffers before being injected into the network. Such spent time is defined as flit time. The latency
of a flit is the addition of all flit times in the path. For the scenarios with disturbing traffic, a router with flits
waiting more than 2 clock cycles to be injected into the network is considered congested. Each disturbing
source generates 250 16-flit packets.

Fig. 2 — Spatial traffic distributions, complement and hot-spot (higher locality).

4.1. Latency Evaluation

Latency evaluation only considers packets of QoS flows S1->T1 and S2->T2. Table 1 presents the
obtained average latency and standard deviation values, in clock cycles. The proposed routing method does not
decrease the average latency values for the complement traffic distribution. Two reasons explain such behavior:
traffic evenly distributed inside the network, leading to an absence of paths to be explored by the adaptive
routing; overhead for path changing.

Table 1 — Packets Latency Results for QoS flows, in clock cycles (AV: Average, SD: Standard Deviation).

. Compl t Traffic Distributi Hot-spot Traffic Distribution
Message s Without the proposed . Without the proposed .
Flow for QoS flows| With the proposed method With the proposed method
(packets) method method
P AV SD AV SD AV SD AV SD
8 (S1) 65.9 19.3 63.6 (-3.5%) 20.5 59.2 9.5 53.6 (-9.5%) 9.7
S1 > Tl 16 (S2) 66.2 19.3 63.8 (-3.6%) 19.9 59.2 9.5 52.8 (-10.8%) 10.0
32 (83) 65,7 19.2 64.4 (-1.9%) 21.9 59.3 9.5 54.2 (-8.6%) 10.3
8 (S1) 47.1 1.4 48.6 (+3.2%) 5.2 58.4 11.5 51.1 (-12.5%) 8.9
S2 > T2 16 (S2) 47.2 1.9 48.7 (+3.2%) 5.1 57.9 11.2 51.2 (-11.6%) 9.1
32 (83) 47.3 2.6 48.3 (+2.1%) 45 57.9 11.2 51.8 (-10.5%) 9.5
110 Without the proposed method 110 With the proposed method —
100 100
90 90
= =
2 g0 2 g0
2 &
o @
-1 70 -~ 70
60 60
50 50
0 50 100 150 200 250 300 350 400 450 5 0 50 100 150 200 250 300 350 400 450 500
121.800, 119.702 Packet number 316.600, 113.298 Packet humber

Fig. 3 — Latency values for S2->T2 flows, message with 8 packets.

On the other hand, for the hot-spot scenario it is possible to observe that the average latency decrease is in
average 10% and the latency standard deviation in average 7%. In this scenario, congestion on specific regions
of the network where introduced, and the method proposed detected and avoided these regions. Fig. 3 illustrates
the latency for each packet for flow S2->T2. It is possible to note that from packet number 200, the latency
reach its minimum value (Fig. 3(b)). In Fig. 3(a) the packets that passed through congestion points arrive to the
target node with variable latency values, also introducing jitter.

132 SIM 2010 — 25™ South Symposium on Microelectronics

4.2. Reaction to congestion events

The hot-spot scenario is the one which allows a greater path exploration. The routing mechanism reaction is
the amount of packets sent with an undesired QoS level. We evaluate this metric according to the number of
packets inside each message, i.e, the granularity of the algorithm. The worst case is for QoS messages with 32
packets (compare Fig. 3(b) to Fig. 4). This shows that long messages leads to a later treatment of congestion
events, i.e., the reaction of the algorithm to congestion events take a longer time.

As shown in Fig. 4, the shortest message reaches minimal latency in packet 200. However, some greater
latency values are observes from packets 330 to 350. The use of longer messages, as shown in Fig. 4, conducts
to a slower reaction time. As the number of monitored events is also increased with longer messages, the
algorithm is able to find a less congested path, suppressing the noise observed in Fig. 3.

75

32 packets per message —
70

65

60

Latency

55

50

45
0 50 100 150 200 250 300 350 400 450 50C
318.701, 75.8794 Packet number

Fig. 4 — Latency values for S2->T2 flows, message with 32 packets.

5. Conclusions and future work

The original contribution of this research work is a new method for adaptive routing to be used in networks
on chip. This method takes routing decisions based on the congestion path of each QoS flow, bringing to the
routing algorithm a global view of the path being routed, not only neighbors routers status, as the state of the art
proposals. The average and standard deviation on the packet latency show the effectiveness of the method when
compared with a fixed routed flow. Reduction on the packet average latency and standard deviation was
reached for the hot-spot traffic pattern. The use of messages of variable sizes also allowed the evaluation of the
reactivity time of the algorithm.

Future works include comparison of the proposed method with other routing algorithms (which can use
source or distributed routing). In addition to performance, the cost of the method in terms of area and power
will be conducted. Experiments using other traffic distributions and real traffic scenarios are also part of future
works.

6. References

[1T Marculescu, R. et al. “Outstanding Research Problems in NoC Design: System, Microarchitecture, and
Circuit Perspectives”. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, v. 28(1), 2009, pp 3-21.

[2] Tedesco, L. et al. “Application Driven Traffic Modeling for NoCs”. In: SBCCI’06, pp. 62-67.

[3] Ogras, U. Y.; Marculescu, R. “Analysis and Optimization of Prediction-Based Flow Control in
Networks-on-Chip”. ACM Transaction on Design Automation of Electronic Systems, v.13(1), 2008,
article 11, 28p.

[4] Mello, A. et al. “Rate-based Scheduling Policy for QoS Flows in Networks on Chip”. In: VLSI-SOC
2007, pp. 140-145.

[51] Nicopoulos, C.A et al. " ViChaR: A Dynamic Virtual Channel Regulator for Network-on-Chip Routers".
In: MICRO’06, pp. 333-346.

[6] Hu,J.; Marculescu, R. “Dyad — Smart routing for networks on chip”. In: DAC’04, pp. 260-263.

[71 Lotfi-Kamran, P. et al. “BARP-A Dynamic Routing Protocol for Balanced Distribution of Traffic in
NoCs”. In: DATE’08, pp. 1408-1413.

[8] Gratz, P. et al. “Regional Congestion Awareness for Load Balance in Networks-on-Chip”. In: HPCA’08,
pp. 203-214.

SIM 2010 — 25" South Symposium on Microelectronics 133

Flow Oriented Routing for NoCs

Everton Carara, Fernando G. Moraes

Pontificia Universidade Catolica do Rio Grande do Sul (PUCRS)
Av. Ipiranga, 6681 - prédio 32 - Porto Alegre - Brazil - CEP 90619-900
{everton.carara, fernando.moraes}@pucrs.br

Abstract

Several NoC routing schemes proposals targeting overall performance optimization are available in the
literature. However, such proposals do not differentiate flows. The goal here is to demonstrate that adaptive
routing algorithms can be used in flows with temporal constraints, enabling an enhanced degree of path
exploration. Flows with no temporal constraints should use a constrained, deterministic version of the same
adaptive routing. The main contribution of this work is to expose the routing algorithm at the IP level. The
obtained results show significant gains in latency, throughput and jitter for hotspot scenarios.

1. Introduction

Several works propose routing schemes to achieve the advantages of deterministic/adaptive and
minimal/non-minimal routing algorithms on a same router/NoC. In common these approaches have as their
main goal to avoid congested regions using alternative paths provided by some adaptive routing scheme. In
general, the router congestion level is obtained by input buffers monitoring later spread to adjacent routers by
means of dedicated sideband signals. When a new packet arrives to a given router, neighbors congestion levels
are considered to help the routing algorithm avoiding congested routers in the path.

Nilsson et al. [1] propose the Proximity Congestion Awareness (PCA) scheme using the hot-potato routing
scheme in the Nostrum NoC [2]. At each router, the routing decision is based on the neighbors’ congestion
signals, designated stress values. These values can be computed as the average number of packets coming from
the neighbors over a sample period. A similar approach is presented by Ye et al. [3], where a proposed
contention look-ahead routing scheme combines the advantages of wormhole switching and hot-potato routing.
Congestion signals, allied to a penalty scheme are used to choose whether to send the packet towards a
profitable route (minimal path) or a misroute (non-minimal path).

DyAD (Dynamic Adaptive Deterministic) [4], is a well-known routing scheme which combines the
advantages of adaptive and deterministic routing algorithms. Also based on neighbors’ router congestion levels,
the router switches between adaptive and deterministic routing. In the presence of neighborhood congestion, the
router uses adaptive routing, otherwise it employs deterministic routing. The used routing algorithm is the odd-
even [5] in two minimal versions: adaptive and deterministic. Other two routing schemes very similar to DyAD
are presented in [6] and [7]. In the former [6], the difference is the use of only two versions of the adaptive odd-
even routing algorithm: minimal and non-minimal. The approach suggests the use of non-minimal routing when
neighborhood congestion is detected, otherwise it suggests the use of minimal routing. The latter work [7]
presents the DyXY routing scheme based on the XY routing algorithm. In this minimal routing scheme, while
the packet is not aligned in X or Y axes, the next router is chosen based on the neighbors’ congestion levels.

In all reviewed works, there is no flow differentiation implied. The main goal of them has been to improve
overall performance as evaluated for example through latency and throughput experimental results. The
efficiency of all methods is questionable, due to their reduced design space exploration. This paper proposes a
new routing scheme, called flow oriented routing, to increase the performance of specific flows. In common
with previous methods, our work also combines adaptive and deterministic routing algorithms. The main
difference is the possibility to specify at run time if the routing will be adaptive, for QoS flows, or
deterministic, for BE flows. This approach exposes the routing scheme to the IP level, allowing its combination
with other mechanisms to improve soft QoS support.

2. Flow Oriented Routing

Flow oriented routing is a feature that can be added to any adaptive routing algorithm. The basic condition
is that there exists a deterministic version of the selected adaptive algorithm. It can be proved that such a
version always exist, by fixing a single path between each source/target pair from all paths usable by the
adaptive algorithm. The proposed scheme allows the NoC to simultaneously provide adaptive and deterministic
routing. As adaptive routing offers alternative paths, it can be applied to high priority flows while low priority
flows are routed deterministically.

An important problem in adaptive routing schemes is the output port selection metric. As reviewed before,
the common policy has been to use neighborhood congestion level as decision metric. As discussed earlier,
such metric does not ensure a congestion-free path, since this is local information and may lead packets to not

134 SIM 2010 — 25™ South Symposium on Microelectronics

locally visible congested areas. To reduce the area overhead, and keep the implementation as simple as
possible, this work does not adopt local congestion detection. When more than one output port is available, the
selected port is the one which leads to the shortest path to the target (non-minimal routing algorithm is
adopted). If all output ports lead to shortest paths, the first free port is selected. The area overhead with regard
to a router with congestion detection is very small (less than 1%), while the presented related works have an
area overhead around 5%.

Several adaptive routing algorithms can be used, such as the turn model ones [8]. This work suggests as
case study the Hamiltonian routing algorithm [9], due to its simplicity and the possibility to use it for
multicasting without incurring in deadlock risk.

2.1. Hamiltonian Routing Algorithm

A Hamiltonian path for a graph is any path that visits every graph vertex exactly once. In the Hamiltonian
routing algorithm, each NoC router receives a label. In a NoC with N routers, the label assignment is based on
the router position on a Hamiltonian path, where the first router in the path is labeled 0 and the last one is
labeled N-1. Fig. 1 illustrates a possible label assignment to routers based on a Hamiltonian path in a 4x4 mesh
NoC. The labeling process divides the network in two acyclic and disjoint subnetworks. The high-links
subnetwork (solid lines) contains all links whose direction is from lower-labeled routers to higher-labeled
routers, and the low-links subnetwork (dashed lines) contains all links whose direction is from higher-labeled
routers to lower-labeled routers.

Fig. 1 - Example of label assignment based on a Hamiltonian path in a 4x4 mesh.

The non-minimal partially adaptive version of the Hamiltonian routing algorithm works as follows. A
packet in a router with a label lower than the destination router is forwarded to any higher label neighbor router,
which has a label lower or equal to the destination router. Consider, for example, the source router 6 and 14 as
the target router. The possible paths taken by the packet are: {6, 9, 14}, {6, 9, 10, 13, 14}, {6, 9, 10, 11, 12, 13,
14}, {6,7, 8,9, 14}, {6,7, 8,9, 10, 13, 14} and {6, 7, 8,9, 10, 11, 12, 13, 14}. In a similar way, when a packet
is in a router higher than the destination router, it is forwarded to any lower neighbor router, which has a label
higher or equal to the destination router. Consider, for example, the source router 13 and 7 as the destination
router. The possible paths taken by the packet are: {13, 10,9, 8, 7} and {13, 12, 11, 10,9, 8, 7}.

To create a minimal deterministic version from the partially adaptive Hamiltonian routing algorithm, the
forwarding condition can be restricted to “forward to the higher/lower neighbor router, which has a label
lower/higher or equal to the destination router” (depending on the source and target labels). In the examples
6—14 and 13—7 the paths are respectively {6, 9, 14} and {13, 10, 9, 8, 7}.

In this paper, the Hamiltonian routing algorithm is used simultaneously in the two presented versions (7)
non-minimal partially adaptive and (i7) minimal deterministic. To allow the routing engine to differentiate
packets, one available bit of the packet header is defined as the routing bit. This routing bit is used to specify
which version of the routing algorithm is executed.

3. Results

This section presents the evaluation of the flow oriented routing in a real NoC-based MPSoC platform. The
evaluated performance figures are latency, throughput and jitter. The transmission of a given flow through the
NoC may modify the original flow rate, inducing variable latency values, resulting in missed deadlines at the
target IP. Jitter is this instantaneous variation in latency, and must be minimized in applications with QoS
constraints.

SIM 2010 — 25" South Symposium on Microelectronics 135

3.1. NoC in a MPSoC

HeMPS [11] is a homogeneous NoC-based MPSoC platform. Its main hardware components are the
Hermes [10] NoC and the Plasma-IP, which wraps a mostly-MIPS open source processor called Plasma, a
network interface, a DMA module and a private RAM memory. The system contains a master processor
responsible for managing system resources and slave processors responsible for tasks execution. In this
experiment, the Hermes NoC was modified to support the flow oriented routing.

The target application is a MJPEG decoder operating on gray-coded images, partitioned into 9 tasks. The
MJPEG task mapping is illustrated in Fig. 2, considering the deterministic version of the Hamiltonian routing
algorithm. The Plasma-IPs connected to routers 3 to 7 execute only system debug, corresponding to a
disturbing traffic. This scenario characterizes a hot spot region between tasks IVLC2 and IVLC3.

The MJPEG tasks communicate in a pipeline fashion. The Start task reads a compressed data stream and
continuously sends 266-flit packets to task IVLC1. The remaining tasks inject 138-flit packets into the network.
The disturbing tasks inject 50-flit packets. Due to the software tasks execution time (CPU bound), the used link
bandwidth is very small (less than 3%).

Three scenarios are evaluated: (i) all flows routed deterministically; (i7) all flows routed adaptively; (ii7)
only MJPEG application flows routed adaptively.

Table 1 presents the latency and throughput results for all MJPEG flows. Latency results are in clock cycles
and throughput corresponds to a percentage of the total link bandwidth. Total time is the time spent to finish the
application execution in clock cycles. The total execution time without disturbing traffic is 2,051,939 clock
cycles (ideal execution time).

Fig. 2 - MJPEG mapping and flow spatial distribution.
Table 1 — Latency and throughput results for MJPEG running on the HeMPS MPSoC.

Routing
Deterministic Adaptive Flow Oriented
Latency Throughput Latency Throughput Latency Throughput

Start - IVLC1 477.57 2.37% 479.6 2.64% 477.4 2.7%
IVLC1 - IVLC2 349.5 1.23% 349.4 1.28% 349.5 1.41%
IVLC2 - IVLC3 1621.2 1.23% 1668.66 1.28% 377 1.41%
IVLC3 - IVLC4 350 1.23% 349.9 1.28% 349 1.41%
IVLC4 - IVLC5 349.5 1.23% 349.4 1.28% 350 1.41%
IVLC5 - IQUANT 349 1.23% 349 1.28% 349 1.41%
IQUANT - IDCT 349.5 1.23% 349.5 1.28% 349.5 1.41%
IDCT - PRINT 350 1.23% 350 1.28% 350 1.41%
Total time (cycles) 3,932,709 2,209,991 2,078,633

Execution time overhead 91.66 % 7.7% 13%

Comparing adaptive and deterministic routing, the latency of flow IVLC2->IVLC3 is not reduced, since the
disturbing traffic competes with this flow in both scenarios. The advantage of adaptive routing with regard to
deterministic routing is in the total execution time reduction. In the deterministic scenario, due to higher
contention, IVLC2 injects packets only after some debug tasks finish and contention reduces. This is why it
takes a long execution time with an average latency similar to deterministic routing. The flow oriented routing
can avoid the hot-spot region, reducing latency to values near to other MJPEG flows, with increased
throughput. The execution time overhead here is only 1,3%.

Fig. 3 presents the jitter evaluation. As in the previous experiment, the use of adaptive routing for all flows
does not suppress jitter. On the other hand, flow differentiation can suppress jitter, as illustrated in this
experiment.

136 SIM 2010 — 25™ South Symposium on Microelectronics

LRI
|

-1000 |
-2000 |
" Packets | ——— Deter ———— Adapt. ‘

-3000 |
—— Flow

3000 -

2000 -

1000 -

—

-4000

Fig. 3 — MJPEG experiment jitter evaluation, in clock cycles.

A naive interpretation could assume that in a real MPSoC with most tasks running in software only a small
interference of disturbing traffic would occur, due to the huge available NoC bandwidth and small injection
rates (as shown in columns throughput of Table 1). The presented experiment demonstrates that in a real
MPSoC, disturbing traffic can severely impact latency, execution time, as well as jitter, important performance
figures in applications with QoS constraints.

4, Conclusions

The main contribution of this work is to display the benefits of exposing the NoC routing algorithm to the
IP level, in the same way as achievable through arbitration (use of priorities) and switching method (circuit or
packet switching). The proposed method is general, not targeted to a specific NoC, neither to a specific routing
algorithm. A typical wormhole packet switching NoC and the Hamiltonian routing were employed only to
demonstrate the effectiveness of the method in practice.

The main idea behind flow oriented routing is to restrict path exploration to flows with performance
requirements. There is no reason to enable BE flows to be routed adaptively, since they can in this way
unnecessarily disturb flows with QoS constraints. Therefore, the evaluation of new routing proposals should
change the way to evaluate performance, since for example reducing overall latency could not correspond to
getting closer to fulfilling real-time requirements in a MPSoC with multiple applications running
simultaneously.

5. References

[1] Nilsson, E.; Millberg, M.; Oberg, J.; Jantsch, A. “Load distribution with the proximity congestion
awareness in a networks on chip”. In: Design Automation and Test in Europe (DATE), 2003, pp. 1126-
1127.

[2] Kumar, S.; Jantsch, A.; Soininen, J.-P.; Forsell, M.; Millberg, M.; Oberg, J.; Tiensyrja, K.; Hemani, A.
“A Network on Chip Architecture and Design Methodology”. In: IEEE Computer Society Annual
Symposium on VLSI (ISVLSI), 2002, pp.105-112.

[3] Ye, T.; Benini, L.; Micheli, G. “Packetization and routing analysis of on-chip multiprocessor
networks”. Journal of Systems Architecture, 50(2-3), 2004, pp. 81-104.

[4] Hu, J.; Marculescu, R. “DyAD-Smart Routing for Networks-on-Chip”. In: Design Automation
Conference (DAC), 2004, pp. 260-263.

[5] Chiu, G. “The Odd-Even Turn Model for Adaptive Routing”. IEEE Transactions on Parallel and
Distributed Systems, v.7(11), 2000, pp. 729-738.

[6] Sobhani,A; Daneshtalab, M.; Neishaburi, M.; Mottaghi, M.; Afzali-Kusha, A.; Fatemi, O.; Navabi, Z.
“Dynamic Routing Algorithm for Avoiding Hot Spots in On-chip Networks”. In: International
Conference on Design and Test of Integrated Systems in Nanoscale Technology (DTIS), 2006, pp. 179-
183.

[7] Li, M.; Zeng, Q.; Jone, W. “DyXY — A Proximity Congestion-Aware Deadlock-Free Dynamic Routing
Method for Networks on Chip”. In: Design Automation Conference (DAC), 2006, pp. 849-852.

[8] Glass, C. J.; Ni, L. M. “The Turn Model for Adaptive Routing”. Journal of the Association for
Computing Machinery, 41(5), 1994, pp. 874-902.

[9] Lin, X.; McKinley, P. K.; Ni, L. M. “Deadlock-free Multicast Wormhole Routing in 2-D Mesh
Multicomputers”. IEEE Transactions on Parallel and Distributed Systems, 5(8), 1994, pp. 793-804.

[10] Moraes, F.; Calazans, N.; Mello, A.; Moller, L.; Ost, L. “HERMES: an Infrastructure for Low Area
Overhead Packet-switching Networks on Chip”. Integration the VLSI Journal, 38(1), 2004, pp. 69-93.

[11] Carara, E.; Oliveira, R.; Calazans, N; Moraes, F. “HeMPS - A Framework for NoC-Based MPSoC
Generation”. In: IEEE International Symposium on Circuits and Systems (ISCAS), 2009, pp. 1345-
1348.

SIM 2010 — 25" South Symposium on Microelectronics 137

Adaptive Buffer Size Based on Flow Control Observability for
NoC Routers

Anelise Kologeski, *Caroline Concatto, ‘Débora Matos, ‘Fernanda Kastensmidt,
Luigi Carro, *Altamiro Susin, 2Marcio Kreutz
{alkologeski, cconcatto, debora.matos, fglima, carro, susin} @inf.ufrgs.br, kreutz@dimap.ufrn.br

Y'UFRGS - Federal University of Rio Grande do Sul (PGMICRO, PPGC), Porto Alegre, Brazil
2UFRN —Federal University of Rio Grande do Norte, Natal, Brazil

Abstract

The communication among cores of a MPSoC having reusable interconnections is being provided by
Networks-on-Chip (NoCs). To meet the need for communication, a solution proposed is to have an adaptive
router, in which each channel can have a different buffer size according to the system requirements. In this
situation, if a channel has a communication rate smaller than its neighbor, it may lend some of its buffer units
that are not being used and ensures performance during the execution of different traffic flow. This paper
proposes a mechanism that verifies, during run time, the behavior of the data traffic in the adaptive router.
From the observability of the data flow, the system uses a control equation that adapts itself to provide an
appropriate buffer depth for each channel to sustain performance with minimum power dissipation.

1. Introduction

Nowadays, embedded devices use several Processor Elements (PEs) to run one application. The PEs can
integrate complex Multiprocessor System-on-Chips (MPSoCs), which are responsible by run completely an
application. To guarantee the communication network between the PEs, there are Network-on-Chips (NoCs)
[1]. The NoC aims to solve the interconnections problem of older techniques, providing high parallelism,
scalability and reusability. NoC designs typically target a specific application, and hence it is customized at
design time to achieve best energy and performance. However, if the architecture allows dynamically
reconfigurable network, then is possible get best results as latency, throughput and power dissipation, avoiding
efficiently the redesign and handling for some situations not foreseen at design time [2].

One example of changes in the communication flows is shown in fig.1 (a), the task graph of Xbox360 [3].
The task graph contains a platform with several PEs, and each PE has a throughput and bandwidth to
communicate with other PE. Xbox is a video game, and hence the communication pattern can change according
to the user behavior. When the user is saving the game, nine PEs are used, when photos are read from the USB1
others seven PEs are used and when the system is uploading some configuration, five PEs are used, as depicted
in fig. 1(b), 1(c) and 1(d), respectively. The communication rates are expressed in Gbps and the arrows indicate
the communication flow.

Fig. 1 - Four possibilities of traffic behavior using Xbox 360.

In [4] the buffer size of the NoC can change at run-time according to the need of the system, showing a
better power-performance product, but without any internal control flow. Therefore, we propose a set of sensors
and an automatic control mechanism to dynamically calculate the buffers depth for each input channel of the
router, according to the network traffic and target application.

This paper is organized as follows. After presenting the related works in section 2, in section 3 we present
the architecture of the adaptive router and the control system that is the main proposal of this paper. The
performance and synthesis results are shown in section 4, and we conclude our paper in section 5.

138 SIM 2010 — 25™ South Symposium on Microelectronics

2. Related Works

In the literature some works present solutions that address the need for adaptability. In [5] the authors
propose an adaptive architecture with runtime observability. The adaptive process only occurs in the presence
of a fault, and hence no performance or power reduction can be obtained during the normal system operation.

In [6] given the traffic of a target application and the total budget of the available buffering space, an
algorithm optimizes the allocation of buffering resources across different router channels, while matching the
communication characteristics of the target application. However, buffer sizing is developed at design time for
each target application.

In [7] a NoC architecture with bidirectional channels that can be self-reconfigurable at run-time is proposed.
This proposal allows transmit flits in the two directions, in order to increase the performance. The allocation of
the channel is based only in the request. The main problem of this approach is that it does not consider the
target application to distribute channels for each router, and it does not have a priority scheme to distribute
these channels. If BiNoC uses the channels in only one direction at a time, this can decrease the performance of
the network, since a channel with lower traffic get the channel before the router with a higher traffic.

The related works presented in this paper do not consider at the same time the traffic behavior and a policy
to distribute the resources. This proposal cover exactly this gap, presenting an adaptive buffer slots allocation
strategy based in a policy to distribute the buffer slots at run-time, according to the requirements of each
channel of the router.

3. Adaptive Router Architecture

The proposed router architecture is a VHDL soft-core, with configurable channel width, input buffer depth
and routing information width. The router used in this architecture is the RASoC (Router Architecture for SoC),
and it composes the network-on-chip called SOCIN (SoC Interconnection Network) [8].

There is a limit in the increase of the buffer depth since in the worst case of communication scenario may
compromise area and power. In this situation, if a channel has a communication rate smaller than its neighbor,
it may lend some of its buffer slots that are not being used. This architecture is able to sustain performance due
to the fact that not all buffers are used all the time. Each channel can have flits stored on its own buffer or in the
left or right neighbor channels [4]. Fig. 2 shows an example of the buffer reconfiguration in a router according
to a needed of bandwidth in each channel. First, a buffer depth with the same size for all channels is defined in
design time. In this case, we defined the buffer size equal to 4, as illustrated in fig. 2(a). After, the traffic in
each channel is verified and a control string defines the buffer depth needed in each channel, as showed in fig.
2(b). The distribution of the buffer words among the neighbor channels is realized as showed in fig. 2(c).

Narth Channel 4 I

Bl q X

— X 1]) Fast Channe

West Channel

4
4 9

South Channel!

Fig. 2 - (a) Buffer depth original (b) necessary for traffic (c) and adaptive.

For sustain performance even for situations not foreseen at design time, the main strategy presented here is
to observe the traffic behavior of the application, and size the buffer depth according to the traffic verified in
the channels at run-time.

The traffic controller was implemented to each input channel of the router. Each input channel has a buffer
that contains a FIFO to store the flits. In FIFO is controlled the input flow, the handshake it and the routing of
the flits that arrive in the input channel. The Buffer Depth Controller (BDC) is new in this work and encloses
three others blocks, they are the Monitor, Integrator and the Buffer Slots Allocation (BSA), and are presented in
the follow.

3.1. Monitor

The Monitor block observes the traffic of the channel, being basically a counter. Each one of the channel
monitors verifies how many packets pass through its channel, and when the sum of all packets from a router
reaches the limit value, a timer is activated. The timer defines the time in which the router must reallocate the
buffer depth for each channel. When this value is reached, the buffers reallocation is made among the channels.

3.2. Integrador

The Integrator calculates the new buffer depth for each channel, according to the traffic behavior and the
application. For the reallocation of buffers we use the simple first order control equation (1):
buffer_need,,, = (@) x buffer_need,; + (1 - @) x traffic_rate (1)

SIM 2010 — 25" South Symposium on Microelectronics 139

The o value is defined according to the application, being a value between 0 and 1. To calculate
buffer_need,,, is used shifts for multiplication and sums. Equation 1 considers the past traffic in conformity
with o, i.e., higher o values indicate that the past has a greater weight, and lower a values favor the
instantaneous traffic occurrence. The buffer slot number used until the moment is buffer need,, and
traffic_rate indicates the traffic rate in the channel, measured by the quantity of packets that passing by it.

As the allocation of buffers is done with the borrow/lending process among the adjacent neighbor channels,
the maximum number of buffer slots that each channel can take will be 3 times the original buffer depth defined
in design time. If more than one neighbor channel needs to borrow some buffer slots, an arrangement among
the channels will be necessary.

3.3. Buffer Slots Allocation

This block is the responsible to define and rearrange the final buffer depth for each channel of the router
based in results obtained with the Integrator block. To allocate the appropriate buffer depth, the Buffer Slot
Allocation (BSA) block receives the calculated buffer depth by Integrator of each adjacent channel, but this
computed depth is not always possible. When two adjacent channels need to borrow buffer slots, they need to
do it according to some priority and available free buffer slots in the neighborhood.

The BSA block is active after of the Integrator calculates the new buffer depth for each channel. It will
allocate buffers following a policy. Firstly it checks if the buffer depth required is greater than the buffer depth
defined in design time. In the affirmative case, the algorithm tries to borrow buffer slots from the right
neighbor. A buffer slot is only borrowed when it is not needed by its own channel. When the channel cannot
borrow buffer slots from the right neighbor, it tries to borrow buffer slots from the left neighbor.

It is possible that a channel needing a larger buffer size does not receive whole the buffer slots required. The
new buffer depth will be the original depth defined at design time, plus the buffer slots that could be obtained
from the neighbors or less depth borrowed. As each channel has a BSA block run in parallel, this system allows
the rearrangement of buffers of the router in the same time. It guarantees that the sum of all buffer slots will
never be greater than the sum of the buffer slots defined at design time for each channel.

The required time for the buffer slots allocation policy for each channel is very small. From the moment that
the result of equation 1 is ready, in the worst case, when the channel needs to borrow buffer slots from the right
and left neighbors to reach the required depth, is four clock cycles.

4, Results

4.1. Performance Evaluation

In our experiments were used a fixed-length packet with 80 flits and an 8 bits link size. We analyzed four
situations for the Xbox 360, as shown in fig.1, and we used a 3x4 NoC mapped according to the need for
communication. We call each one of these traffics as Xbox1 (v0), Xbox2 (v1), Xbox3 (v2) and Xbox4 (v3),
respectively. A cycle-accurate traffic simulator described in Java was utilized to evaluate the average latency
and the throughput of the network. Fig. 3 shows the results of latency for the adaptive and homogeneous router.
The homogenous router presents all channels with a fixed buffer size equal to 4. The adaptive router uses a
buffer depth allocator with a equal to 0.125. In addition, the buffer depth is monitored and changed at run time
when 128 packets pass through a router.

In this experiment we considered the possibility of traffic shown in fig. 1 running in a sequence of events:
first runs Xbox1 (v0), then run Xbox2 (v1), after Xbox3 (v2) and finally Xbox4 (v3). Each initial buffer size is
the depth obtained in the last traffic behavior. We can observe in fig. 3 that, with for the adaptive router, the
average latency was reduced and that the buffer depth influences the average latency of the network. The
adaptive router shows approximately 75 % of reduction in the average latency when compared with
homogenous router with buffer size equal to 4.

Following the same configuration previously adopted, we verified the throughput of these experiments. Fig.
4 shows the throughput results for the homogenous and proposed router considering the traffic behavior of
Xbox1 and all 60 channels of 3x4 NoC. We observed that the throughput increases on average 4.5 times using
the adaptive router with the buffer depth allocator instead than the homogeneous router. This experiment shows
that for the same buffer size, the adaptive router is more utilized and presents a higher throughput.

4.2. Area, Power and Frequency Results

We used the ModelSim tool to simulate the code. We analyzed the average power consumption results to a
CMOS 0.18um process technology using the Synopsys Power Compiler tool. Table I presents the results
obtained with this analysis. The power results were obtained using the maximum frequency of each
architecture. In this case, to reach the same average latency obtained with the adaptive router, the homogeneous
router needs much larger buffers. For the four traffic patterns used of the Xbox application, the homogeneous
router needs to have approximately a buffer depth equal to 9, in comparison to a buffer depth equal to 4 in the
adaptive router with a equal to 0.125.

140 SIM 2010 — 25™ South Symposium on Microelectronics

@

= AR with @ = 0,125

B
a

original m AR with a=0,125

= j: | | original
3. B
3“ - _% 15

-m LR |

i v va e ’ ® mChannels ® B ” °
Fig.3 - Latency results for homogeneous and our Fig.4 - Throughput results for homogeneous and our
proposed routers using the traffic behaviors for Xbox proposed routers using Xbox 1 with buffer depth equal
360 with buffer depth equal to 4. to 4.

The adaptive router reduces the power consumption by 28% on average, and it uses 55% smaller buffer
depths to reach the same performance results. For the same average latency, the frequency of the adaptive
router is higher than the homogeneous router, however the area consumption is larger, due to the extra
hardware used to define the buffer depth allocation at run-time.

Tab.1 — Results to the adaptive and homogeneous router architecture.

Architectures Buffer | Area (um’) | Maximum Frequency | Power Consumption @ Max.
Depth (MH?) Freq (mW)
Homogeneous Router 4 79.130 265 6,48
9 138.175 222 13,33
Adaptive Router with o. = 0,125 4 254.957 224 9,49

5. Conclusion

In this paper we shown an automatic controller to dynamically allocate the buffer depth according to the
traffic measured in each channel of the router. The buffer depth is obtained from a borrowing/lending process
among the adjacent channels. The proposed architecture presents gains in throughput and average latency when
we consider homogeneous and adaptive architectures. A same NoC can be used to different traffic behaviors,
without presenting any performance loss.

As a future work we are planning to do more experiments with other NoC topologies and with different
applications, study fault tolerance in architecture and analysis a best time for update of the buffer depth, as well
as study the use of clock gating to save power.

6. References

[1] Dall'Osso, M., Biccari, G., Giovannini, L., Bertozzi, D., Benini, L., Tavel, P., “Xpipes: A latency
insensitive parameterized network-on-chip architecture for multiprocessor SoCs,” Proc. 21st International
Conference on Computer Design. ICCD’03. 2003. pp. 536-539.

[2] Matos, D., Concatto, C., Kologeski, A., Kreutz, M., Carro, L., Kastensmidt, F. and Susin A,
“Adaptive Router Architecture Based on Traffic Behavior Observability,” Proc. 2nd International Workshop on
Network on Chip Architectures, International Symposium on Microarchitecture, 2009, pp. 17-22.

[3] Andrews, J., Baker, N., “Xbox 360 System Architecture,” IEEE Micro, 2006, Vol. 26. no. 2, pp. 25—
37.

[4] Concatto, C., Matos, D., Carro, L., Kastensmidt, F., Susin, A., Kreutz, M., “NoC Power Optimization
Using a Reconfigurable Router,” IEEE Computer Society Annual Symposium on VLSI, 2009, pp. 235 — 240.

[5] Al Faruque, M.A., Ebi, T., Henkel, J., “ROAdNoC:Runtime Observability for an Adaptive Network
on Chip Architecture,” In IEEE/ACM International Conference on Computer-Aided Design, (ICCAD 2008),
pp. 543-548.

[6] Jingcao, H., Ogras, U. Y., Marculescu, R., “System-Level Buffer Allocation for Application-Specific
Networks-on-Chip Router Design,” In IEEE Transaction on Computer-Aided Design of Integrated Circuits and
Systems, 2006, pp. 2919-2933.

[7] Ying-Cherng Lan, Shih-Hsin Lo, Yueh-Chi Lin, Yu-Hen Hu, Soa-Jie Chen., “BiNoC: Bidirectional
NoC Architecture with Dynamic Self-Reconfigurable Channel,” In 3" ACM/IEEE International Symposium on
Networks-on-Chip, 2009, pp. 266-275.

[8] Zeferino, C., Susin, A., “SoCIN: A Parametric and Scalable Network-on-Chip,” 16th Symposium on
Integrated Circuits and System Design,2003, pp. 169-174.

SIM 2010 — 25" South Symposium on Microelectronics 141

Crosstalk Fault Tolerant NOC - Design and Evaluation

Alzemiro H. Lucas, Alexandre M. Amory, Fernando G. Moraes

Pontificia Universidade Catolica do Rio Grande do Sul (PUCRS)
Av. Ipiranga, 6681 - prédio 32 - Porto Alegre - Brazil - CEP 90619-900
{alzemiro.silva, alexandre.amory, fernando.moraes}@pucrs.br

Abstract

The innovations on integrated circuit fabrics are continuously reducing components size, which increases
the logic density of systems-on-chip (SoC), but also affect the reliability of these components. Chip-level global
buses are especially subject to crosstalk faults, which can lead to increased delay and glitches. This paper
evaluates different crosstalk fault tolerant approaches for Networks-on-chip (NoCs) links such that the network
can maintain the original network performance even in the presence of errors. Three different approaches are
presented and evaluated in terms of area overhead, packet latency, and residual fault coverage. Results
demonstrate that the use of CRC coding at each link is preferred, when minimal area overhead is the main
goal. However, each one of the methods presented here has its own advantages and can be applied depending
on the application.

1. Introduction

Besides the communication infrastructure, an important SoC design challenge is the degradation of the
signal integrity on long wires. Coupling capacitances tends to increase with the reduced components size.
Faster clocks and lower operation voltage makes the delay induced by crosstalk effects even more critical,
being the major source of errors in nanoscale technologies 0. Another noise sources that can produce data errors
0 are electromagnetic interference, radiation-induced charge injection and source noise.

Compared to buses, NoCs provide more opportunities to implement fault tolerance techniques for intra-chip
communication. For instance, a NoC has multiple paths for any pair of modules, which can be exploited to
improve the fault tolerance of the communication by using adaptive routing algorithms. Techniques based on
codification for error detection/correction can also be applied for NoCs. Other approaches include place and
route techniques to avoid routing of bus lines in parallel, changes in the geometrical shape of bus lines and
addition of shielding lines between two adjacent signal lines. However, those techniques require advanced
knowledge on electric layout design, and they are executed later in the design flow.

Considering these issues, bus encoding techniques represents a good tradeoff between implementation costs
and design time to minimize crosstalk effects 0, and it is a technology independent mechanism to increase
reliability on intra-chip communication. Table 1 summarizes the related work.

Table 1 — Comparison of related works.

Reference Method Implement_atlon/ Metrics Types of
Evaluation Faults
- CRC/Hamming on links
ZIM03 0 - Fault Model Implementation - Residual error rate Transient
- QoS
BERO4 0 : g\?vlijt::critg-Zvaitch retransmission Implementation Not presented Transient
VELO04 0 . ganty/Hammmg on links Implementation - Latency Transient
- QoS - Power
- End-to-end retransmission
- Switch-to-switch retransmission: - Latency
MURO5 0 -Flit level Evaluation - Power Transient
-Packet level - Residual error rate
- Correction + Detection
- End-to-end retransmission
- Switch-to-switch retransmission: - Message arrival probability
GREOQ7 0 -Flit level Evaluation - Average detection time Transient
-Packet level - Average correction time
-Retransmission with and without priority

This paper evaluates error recovery mechanisms to increase the reliability of NoC links, making it resilient
against crosstalk faults. As a design constraint, the evaluated mechanisms must be able to keep the NoC
performance (latency, throughput, and bandwidth) in case of errors. Additional design constraints include low
area overhead, high fault coverage, and minimum delay.

142 SIM 2010 — 25™ South Symposium on Microelectronics

2. Crosstalk Fault Tolerant NoC Architectures

This paper presents three different strategies for fault tolerance on NoC links. All methods use as reference
design the Hermes NoC 0.

2.1. NoC with link CRC

Figure 1 illustrates the first fault tolerant architecture implemented, which protects only the NoC links. This
strategy provides router-to-router flit-level error detection and retransmission. This figure represents two
adjacent routers, the sender and the receiver routers, and a link between them. Modifications compared to the
non-fault tolerant design are in grey. It includes a CRC encoder at the sender, a CRC decoder and an error flip-
flop at the receiver, additional signals crc_in and error_out in the link, and slight modifications in the input
buffers.

When the sender sends a flit to the receiver, it encodes the CRC in parallel due to its combinational logic.
The CRC is sent through the crc_in signal to the receiver, which decodes it and test for faults. If there is no
fault, the flit (not the CRC) is stored in the receiver buffer. If some fault arrives, the flit is not stored into the
buffer, and an error is signaled, through the error_out signal, back to the sender, which retransmits the last flit.
This approach enables error recovery in one clock cycle.

Sender Router Receiver Router Input Buffer
Input Buffer .
error_out link
1~ GO |
dataiin(15:0)(\ | o 7y
g
f . CRC Decoder
error_out H -
error_out |
»
>

Figure 1 - Block diagram of the fault tolerant NoC design based on CRC for links.

The benefit of this approach is that the buffers and the buses width inside the router remain unchanged,
saving silicon area. Only the external router interface receives new signals for error detection and recovery. The
impact in silicon area, power, and delay is smaller. There is no impact on the latency when the network has no
faults. Under a faulty condition the latency is incremented by one clock cycle only, which is an advantage
compared to an approach based on end-to-end retransmission. This approach also provides the following
additional advantages:

e It is not necessary to store full packets at each router, enabling the use of wormhole packet switching,
reducing area, power and latency compared to store-and-forward or virtual cut- through;

e This method is faster compared to full packet retransmissions, since once an error is detected, the flit can
be retransmitted in the next clock cycle;

e Error detection occurs before routing decision, making the network resilient against misrouting due to
header flit errors;

e Flits to be retransmitted are available at the sender routers buffers, inducing smaller area overhead.

2.2. NoC with source CRC

This section presents the second fault tolerant NoC architecture, which is illustrated in Figure 2. This figure
illustrates a path from the source router to a given router located in the path to the destination router.
Modifications compared to the non-fault tolerant design are in grey. It includes a CRC encoder at the sender
node, a CRC decoder and an error flip-flop at the receivers (intermediate routers and destination node),
additional signals crc_in and error_out in the links, and a slight modification in the input buffers.

The main modification compared to the design in Section 2.1is that the CRC encoder is located only at the
Network Interface (NI) of the module connected on the router local port. The CRC bits became part of the flit,
increasing the width of all buffers of the network, as well as the internal buses of the routers, so that the CRC
bits are carried through the network as part of the packet. As can be seen, the data_out signal have now 20 bit
instead of 16 as the previous network, because this signal includes the crc_out signal, presented before in
Figure 1.

SIM 2010 — 25" South Symposium on Microelectronics 143
Outcomming NI Ro;Jter Ro;ter Router n Input Buffer
—eeee >
| |datatcre(19:0) data+crc(19:0) $
‘ ‘ ‘ ‘ ‘ }—»{ CRC Encoder‘ > X > X | CRC Decoder
T error_out error_out m
b =

Figure 2 - Block diagram of the fault tolerant NoC design based on source CRC coder.

This network has the advantage of using four less CRC modules at each router (local port does not have
CRC). On the other hand, it increases the buffer width, which increases the silicon area, the power
consumption, and the delay of routers. This approach uses the same mechanism to recover the corrupted data
from the input buffers at the previous router, thus, this network presents the same latency as the previous
network to retransmit corrupted flits (one clock cycle).

Another advantage of this approach is that it can not only protect the links, but also protect certain internal
logic of the router. It is possible to detect transient or even permanent faults in certain internal modules of the
routers like the buffers and the crossbar, however, it cannot detect faults in most of the router control logic.
Another limitation is that, if the fault is a bit-flip in a buffer, the error cannot be recovered. Therefore, other
techniques for fault tolerance should be adopted.

2.3. NoC with Hamming on Links

Figure 3 presents a simplified structure of the network with Hamming code on links. This figure represents
two adjacent routers (sender and receiver) where the link has been changed to carry Hamming parity bits. The
sender has a combinational Hamming encoder at the output ports and the receiver has a combinational
Hamming decoder at the input ports. Unlike the previous networks, none of the internal modules of the routers
were changed.

link Receiver Router

L
-

Sender Router

L

Figure 3 - Block diagram of the fault tolerant NoC design based on Hamming code.

Input Buffer

data_in(15:0) /\

. data_in(15:0;
Hamming _in(15:0)

Decoder

Hamming parity_in(4:0) l J
Encoder \/

The incoming flits of the receiver are first decoded and then saved in to the buffer. If there is a single fault
the Hamming decoder corrects it transparently, without need of flit retransmission, thus, unlike the previous
networks, this approach does not add latency to the network in a faulty situation. Note that there is no error
signal from the receiver to the sender like the previous networks.

3. RESULTS

3.1. Area Overhead

Four networks have been implemented and synthesized using Cadence Encounter RTL Compiler (0.35um
standard cells library) to evaluate the silicon area. Table 2 shows the results for a router with 5 ports and for an
8x8 network.

Table 2 - Area results for an 8x8 network (FT means Fault Tolerant).

Original NoC FT NoC Link CRC FT NoC Source CRC FT NoC Hamming

of Cells # of Cells % # of Cells % # of Cells %
Router w/ 5 ports 3537 4025 13.8 4145 17.2 4149 17.3
- Buffer 547 590 7.8 630 15.3 547 0
- FT Logic 0 256 - 144 - 612 -
Total NoC cells 208864 236672 13.3 243968 16.8 243136 16.4

The total standard cell area increased 13.3% for the FT NOC with CRC in the links. This area overhead is
due to the addition of CRC encoders and decoders at each router port.

The area overhead of the NoC with CRC computed at the source router is 16.8%. The area overhead for this

144 SIM 2010 — 25™ South Symposium on Microelectronics

NoC comes from the increased buffer size (flit + CRC bits). As previously mentioned, this network can also
provide some protection to transient faults on internal modules of the routers, justifying its use in designs where
router fault tolerance is required.

The network with Hamming on links presented an area overhead of 16.4% compared to the original
network. This overhead is due to the higher complexity of the Hamming decoding circuitry. The advantage of
this technique is the error correction without retransmission, not interfering in the network latency in the
presence of faults.

In conclusion, these results point out that a more complex code would probably not be an affordable fault
tolerance technique for a NoC similar to Hermes 0. Perhaps, more complex NoCs could afford complex codes.

3.2. Latency Impact

Latency is evaluated using the following test scenario: (i) spatial traffic distribution: random destination; (i7)
temporal traffic distribution: normal distribution, with an average injection rate of 20% and 10% of the
available link bandwidth.

Table 3 presents results for the first scenario, with an average injection rate equal to 20% of the available
link bandwidth. Each router sends 100 48-flits packets, resulting in 6,400 transmitted packets. Two error
injection rates are adopted: 0.0717% (1,181 injected errors) and 2.03% (33,323 injected errors). As expected,
both CRC architectures do not add extra latency in the absence of faults, and present the same average latency.
The average latency increases 1.8% and 13% for a 1,181 and 33,323 injected faults respectively. The network
with Hamming code does not add extra latency for error protection, however with higher error injection rates
some faults are not corrected (residual faults).

Table 3 - Average latency, in clock cycles, for an injection rate equal to 20%.

Network Transmitted Error Injection Rate Injected Avg. Packet Latency Latency
Packets (%) Errors (clock cycles) Variation (%)

Original 6,400 0 0 839.39 0
0 0 839.30 0
Link CRC 6,400 0.0717 1,181 854.77 1.8
2.0300 33,323 948.47 13.0
0 0 839.30 0
Source CRC 6,400 0.0717 1,181 854.77 1.8
2.0300 33,323 948.47 13.0
. 0.0717 1,181 839.39 0
Hamming 6-400 2.0300 33,323 839.39 0

The previous scenario with 20% of injection rate corresponds to a worst-case scenario where the network is

congested. An injection rate of 10% of the available bandwidth, the second simulation scenario, corresponds to
a more realistic NoC traffic behavior. In this simulation, each router sends 200 48-flits packets, resulting in
12,800 transmitted packets. Two error injection rates are adopted: 0.113% (3,689 injected errors) and 2.23%
(72,392 injected errors). The results presented in Table 4 shows smaller latency values, due to the smaller
congestion inside the network (such average value is near to the minimal latency value, 70 clock cycles). The
average latency is in practice the same, with or without error injection at lower injection rates.

Table 4 - Average latency, in clock cycles, for an injection rate equal to 10%.

Network Transmitted Error Injection Rate Injected Avg. Packet Latency Latency
Packets (%) Errors (clock cycles) Variation (%)

Original 12,800 0 0 101.08 0
12,800 0 0 101.08 0

Link CRC 12,800 0.113 3,689 101.11 0
12.800 2.230 72.392 101.77 0

3.3. Residual Fault Analysis

This section shows the effectiveness of both methods to protect the network against crosstalk faults. In the
context of this work, residual faults are flits that cannot be corrected due to the limitation of the code used to
protect the network. Neither CRC or Hamming codes are able to detect 100% of the error patterns that can
occur in a 16 bit bus, however CRC can detect flits with error in multiple bits, and Hamming is limited to errors
on a single bit.

In this work we use Maximal Aggressor Fault Model (MAF) [1] to simulate fault injection on the network

buses. To analyze residual faults using CRC and Hamming codes, the saboteur module is parameterized to
inject faults varying the number of MAF model conditions to increase the error injection rate. The simulated

SIM 2010 — 25" South Symposium on Microelectronics 145

scenario considers a 5x5 network, with each IP sending 200 packets to a random destination, using 15% of the
link available bandwidth. Table 5 shows the results of these simulations.

Table 5 — Residual fault analysis.

MAF Transmitted Injected CRC Residual Hamming
Conditions flits errors Faults Residual Faults
d, 806,021 341 0 0% 0 0%
d,, d 808,716 444 0 0% 0 0%
d,, ds, gn 794,816 896 0 0% 0 0%
dr, dy, On, Op 809,575 16,727 14 0.08% 389 2.32%

As expected, the CRC coding presents a lower residual fault rate, since its fault coverage is higher than the
Hamming code. When all conditions of the MAF model are verified, a 2.32% and 0.08% residual fault rate is
observed for the Hamming and CRC codes, respectively.

4. Conclusions and Future Work

The goal of this paper was to evaluate different crosstalk fault tolerant methods for network links such that
the network can maintain the original network performance even in the presence of errors. Among the three
evaluated architectures, the CRC applied at each link is the recommend method to protect the network against
crosstalk effects. The source CRC penalizes area and power. On the other hand, the source CRC enables to
protect some internal router components, since data transmitted through the router is protected. The assumed
advantage of the Hamming codification, no retransmission required, presented a smaller fault coverage and
higher area overhead compared to CRC, however it can be an interesting alternative for some applications,
where a small number of data errors can be tolerated and the latency needs to be minimal.

It is possible to enumerate the following future works: (i) explore a source Hamming architecture, verifying
the feasibility to use it for internal router protection; (i7) develop new methods to protect the router, minimizing
the use of classical redundant approaches (TMR); (iii) evaluate and propose adaptive routing algorithms for
faulty routers.

5. References

[1T Cuviello M.; et al. “Fault Modeling and Simulation for Crosstalk in System-on-Chip Interconnects”. In:
IEEE/ACM Int. Conf. on Computer-Aided Design (ICCAD’99), pp. 297-303, 1999.

[2] H.H. K. Tang, K. P. Rodbell, “Single-event upsets in microelectronics fundamental physics and issues”.
In: Materials Research Society Bulletin, vol. 28, pp. 111-116, 2003.

[3] Bertozzi D.; “The Data-Link Layer in NoC Design”. In: Micheli G., Benini L.; Networks on chips:
Technology and Tools. Ed. Morgan Kaufmann, 408 p, 2006.

[4] Zimmer H.; Jantsch A. “A Fault Model Notation and Error-Control Scheme for Switch-to-Switch Buses
in a Network-on-Chip”. In: Hardware/Sofiware Codesign and System Synthesis (CODES+ISSS’03), pp.
188-193, 2003.

[S] Bertozzi D.; Benini L. “Xpipes: A Network-on-chip Architecture for Gigascale Systems-on-Chip”. IEEE
Circuits and Systems Magazine, vol. 4, no. 2, pp. 18-31, 2004.

[6] Vellanki P.; et al. “Quality-of-Service and Error Control Techniques for Network-on-Chip
Architectures”. In: Great Lakes Symposium on VLSI (GLSVLSI’04), pp. 45-50, 2004.

[71 Murali S.; et. al. “Analysis of Error Recovery Schemes for Networks on Chips”. IEEE Design and Test
of Computers, vol. 22, no.5, pp. 434-442, 2005.

[8] Grecu, C.; et al. “Essential Fault-Tolerance Metrics for NoC Infrastructures”. In: IEEE International On-
Line Testing Symposium (IOLTS 2007), pp 37-42, 2007.

[9] Moraes F.; et al. “HERMES: an Infrastructure for Low Area Overhead Packet-switching Networks on
Chip”. Integration, the VLSI Journal, vol. 38, pp. 69-93, 2004.

146 SIM 2010 — 25™ South Symposium on Microelectronics

SIM 2010 — 25" South Symposium on Microelectronics 147

Arithmetic and
Digital Signhal Processing

148 SIM 2010 — 25™ South Symposium on Microelectronics

SIM 2010 — 25" South Symposium on Microelectronics 149

Radix-2 Decimation in Time (DIT) FFT Implementation Based on Multiple
Constant Multiplication Approach

L2Sjdinei Ghissoni, *Eduardo Costa, “José Carlos Monteiro, “Cristiano Lazzari
'Ricardo Reis
{sghissoni,reis} @inf.ufrgs.br, ecosta@ucpel.tche.br, {jcm,lazzari} @inesc-id.pt

! Universidade Federal do Rio Grande do Sul - UFRGS
2 Universidade Federal do Pampa - UNIPAMPA
% Universidade Catolica de Pelotas - UCPEL
* Instituto de Engenharia e Sistemas de Computadores - INESC-1D

Abstract

This paper proposes the implementation of a radix-2 Decimation in Time (DIT) FFT using the Multiple
Constant Multiplication (MCM) approach. The MCM problem has been largely applied to the reduction of the
multipliers in digital filters. In MCMs, the operations over the constants are implemented by using
addition/subtractions and shifts rather than with general multipliers. In FFT filters, the butterfly algorithm
plays a central role in the complex multiplications by constants. Thus, the use of the MCM in the butterflies can
reduce significantly the number of real and imaginary multiplications by constants. It can be obtained by
sharing the twiddle factors of the butterflies as much as possible. In this work, we have implemented four stages
of 16 bit-width butterfly radix-2 with decimation in time for a 16-point FFT, by using both the MCM and the
general Booth multiplier. For each stage of the real and imaginary parts of the butterflies we were able to
apply the sharing of partials coefficients using MCM. The results were obtained by synthesizing the circuits in
the CADENCE Encounter RTL Compiler tool for the UMCI30nm technology. Ours results show that
reductions of 60% in area, 47% in delay, and 69% in the number of cells can be achievable by using the MCM
in the butterflies of the FFT.

1. Introduction

The Fast Fourier Transform (FFT) is an important algorithm used in many DSP applications, such as audio
and video process, wireless communication, and it is also found in modules of WLAN chips. The various
existing FFT algorithms use the partitioning of the set of input samples into sequences of half of the length of
the original sequence. This is done recursively until there are only sequences of length 2, where the input
samples cannot be more partitioned. This algorithm is named radix-2 FFT [1]. Partitioning the input sequence
into more than two subsequences leads to higher radices of the FFT algorithm, what leads to the increase of the
number of arithmetic operations. The complexity of the FFT architecture design is mainly given by the
multiplication of the inputs by a large number of coefficients.

In the last decades, a large amount of researches has focused the implementation of efficient multipliers, in
order to optimize area, delay and power consumption of this arithmetic operator. However, in the case of the
FFT circuit, where a large amount of complex multiplications are performed by the butterflies, even the use of
these efficient multipliers has not enabled optimizations in fully-parallel FFT architectures.

The multiplication of a set of constants by a variable, i.e., the Multiple Constant Multiplication (MCM)
approach has enabled significant impact on the design of Digital Signal Processing (DSP) area. In the MCM
operation, each constant is implemented using only addition/subtraction and shift operations rather than using a
general multiplier for each constant. A large amount of algorithms has been proposed to optimize the multiplier
block in digital filters by using the MCM approach [2]. However, only a few of them has been applied to FFT.
Thus, we propose to optimize a radix-2 DIT butterfly by using the MCM approach in order to allow for further
implementation of an efficient FFT architecture. We have used the algorithm of [2] for the generation of the
tree of adder/subtraction and shift operations.

This paper is organized as follows: in Section 2, we present an overview of Multiple Constant
Multiplications with FFTs algorithms. In section 3 is the presented the application of this approach MCM in a
butterfly. In Section 4 some result comparisons between butterflies using MCM and booth multiplier are
presented. Finally in Section 5, we present the conclusions of this work and some ideas for future works.

2. Application of the MCM Problem in the FFT Architecture

The Fast Fourier Transform (FFT) algorithm is a simpler form to calculate the Discrete Fourier Transform
(DFT) efficiently. In the last years, many algorithms have been proposed for the improvement of performance
of the FFT butterflies. Equation 1 presents the radix-2 butterfly with decimation in time [1], where the N°
multiplications obtained in the direct DFT are reduced to logoN multiplications. This aspect enables a real
increase of computational performance in the solution of the Fourier transform. The FFT can reduce the

150 SIM 2010 — 25™ South Symposium on Microelectronics

computational complexity of the DFT, because its butterfly can process the calculation of two samples at a
time.

Several other algorithms were developed to further reduce the computational complexity of the butterfly, such
as radix-4, split-radix, radix-2°, radix-2/4/8, and higher radix versions. However, all of them are based on the
butterfly of [1].

N-1
K
X(K)= D x(n) J/ \-K=0.LN-1 (1)
n=0
27
W = e_JW
where " is the twiddle factor.

2.1 Related Work

In the last ten years, several researches have been proposed algorithms for the optimization of the FFT
architectures. In [3], the authors proposed a new radix-2/4/8 algorithm, which can effectively minimize the
number of complex multiplications in pipelined FFTs. In [4], an optimization of FFT architecture based on
multirate signal processing and asynchronous circuit technology is proposed. In [5], solutions based on parallel
architectures for high throughput and power efficient FFT cores are presented. Different combinations of hybrid
low-power techniques are exploited, such as the use of multiplierless units, which replace the complex
multipliers in the FFTs, the use of low-power commutators, which is based on advanced interconnection, and
the use of parallel-pipelined architecture. The method also uses MCM for the sharing of various multipliers
that are located in the same stage of the hybrid architectures. However, this methodology is not efficient and it
is not able to obtain the same reduction of area that we present in this work, and in some cases, area penalties
can be observed.

In [6], it is proposed the optimization of the twiddle factors using trigonometric identity for few points of
FFT architecture. The presented methodology proposes the replacement of the adders of the circuits by the use
of multiplexers. Based on the same idea, the work of [11] proposes a Low-Complexity Reconfigurable
Complex Constant Multiplication for FFTs for the reduction of area for a larger number of points (32 points).
This new methodology proposed by [6] and [11] was compared against the works [7-10], where reductions in
terms of the number of adders could be achievable. Although the authors of [6] and [11] do not present power
and delay results in their work, they comment that probably these metrics may lead to large circuits, due to the
limitation of the proposed architecture where only perform the FFT computation in serial form.

Although there are several techniques to reduce the complexity of the FFT architectures, only a few of
them uses the MCM approach for the sharing of the real and imaginary twiddle factors in the butterflies. In our
work, we presented the use of MCM algorithm proposed in [2] in order to reduce the complexity of the radix2
butterfly of the FFT with decimation in time.

3. Implementation of the 16-point Radix-2 DIT FFT

In fig. 1, it is presented the flow for the fully-parallel 16-point radix-2 FFT architecture with decimation in
time. The FFT is divided into four stages and each one of them is composed by eight butterflies. The butterflies
allow the calculation of complex terms, where one complex addition, one complex subtraction and one complex
multiplication are involved in the butterfly block. The blank rectangles shown in fig. 1 represent circuit
registers. The multipliers present in the butterflies were implemented by using both Booth multiplier and MCM
approach.

+ + + + +
[| | |t | 1 1 |t] [|t 1 |t 1 |t 1 |t]
Fig. 1 —16-point radix-2 DIT FFT architecture

SIM 2010 — 25" South Symposium on Microelectronics 151

In a 16-point Fully-parallel FFT implementation, 32 real and 32 imaginary terms are performed in the
butterflies (4 stages with 8 butterflies). Thus, the architecture presents large hardware requirements in terms of
arithmetic operators. In order to reduce the number of operators, we have applied the MCM approach to the
twiddle factors of the butterflies. Particularly, we have used the algorithms of [2], which enable the
optimization of the number of operations under a delay constraint. Firstly, the algorithm removes the repeated
twiddle factors in each stage. After the initial checking, it is possible to observe that, in fact, in the 16-point
radix-2 DIT algorithm, only three different coefficients are generated (by considering that the negatives
coefficients are easily obtained by the positive ones using the 2’s complement operation). Fig. 2(a) shows the
structure of the butterfly for the radix-2 DIT algorithm and fig. 2(b) shows its resultant twiddle factors
multiplications obtained by the application of the MCM algorithm presented in [2].

a)

<<1 y<<3 y
1]

+ [+] T

3y
Y 3y<<d y
y<<2 -+
[— -
Ty<<8 11y
3y<<6 11y
WHy=49y<<9=25088 | — |

— 1781y<<4 1781y
_T_l

W¥y=181y<<8=46336 Wy =30277y<<1=60544

b)

Fig. 2 — a) Structure of the butterfly for the radix-2 DIT algorithm. b) MCM approach applied to the
twiddle factors.

4, Results

This section shows the obtained results of a 16-point and 16-bit radix-2 DIT FFT implemented in Vhdl.
The Tab. 1 present area and delay results obtained from the implementation of fully-combinational booth
multipliers and optimized multipliers based on the work proposed in guided from the MCM algorithm of [2].
The logic synthesis was performed with the CADENCE Encounter RTL Compiler tool for the UMC 130nm
technology.

Tab.1 — 16-point and 16-bit Radix-2 DIT FFT results

Circuits Area (mmz2) N° Cells | Path Delay(ns) Adders/ Multipliers
Subtractors(16bits) | (16 bits)
Booth16 0,405 25114 29 256 128
MCM 0,159 7713 15,5 456 0

152 SIM 2010 — 25™ South Symposium on Microelectronics

In Tab. 1, it is possible to observe the large reduction in area that was obtained in the FFT architecture
when using MCM. In fact, this occurs mainly due to the large reduction on the number of multipliers that is
enabled by the use of MCM. As can be observed in Tab. 1, while no multipliers are used in the FFT when the
MCM technique is used, 128 multipliers are used for the architecture with booth multiplier. In fact, this large
number of multipliers is explained because 32 butterflies are used in the FFT architecture and each butterfly
requires four multipliers for the real and imaginary parts calculation. On the other hand, the number of
adders/subtractors is larger the FFT with MCM, because multipliers are implemented only with adders,
subtractors and shifts. It is important to highlight that shifts are implemented by rearranging interconnections,
and they are “free” in terms of occupied area. This aspect (the replacement of the general multipliers in series
by adders/subtractors with a reduced logic depth) has also allowed a significant increase of performance in the
FFT with MCM, as can be seen in Tab. 1, since the critical path is largely reduced in this architecture.

Power consumption is not taken into account in this work because it is not considered for the MCM
algorithm applied[2]. Anyway, we expect to obtain the same reduction on power consumption as we have
obtained on timing and area by the application of techniques based on power optimization.

5. Conclusions and Future Works

In this work we have applied the MCM approach in the butterflies of a 16-point radix-2 DIT FFT. The
obtained results show that the use of the MCM can reduce area and increase performance of the fully-parallel
FFT significantly, when compared to implementations with general booth multipliers. It is explained due to
the fact that the multipliers can be replaced by adders/subtractors and shifts, when using the MCM approach.
We used the algorithm proposed in [2] for the MCM implementation. Since this algorithm reduces the number
of operations under a delay constraint, we were also enabled to increase the performance of the FFT
significantly.

Although in this paper we have not taken into account the power consumption of the FFT, we are
convinced that the large impact on area reduction provided by the MCM can allow a low power FFT
implementation. Thus, as future work, we intend to verify the low power aspect that can be obtained by the use
of the MCM in the fully-parallel FFT implementation.

6. References

[1] J. W.;Cooley, J. W. Tukey, “An Algorithm for the Machine Calculation of Complex Fourier Series. Mathematics of
Computation”, [S.1.], v.19, n.90, p.297-301, 1965.

[2] Aksoy, L., Costa, E., Flores, P. and Monteiro J., 2008. Exact and Approximate Algorithms for the Optimization of
Area and Delay in Multiple Constant Multiplications, IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 27(6), 1013-1026.

[3] L. Jia, Y. Gao, J. Isoaho, and H. Tenhunen, “A New VLSI-Oriented FFT Algorithm and Implementation,” Proc. of
Eleventh Annual IEEE Int’l ASIC Conference, 1998, pp. 337-341.

[4] K. Stevens and B. Suter, “A Mathematical Approach to a Low Power FFT Architecture,” IEEE Int’l Symp. on
Circuits and Systems, vol. 2, 1998, pp. 21-24.

[5] W. Han, T. Arslan, A. T. Erdogan and M. Hasan, “High-performance low-power FFT cores,” ETRI Journal, vol. 30,
no. 3, pp. 451-460, June 2008.

[6] J.-E. Oh and M.-S. Lim, “New radix-2 to the 4th power pipeline FFT processor,”IEICE Trans. Electron, vol. E88-C,
no. 8, pp. 1740-1764, Aug. 2005.

[7] O. Gustafsson, A. G. Dempster, K. Johansson, M. D. Macleod, and L. Wanhammar, “Simplified design of constant
coefficient multipliers,” Circuits, Systems and Signal Processing, vol. 25, no. 2, pp. 225-251, Apr. 2006

[8] O. Gustafsson, A. G. Dempster, K. Johansson, M. D. Macleod, and L. Wanhammar, “Simplified design of constant
coefficient multipliers,” Circuits, Systems and Signal Processing, vol. 25, no. 2, pp. 225-251, Apr. 2006.

[9] O. Gustafsson, “A difference based adder graph heuristic for multiple constant multiplication problems,” in Proc.
IEEE Int. Symp. Circuits Syst., New Orleans, LA, 2007, pp. 1097-1100.

[10] Y. Voronenko and M. Puschel, “Multiplierless multiple constant multiplication,” ACM Trans. Algorithms, vol. 3,
no. 2, May 2007.

[11] F. Qureshi, Gustafsson, F. O.” Low-complexity reconfigurable complex constant multiplication for FFTs ” Circuits
and Systems. ISCAS 2009. IEEE International Symposium on, pp. 1137-1140 May 2009.

SIM 2010 — 25" South Symposium on Microelectronics 153

Synthesis-Based Dedicated Radix-2 DIT Butterflies Structures
for a Low Power FFT Implementation

'Mateus Beck Fonseca, 2Eduardo A. César da Costa, *Jodo Baptista dos S. Martins
beckfonseca@mail.ufsm.br, ecosta@ucpel.tche.br, batista@inf.ufsm.br

! Federal University of Santa Maria (UFSM)
2 Catholic University of Pelotas (UCPEL)

Abstract

This paper addresses the architectural exploration of dedicated structures of Radix-2 Decimation in Time
(DIT) butterflies for a low power Fast Fourier Transform (FFT) implementation. In the FF'T computation, the
butterflies play a central role, since they allow the calculation of complex terms. In this calculation, involving
multiplications of input data with appropriate coefficients, the optimization of the butterfly can contribute for
the reduction of power consumption of FFT architectures. In this paper different dedicated structures for the 16
bit-width pipelined radix-2 DIT butterfly operating on 100MHz are implemented, where the main goal is to
minimize both the number of real multipliers and the critical path of the structures. For the logic synthesis of
the implemented butterflies it was used Cadence tool Encounter RTL Compiler with XFAB MOSLP 0.18um
library. Cells count, Area and power consumption results are presented for the synthesized butterflies. For the
power consumption, the results are obtained after using 100 000 inputs vectors at the inputs of the butterflies.

1. Introduction

Power consumption in VLSI Digital Signal Processing Systems (DSP) has gained special attention mainly
due to the proliferation of high-performance portable battery-powered electronic devices such as cellular
phones, laptop computers, etc. In DSP applications, Fast Fourier Transform (FFT) is one of the most widely
used algorithms [1].

FFT is the largely implementation of the Discrete Fourier Transform (DFT), because this algorithm needs
less computation, achieved by a recursive implementation of an operator named butterfly. This operator
performs the calculation of complex terms, which involves the multiplication of input data by appropriate
coefficients [2].

FFTs can be computed with Decimation in Time (DIT) or with Decimation in Frequency (DIF) techniques.
However, in this paper, only the implementation of DIT butterflies structures is taken into account.

Sixteen mathematical forms of describing a complex multiplication are presented in [2]. However, some of
these structures are quite the same, since the only difference is in the operations signal or in the input positions.
Thus, for the sake of hardware complexity analysis, only a smaller number of structures are different and
therefore actually need to be compared.

In this work, the main goal is to reduce the number of real multipliers in the original DIT butterfly, which
is composed by four real multipliers to compute one complex multiplication.

Since the reduction in the number of multipliers is the main aspect to the power consumption reduction in
the butterflies, we have proposed a novel structure by using three multipliers. As will be shown, although the
new structure is not able to reduce the power consumption in the butterfly yet, it allows the employment of
other techniques that can contribute for the power reduction in the proposed structure.

For the synthesis of the butterflies, Cadence tool Encounter RTL Compiler with XFAB MOSLP 0.18um
library has been used with clock constraints at 100MHz. Area and power results are presented for the
butterflies. The results show that from the five analyzed structures, the structure with four multipliers is the one
that presents the lowest power consumption, due to the smaller critical path along the structure.

The rest of the paper is organized as follows. The next section makes an overview of relevant work related
to our own. In Section III we present the main aspects of the FFT algorithm with Decimation in Time. In
Section IV we present the implemented structures of the butterflies, including our proposed structure. Area and
power results for the butterflies obtained from logic synthesis tool are presented in Section V. Finally, in
Section VI we conclude this paper, discussing the main contributions and future work.

2. Related Work

Most of the FFT implementations presented in literature use four real multipliers to perform the complex
multiplication of the radix-2 butterfly. On the other hand, there are few works reporting the use of less than four
real multipliers. For instance, in [3][3] sixteen ways to perform a complex multiplication using three real
multipliers are presented. Although the analysis is focused on digital filters and not on FFT implementations, it
can be naturally applied to the structures of the butterflies, which are composed by complex multiplications.
The work of [4] introduces an unified approach for the development of the radix-2/4 decimation-in-time Fast

154 SIM 2010 — 25™ South Symposium on Microelectronics

Hartley Transform (FHT) and FFT algorithms. However, performance and power results from the proposed
structures are not presented. An FFT/IFFT design based on DIT algorithm is also presented in [S]. However,
the results are only focused on FPGA, where power consumption is not considered.

The works of [4] and [5] compare radix-2 DIT FFT butterflies in terms of area, delay and power
consumption for one structure using three and four real multipliers. The butterfly structures are implemented
based on CORDIC, Distributed Arithmetic and bit parallel multiplier. The butterflies were synthesized onto a
0.11um technology and the authors concluded that the butterfly based on bit parallel multiplier is power
efficient, but only for modest FFT sizes (less than 512 points).

In this work we explore the different ways of implementing butterflies based on the strategies of [3]. We
also propose a new form of implementing the butterfly by using three real multipliers. As in [4] and [5], we
investigate the implementation of radix-2 DIT butterflies using three and four real multipliers, but we have
done it for all the structures using only three multipliers. We explore the tradeoff between the number of
multipliers used in the butterflies and the reduction of the critical path of the structures. However, as the
opposite of the works of [6] and [7], which use bit parallel multiplier, Distributed Arithmetic (DA) and
CORDIC, we are using into the butterflies, the own multiplier synthesized by the Cadence tool.

3. Radix-2 FFT with Decimation in Time Algorithm

The main goal of the FFT algorithms is to compute the Discrete Fourier Transform efficiently [3]. The FFT
X(k) of a signal x(n) can be computed using (1), where Wy is named twiddle factor, i is the imaginary
component and N is the number of points of the FFT.

X(k)=gx(n)'Wﬁ",

_ _-i2x/N
W, =e

VO<k<N-1 e VO<n<N-I

O

In [4] it is proposed a flow to process the FFT algorithm. This flow can be seen in fig. 1(a) for the example
of an 8-point radix-2 FFT with decimation in time.

x(0) X(0)

x(4) > X(1)
x(2) 4 X(2) A +)~C=A+BW

(6) wy Wi \><></ X(3)
\ w
x(1) . ><><><>>§>< X(4)
(5) —2 Wi X(5) B D=A-BW
x(3) : X(6)

' ! W
X(7) — - X

(a) (b)
Fig. 1 - (a) 8-point radix-2 DIT FFT flow and (b) Butterfly structure of the radix-2 DIT

The hierarchical computational blocks in the FFT structure are stages, groups and butterflies. Each stage
requires the computation of groups, and each group requires the computation of butterflies. The butterfly plays
a central role in the FFT computation. For the radix-2 FFT algorithm with decimation in time, the butterfly
allows the calculation of complex terms according to the Fig. 1(b). The number of butterflies which are needed
to calculate an N-point FFT is given by (N/2) log2 N.

According to the structure shown in fig. 1(b), the butterfly is composed by addition, subtraction and
multiplication, where these operations involve complex numbers. These arithmetic operations enable the
calculation of the real and imaginary parts. The original structure of the butterfly involves four multipliers,
three adders and three subtractors for the calculation of the real and imaginary parts. In this work, we
implement and test some butterfly structures and we propose a new form of representing it.

4. Radix 2 DIT Butterfly Structures

Butterfly structures have one complex multiplication operation, and it can be done with three or four real
multipliers. In this section we present the original structure of the butterfly. The structures by using some way
of representing complex multiplication of [3] and the new proposed structure for the butterflies are also
presented in this section.

SIM 2010 — 25" South Symposium on Microelectronics 155

4.1. Dedicated Butterfly Structures

Fig. 2 (a) shows the most common structure of the radix-2 DIT butterfly for FFT with four multipliers and
six adders/subtractors operators based on the structure shown previously in Fig. 1(b). The dotted lines in fig. 2
and fig. 3 indicate the place of the registers used to create the pipelines.

Br Wr Bi Wi Br Wi Bi Wr

(a) (b)
Fig. 2 - (a) The original butterfly structure — Structure A, and (b) The proposed butterfly structure - Structure E

A new proposed form of representing the radix-2 DIT butterfly for FFT with three multipliers is presented
in fig. 2(b). In this text we will report it as structure E. As it can be observed, this structure has one less
multiplier (compared against the original structure A) and the same critical path presented by the structure B
(fig. 3(a)), i.e. four circuits in the critical path. However, the new structure needs a previous multiplication that
should be done and stored in Read Only Memory (ROM). Since the real and imaginary twiddle factors Wr and
Wi are stored in ROM, thus their product (Wr * Wi) can be stored in ROM memory too.

According to [3], there are sixteen forms to compute a complex multiplication using three real multipliers.
However, the hardware construction of some of them is very similar, since only swapping signals in sum
operations and/or inputs positions are needed. Thus, it is possible to create three groups of different structures
in physical implementation from the sixteen ones. These three groups of structures are represented in fig. 3.

(2) (b (©
Fig. 3 - The butterflies structures using the complex multiplication schemes of [2];
(a) Structure B; (b) Structure C; (c) Structure D

As can be observed in fig. 3, all the presented solutions lead to a structure with three multipliers. The
number of adders and subtractors are almost the same in the structures. The structure D (fig. 3(c)) presents a
decomposition of multiplication by 2 (represented by X2) and division by 2 (represented by /2). However, no
additional hardware is required for these operations, since they can be implemented by using only wires. The
main difference between the structures is in the critical path which is composed by four circuits in the structure
B and five circuits in the structures C and D (not considering the X2 and /2 blocks in the critical path of the
structure D, since they are only composed by wires).

5. Synthesis Results

All the developed architectures were described in Verilog with one and two pipelining stages and
synthesized to XFAB MOSLP 0.18um 1.8V library in typical operation conditions, using the Cadence
Encounter RTL Compiler tool. The Leakage power for each structure was obtained in the order of nano Watts

156 SIM 2010 — 25™ South Symposium on Microelectronics

(nW) scale, and thus suppressed in the results. Cells, area (in terms of number of cells and um?) and power
consumption results, after switching activity analysis using 100 000 inputs vectors, are presented in Tab. 1.

The presented results in Tab. 1 show that the structure A presents the less power consumption among the
structures. However, we have observed that the use of two levels of pipelining has lead to the significant power
consumption reduction from the structures from B to E. This occurs because with the use of two levels of
pipelining there is a combination of a large reduction in the critical path and the use of one less multiplier in
these structures. In this way, the structure C could be an interesting choice, since it presents less area with
almost the same power consumption of the structure A, when two levels of pipelining are taken into account.

Although our proposed structure E has not enabled gains in terms of area and power results, it has a
potential for optimizations, because this structure presents the regularity aspect (presented by the structure A)
and it allows the use of more efficient adder circuits, such as adder compressors.

Tab.1 — Synthesis Results for the 16-bit pipelined Butterflies Structures

1 Pipelining stage 2 Pipelining stages
Structure Cells | Area (um?) ?%VJS; Cells Area (um?) ?r?wv\‘ll\i)r
A 1765 45126 5.931 1958 47951 6.287
B 1943 42313 10.577 1710 45058 7.049
C 1895 41695 8.135 1841 45802 6.470
D 2279 44213 11.668 1928 48019 7.829
E 2388 48339 11.571 2118 53015 8.293

6. Conclusions

In this work several architectures for the pipelined radix-2 DIT FFT butterflies were presented. The
implemented butterflies structures were compared in three main scopes: i) the original structure by using four
real multipliers; ii) some way of representing complex multiplication of [3], where three real multipliers are
used; iii) one proposed structure with three real multipliers. The results we presented show that although the
structure A drives the best power consumption, all the other architectures are potentially power consumption
reduction, when two levels of pipeline are used, because they enable: i) the use of one less multiplier, and ii) the
large reduction of the critical path. Although the proposed structure E has not presented reductions in terms of
area and power consumption, its regular structure can allow some optimizations. Thus, as future work, we
intend to test the use of more efficient full custom adder compressors in our proposed structure. We also intend
to extend the tests of this work for some other larger radix-4 and radix-8 FFT butterflies.

7. References

[1T J. Cooley and J. Tukey, “An algorithm for the machine calculation of the complex Fourier Series” Math.
Comput., vol 19, 1965, pp. 297-301.

[2] Oppenheim and R. Schafer. “Discrete-Time Signal Processing”. Prentice Hall Signal Processing Series.
1989.

[3] Wenzler and E. Liider, “New structures for complex multipliers and their noise analysis,” in Proc. IEEE
ISCAS, vol. 2, Seattle, WA, 1995, pp. 14321435

[4] S. Bouguezel, M. Ahmad, and S. Swamy. An approach for computing the radix-2/4 DIT FHT and FFT
algorithms using an unified structure. IEEE International Symposium on Circuits and Systems. ISCAS
2005. pp. 836-839. vol. 1. 2005.

[5] C. Concejero, V. Rodellar, A. Marquina, E. Icaya and P. Vilda. FFT/IFFT Design versus Altera and
Xilinx Cores. 2008 International Conference on Reconfigurable Computing and FPGAs. ReConFig’08.
pp. 337-342. 2008

[6] J. Takala and K. Punkka. Scalable FFT Processors and Pipelined Butterfly Units. Computer Systems:
Architectures, Modeling and Simulation. Lecture Notes in Computer Science — LNCS. vol. 3133. pp.
373-382.2004.

[71 J. Takala, and K. Punkka. Scalable FFT Processors and Pipelined Butterfly Units. Jornal of. VLSI Signal
Process. 43, 113-123 (Jun. 2006), 113-123.

SIM 2010 — 25™ South Symposium on Microelectronics 157

Implementation of Adders Circuits Using
Residue Number System - RNS

Alexsandro O. Schiavon, Eduardo, A. C. da Costa, Sérgio J. M. de Almeida
alexschiavon@gmail.com, {ecosta,smelo}@ucpel.tche.br

Laboratorio de Microeletronica e Processamento de Sinais - LAMIPS
Universidade Catolica de Pelotas - UCPEL
Pelotas, Brasil

Abstract

With the growing in utilization of arithmetic operators in areas such as Digital Signal Processing — DSP,
the study of techniques to improve the performance of these circuits, such as the encoding of the operands, has
been taken into account. Thus, the main goal of this work is the study of adders using Residue Number System —
RNS. This encoding technique uses the residues of the numbers in order to perform the mathematics operations.
As the RNS divide the number in parts, and process each part in a separated way, it enables a reduction in the
number of bits and a parallelization of the operations. In the case of addition operation, this aspect contributes
for a significant reduction of carry propagation, which allows for an improvement of performance in this
operation. For the circuits of DSP area, such as digital filters, that uses a large amount of additions and
multiplications, the use of RNS can be a good alternative to improve the performance of these circuits.
However, as will be presented in this work, the conversion stages between the binary and RNS representations
represent a challenge for the improvement of performance in the arithmetic operators, because the gain in
performance which is obtained in the modular addition stage is generally lost in the conversion steps.

1. Introduction

The Residue Number System - RNS is a non-weighted number system [1] It consists in the decomposition
of a given binary number into smaller slices, such that the computation can be implemented in parallel [2]. This
characteristic makes the RNS a good choice to increase the performance of some types of operations, such as
addition, subtraction and multiplication. The main factor to determinate the performance of the RNS circuits is
related to the choice of the moduli set. In this choice some aspects must be taken with special care. The moduli
should be small in order to minimize the number of bits, but it must cover all the dynamic range of RNS [3].
This tradeoff must to be considered in order to implement a good hardware. In this paper, we use the classic
moduli set 2" —1,2".2" + 1) ' so that the hardware was all implemented using combinational logic circuits.
However, there are other possibilities in literature, as for example the implementation based on look-up tables
using ROM memory [4].

The RNS operation can be separated into three main stages. The first stage is composed by the forward
conversion, where a binary number is converted to a RNS number. In the conversion step, residues are
generated and when they are ready to be read, the second stage begins, and it represents the modular sum. In
this stage the residues that come from the converter are added in parallel. The last stage is the reverse
conversion. The conversion process from residue to binary numbers is a very demanding task. Therefore, the
design of an efficient converter from residue to binary is one of the most important tasks in order to increase the
use of RNS-based applications and processors [5]. As should be emphasized, while in the work of [3], the
converters were implemented based on the architecture suggested by [6], in our work, the converters are
implemented according to the equations of [4]. As will be presented, the circuits based on these equations are
more efficient.

2. RNS representation

Assuming that: X = (x/,x2,x3, ...)RNS(m1,m2,m3, ...), where, xi = X mod mi.

Each mi represents a modulus and all of them together represent the moduli. In this representation, the term
xi is obtained by dividing a binary number by its correspondent modulus (mi). The moduli is represented by the
pairwise of prime numbers. It guarantees that the dynamic range there will be not duplicated numbers in the
RNS representation. The dynamic range is obtained by multiplying all the modulus as it is shown below
[3114][71(8].

M=m-1 x m=2 x ... my, where M is the dynamic range

It means that to cover all dynamic range of a binary number of 16 bits, for example, M must to be larger
than 65535. In the case of working with moduli set (2" — 1,2",2" + 1} and 16 bits, the n term in the moduli set
should be 6 bit-width or larger than it. However, in the case where the moduli set is larger than 6, the circuit
implementation should not to be the smaller one and its performance could not be improved.

158 SIM 2010 — 25™ South Symposium on Microelectronics

In tab. 1 it is shown some radices of operation in RNS and its number of bits that is needed to find the
dynamic range [3].

Tab. 1 — Radices and its dynamic range for the RNS operation
Radices 8 bits 16 bits 32 bits
(2" —1,2%,2"+ 1) (2°-1,252°+1) (25 1,252+ 1) (27T 1,27 21T 1)
(2 t-1,2"—1,2M) (2% T-1,27 1,29 (25°T-1,25-1,2%) | (22 T—1,22 1,25
T —1,2"+1,27+1) | (P—1,22+1,2°+1) | (°-1,25+1,2°+1) | (2°—1,2°+1,2+ 1)

3. RNS operations

RNS operations starts with a forward conversion, where it is processed a conversion from a conventional
number to RNS ones. After the forward conversion the residues are processed in a parallel way. The results of
each parallel addition are the results of operation in RNS. In order to obtain the number back to the binary
representation, it is needed a reverse conversion. All this process is presented in fig. 1 [4].

modular
addition
m1
_ Results
Operands |Forward Conversion ‘modular Reverse Conversion
addition
Binary => RNS mz2 RNS == Binary

modular
= addition
mi

Fig. 1 — RNS process

3.1 Forward conversion

The conversion process is the main bottleneck in the RNS operation and this aspect has limited the use of
this representation in some applications from microelectronics and informatics areas. It occurs mainly due to
the additional hardware that is needed to implement this stage. In the forward conversion, the binary number is
separated in three parts of n-bits [3][4], according to the equations 1, 2 and 3 [4].

3n=1
B1=) xol = (1)

j=2n
2n-1

B2 = Z 2l @)

j=n
n=1

B3 = Z x2) 3)

j=0
According to [4], the residues »/ and »2 can be calculated as follows in equations 4 and 5.

r1=|B1— B2+ B3|,n,, 4)
72 =|Bl1+ B2+ B3|;_, (5)

These equations represent the modular additions, and they must to be corrected when their results get over
the modulus value. As can be observed in the equations 4 and 5, while in the residue 72 only positive numbers
are considered, the residue / can assume positive and negative values.

3.2 Modular addition

Modular addition is different from a conventional addition, because the result may get over the modulus
value, and when this occurs, it must to be detected and corrected. Fig. 2 shows a simplified circuit to perform
the addition of the modulus 2" —1 and 2" +1 , where the addition of the modulus 2" (r2) represents a simple
sum, with the most significant bit being discarded.

SIM 2010 — 25™ South Symposium on Microelectronics 159

ra b

|

*+]

= modulus value

Fig. 2 — Modular Addition

3.3 Reverse conversion

The reverse conversion represents the most complex stage of the RNS process. For the implementation of
this stage it could be used the CRT (Chinese Remainder Theorem) [4] or the Mixed-Radix Conversion (MRC)
[4]. In this work, we are using the first theorem. All the other methods are only variations of these two methods,
whose variations depends on the type of moduli-set chosen or certain properties that can be easily adapted to
suit the particular approach chosen [4]. From the CRT theorem it is possible to represent two equations to
describe all the reverse conversion for the moduli (2" — 1,2",2" + 1) These equations are presented below.

m2=ms3 ml#+m2
[X s :| 7 *x1—mlem3+«x2+ 3 u—3| (6)
M

(7

m2 = m3 ml+m2

M
IX[‘“=|E+ > #x1l—=mlsm3#x2+ ® X3

M

The equations 6 and 7 are similar the only difference between them is that while the first one is used when
the sum of x/+x3 terms is even, the second one is used when this sum is odd. The implemented circuit based on
the equations 6 and 7 is shown in fig. 3.

m&im3 x1 mim2 3 x2 m1"m3 x1 w2

o
L |
o [5]

{1

MUX,

Fig. 3 — Reverse Conversion

In the circuit shown in fig. 3, the terms x/ and x3 are multiplied by the modulus (m2*m3)/2 and (m1*m2)/2
respectively. The partial results are subtracted from the multiplication between x2 and m/*m3. In this point the
first multiplexer needs to decide what result will be put at the output. It will be decided according to the result
of the sum of x/+x2. If the sum is even, the value must not to be modified. However, if it is odd, a sum with
M/2 needs to be done in the circuit. In the second multiplexer it is decided which value goes to the output (if the
results need some correction or not). If the result is larger than zero and smaller than the dynamic range (M), the
results does not need to be corrected and it goes to the output of the circuits. However, if this value is larger
than M, it must to be subtracted by M in order to keep the results with the correct value. If the result is smaller
than zero, a sum of M must to be done in order to also keep the results with the correct value too.

4. Experimental Results

The developed architectures were described in VHDL and synthesized to TSMC 0.18um standard cells
technology, using Leonardo Spectrum from Mentor Graphics tool. Ripple Carry (RCA) and Carry Save (CSA)
adders were used for the implementation of the modular addition stage. Tab. 2 shows the delay comparisons
between some of the adders circuits present in literature, such as Ripple Carry and Carry Look Ahead, against
the RNS adder by using RCA and the most efficient CSA in the modular addition step. We have also compared
our implementations against the RNS adder of [3]. All the circuits were implemented for 16 bit-width.

160 SIM 2010 — 25™ South Symposium on Microelectronics

Tab. 2 — Delay values for of 16-bit adder circuits

Our RNS
CLA | RCA | RNS [3] | RCA in the Modular addition CSA in the modular addition
Delay (ns) | 2,01 | 2,59 12,24 9,87 9,39

As can be observed in tab.2, even using a more efficient adder (CSA) in the modular addition step, our
RNS adder presents significant more delay value than the RCA and CLA adders. It occurs due to the large
amount of additional hardware that is needed in the conversion steps. In particular, the reverse conversion is the
one that present the more complex structure leading to the increase of delay in the RNS operation, as can be
seen in tab. 3. As can be also observed in tab. 2, our RNS adders present less delay value than the circuit
proposed in [3]. This occurs because we are using the most efficient equations of [4] for the implementation of
the converters. This aspect can be observed in tab. 3, where the modular addition and conversion stages are
compared against the circuits of [3].

Tab. 3 — Delay values for the stages of the RNS circuits

RNS [3] Our RNS
Total Modular Forward Reverse Total Modular
Conversion Addition Conversion Conversion Conversion | Addition - CSA
Delay (ns) 9,9 2,34 2,31 5,65 7,96 1,43

The results presented in tab. 3 prove that the reverse conversion is the main bottleneck in the RNS adder
circuit. In fact, the large delay value presented by this step is related to the more complex hardware used for the
decoding from RNS to binary step, as can be observed in fig. 3. In this fig., it can be observed the large critical
path composed by multiplier and adders circuits. One interesting aspect to be observed in tab.3 is that our
modular addition presents less delay value than the pure RCA and CSA circuits, as can be compared with tab.
2. In some applications, such as digital filters, where a large amount of adders is used, it can become
interesting the use of RNS, since the conversion step will be done only one time. As can also be observed in
tab.3, the stages of the RNS adder proposed in this work are more efficient than that one proposed by [3]. This
explains the higher performance presented by our RNS adder, when compared against the circuit of [3].

5. Conclusions

In this work we have presented the implementation of RNS adder circuit. Based on the obtained results we
could conclude that the use of RNS for adder circuit can be not a good way to improve the performance of this
circuit. However, the fact that the modular additions in RNS presented better performance than the others
adders, indicates that for some applications that do not need to make the conversions every time, such as digital
filters, this representation can presents some benefits. We were also able to improve the performance of the
RNS adder, when compared against the circuit proposed in literature. As future work, we intend to use more
efficient adders and multipliers than the ones that were used in this work in order to improve the performance
of the forward and reverse conversion steps.

6. References

[17 Y-C Kuo, S-H Lin, M-H Sheu, J-Y Wu and P-S Wang. Efficient VLSI Design of a Reverse RNS Converter
for New Flexible 4-Moduli Set (2¢-%, 2p=* 2¢~t 2%-1) Graduate School of Engineering Science and
Technology, National Yunlin University of Science & Technology, Touliu, Yunlin, Taiwan, 2009.

[2] A. D. Re, A. Nannarelli, M. Re, Implementation of Digital Filters in Carry-Save Residue Number
System. University of Rome Tor Vergata, Italy, 2001.

[3] M. Handel, Circuitos Aritméticos e Representagdo Numérica por Residuos. Dissertacdo de Mestrado, Porto
Alegre, 2007.

[4] A. Omondi, B. Premkumar. Residue Number Systems — Theory and Implementation. 1st ed. Singapore,
2007.

[5] A.Hiasat, A. Sweidan, Residue number system to binary converter for the moduli set (2"7*, 2" — 12" + 1)
,2003.

[6] G. Bi, E. V. Jones, Fast conversion between binary and residue numbers. Electronics Letters, [S.1.], v.24,
n.19, p.1195-1197, 1988.

[71 R. Chaves, Processamento de Sinal e Criptografia Baseados em Sistemas de Numeragdo por Residuos.
Trabalho de Conclusdo, Lisboa, 2001.

[8] B. Parhami, Computer Arithmetic — Algorithms and Hardware Desingns. 1° ed. New York, 2000.

SIM 2010 — 25" South Symposium on Microelectronics 161

Optimal Arrangement of Parallel Prefix Adder(PPA) Trees According
to Area and Performance Criteria

Kim Aragon Escobar, Luca Couto Manique Barreto, Renato Perez Ribas
{kaescobar,lcmbarreto,rpribas} @inf.ufrgs.br

Instituto de Informatica
Universidade Federal do Rio Grande do Sul
Porto Alegre, RS, Brazil

Abstract

With the advance of technology nowadays, digital circuits are more and more present in the daily life,
through the use of microprocessors, embedded systems, etc. These circuits have to provide arithmetic operators
of bits (addition, subtraction, multiplication, and so on), and for that adder circuits represents the basic block.
There are many implementations of adders, each one with a different purpose and features, focusing in
complexity (size or area) or in performance (speed and power dissipation). Parallel Prefix Adder — PPA
approach, in particular, can be adapted to focus on these two targets (area and speed), or even present an
hybrid solutions. The problem of PPA is to find its optimal arrangement of the propagation (P) and generation
(G) tree for carries calculation. This paper proposes an algorithm to find the optimal PPA architecture
according to these costs, automating the process to any number of bits through geometric patterns found in the
PG network.

1. Introduction

Microprocessors (microcontrollers) and embedded systems are largely present in costumer products, like
cell phones, notebooks, medical equipments, automobile commends, and so on. All these circuits require
internally arithmetic operators, and the basic block to do that are the digital adders. In the design of electronic
circuits there are different possibilities to implement this kind of functional block, depending on the focus of
design optimization: performance or area.

Adders can be implemented in different architectures, each of them with particular benefits and features
[1]1[5]. The ripple carry adder - RCA is probably the simplest among all known architectures, presenting good
performance and area for few bits (something like less than 8 bits). It represents the optimum approach for
circuit size. The carry select adder — CSelA, in turn, is improved in terms of speed at expense of area. The
carry skip adder - CSkipA, on the other hand, presents a better compromise between these two parameters. In
fact, the most popular approach in terms of performance is parallel prefix adder — PPA, being the carry
lookahead adder - CLA a sub-class of that [1][5].

PPAs (and CLAs) are based on the propagate (P) and generate (G) principles, being the PG tree the
critical part of the adder algorithm and circuit. As discussed in Section 2, this PG tree provides the carries
calculation, and a large number of different arrangements can be adopted with direct impact in the circuit area
and performance. Some solutions are well-known, like Brent-Kung (B&K) and Kogge-Stone (K&S)
approaches [4][5]. However, hybrid solutions that focus not only in minimum circuit area or maximum speed
are preferable and not easy to obtain.

This paper presents an algorithm for optimizing the carries calculation for a given design constrains in the
circuit size and worst-case paths of signal propagation, considering any number of bits. The work has been
validated by comparing the results with the extreme cases of optimization, i.e. the B&K and K&S approaches.

In Section 2, it is briefly presented the algorithm of PPA for better understanding of the paper proposition.
In Section 3, the proposed algorithm is described and discussed in its peculiarities. In Section 4, some
experimental results are provided for work validation, and in Section 5 the conclusions are outlined.

2. Parallel Prefix Adder

Parallel prefix adder (PPA) algorithm is based in the principle of generate (G) and propagate (P) signals.
The principle of P and G is predict if in an sum of 2 vectors, A and B, will occur an Cout. P signal predicts if
the sum between two bits a; and b; propagates the carry arriving in this index (cin;) to the next one. It can be
done by checking if a; or b; presents the logic value ‘1’ (OR or Exclusive-OR operations). For exemple,
consider cin; = 1, a; = 1 and b; = 0, the sum of cin; + a; + b; generates a carry signal (cout= 1) that corresponds,
in fact, to the carry in the next index (couti+;= 1). G signal, in turn, predicts if the sum between two bits a; and b;
generates a carry signal (cout= 1), without considering the the carry arriving in this index (cin;). It is possible
by just verifying if both a; and b; presents the logic value ‘1’ (AND operation).

PPA uses initially the propagate and the generate signals individually for each bit index. The circuit that
calculates these two signals or operations, P; and G, together are called here as cell operator, and this operator

162 SIM 2010 — 25™ South Symposium on Microelectronics

is considered as the unit of area of the tree of PPA. The algorithm of PPA present 3 steps, taking into account
the two input vectors A and B:

1 — Calculate the G; and P; to each bit with the cell operator.

2 — Calculate the group generate signals related to the first index (Gjp) that corresponds to the carry os
each index (cin;) used for the sum operation. To calculate the G, signals, the algorithm use the cell operator of
each bit to construct the cell operator of an array of bits (group). If it is taken the P; and G; of bit ‘n+1’ and bit
‘n’, the evaluation of these two adjacent indexes represents the group signals Py, and Gy, This grouping
operation is done until all group generates G;.are obtained. The equations to calculate the group signals are:

o group generate Gy .= Gy + Py @ Gy
e group propagate Py, =Py @ Py
being,

. individual generate G,.= a, ® b,

e individual propagate P, = a, @ b,,.

3 — Calculate the sums using the equation S, = P, ® G,.1) 0.

Some well-known solutions, as mentioned in Introduction, are the Brent-Kung (B&K) and Kogge-Stone
(K&S) approaches. There are also two others, Ladner-Fischer (L&F) and Han-Carlson (H&C). B&K solution
optimizes the circuit for the lowest area to level 2elog,n — 2. K&S version, on the other hand, illustrated in Fig.
la, optimizes the tree arrangement to the shortest path (operators in chain or series configuration) and the
lowest number of connections (fanout), but the area tends to be large. L&F solution, in turn, depicted in Fig. 1b,
optimize the circuit to the lowest area and to the shortest path, without taking into account the number of
connections. H&C approach is a hybrid solution that tries to combine the B&K and K&S structures.

Inputs 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 0 foputs 15 14 13 12 1110 9 8 7 6 5 4 3 2

Stage |

Stage 2

Stage 3

Stage 4
Stage 4

Qutputs ‘
(a) (b)
Fig. 1 — PPA structures: (a) Kogge-Stone and (b) Ladner-Fischer[3].

Outputs

3. Proposed Algorithm

Having the preview knowledge about PPA, we begin with the basic definitions of the algorithm. In an
adder, a group is a set of bits - obligatorily adjacent - represented as A[i,j], such that 0 <i <j < n, this group
must have all the cells (j,i);(j-1,i);...;(i+1,1). Upon the groups are defined unary operations: depth(A),
area(A)(units of cells) and length(A)(of bits), and a binary operation: concatenate(A,B). An interesting
property we need to know is that the minimum depth of an adder with » bits is log2 »n, while the maximum
depth is n-1.

Given an adder with n-bits, and the groups A[i,j] and B[j+1,k], such that 0 <i <j <k <n, the operation
concatenate(A,B) is to connect the cell (i,j) with each (x,j+1), such that x=j+2,...k, and with j+1, returning the
group ABJi,k]. The fig. 2 exemplify the explanation above. Tab. 1 shows us some interesting proprieties of
concatenate:

N NG
Fig. 2 — Concatenate
Tab.1 — Proprieties of concatenated group

SIM 2010 — 25" South Symposium on Microelectronics 163

depth(AB) = MAX(depth(A), depth(B)) +1
area(AB) = area(A) + area(B) + length(B)
length(AB) = length(A) + length(B)

The algorithm has bottom-up design, beginning with smaller adders and making, with these, more
complex ones. This happens because each adder’s group is an adder by itself.

We start calculating the area of an adder with minimum length (1) and iterate increasing the length
until it reaches n (the desired length). For each length, the algorithm iterates from its minimum to its maximum
depth, calculating the area of the corresponding adder.

To calculate the area, the algorithm needs do know the quantity of groups an adder has. Basically, it's
made as follows:

e At its minimum depth an adder A has 2 groups (obviously with length(A/2) bits each), as illustrated in fig.
3.

e We reach each subsequent depth level by dividing a group in two. This way, we increase in one the
number of group and, because of depth(AB) property, increase in one the depth level too, as illustrated in
fig. 3.

e Nevertheless, when we divide the first group of an adder, by having a smaller group, we lose (while we
gain) a depth level. To solve this problem the algorithm automatically “ignores” this division and “jumps”
to next, as illustrated in fig. 3.

- O

z : Gain! O :

= = I -E0-0 0O

4 O 4 O @ \O 4 \O Gain!
5—0\— \C) 5—0—\C>\ s \ s=O \

s OO @ O = O\i
BO=00 o0 10 o = O

Fig. 3 — groups splits
e An interesting behavior that we have from that phenomena above are that, except for the initial case (2
groups), we'll have always two lengths of group, that we called kigh groups and low groups.
e The algorithm calculates the length of high and low groups and the quantity of each one in the
corresponding adder. Then, calculating the necessary heigth, it accesses the previous results (the smaller
adders) to get the area of each group and uses the area(AB) property to reach the total area.

4, Experimental Results

The implementation of the algorithm was made with C++ programming language. In Fig. 4, it is shown
the results to different inputs and the comparison to the K&S and L&F approaches. With 16 bits K&S has 4
levels (for cell operators in the longest path) and 49 units of cells, while L&F version has 4 levels and 32 units
of cells. In the results obtained can be seen that for level 4 the area is 32, equal to L&F solution, and less than
K&S, that is, the result of the algorithm is better than K&S approach if only in the area and longest path are
considered, ignoring the number of connections at each internal node.

164 SIM 2010 — 25™ South Symposium on Microelectronics

Mumber of bhits: 32 [Number of hits: 16
Level — Area
- 32
L — 26
6 — 25
7 — 24

18
11
12
13
14
15

Level — Area
2

4 — 18

Fig. 4 — Results of the program

5. Conclusion and Future works

This algorithm is only the “core” of all idea and this only generate the outputs which will be used to do
some statistic to encounter the circuit corresponding with the weight that the user put to area and performance.
For future works will be implemented the statistic function and a parser to translate the information obtained by
the program to spice, VHDL and verilog language.

References
[1] I. Koren, “Computer Arithmetic Algorithms”, pages 93-132, A. K. Paters, 2* edition, 2002.

[2] P. M. Kogge, H. S. Stone, “A parallel Algorithm for the Efficient Solution of a General Class of
recurrence Equations” pages 786 - 793 , IEEE Transaction on Computer, Vol. C-22, No.8, 1973.

[3] “Hardware algorithms for arithmetic modules”
shttp://www.aoki.ecei.tohoku.ac.jp/arith/mg/algorithm.html#ppa_wlc

SIM 2010 — 25" South Symposium on Microelectronics 165

Implementation of a Floating Point Unit in the
Technology X-FAB 0.35

Raphael Neves, Jeferson Marques, luri Castro, Edson Schlosser, Sidinei Ghissoni,
Alessandro Girardi
Raphael.cn.gama@gmail.com
{sidinei.ghissoni, alessandro.girardi} @unipampa.edu.br

Federal University of Pampa - UNIPAMPA
Campus Alegrete
Av. Tiaraju, 810 — Alegrete — RS - Brasil

Abstract

This paper presents an architecture and organization of a floating point (FPU) that follows the IEEE 754
standard for the representation of binary numbers. The development of this architecture was done with
emphasis on applications requiring low power consumption and area constraints, such as embedded systems.
The operations performed by FPU are: addition, subtraction, multiplication and division, with emphasis on the
reusability of blocks that perform basic functions. The FPU has been described in language hardware
SystemVerilog and logic synthesis tool was perform at the Design Compile.

1. Introduction

Support for floating-point and integer operations in most computer architectures is usually performed by
distinct hardware components [1]. The component responsible by floating point operations is referred to as the
Floating Point Unit (FPU). This FPU is aggregated or even embedded in the processing unit and is used to
accelerate the implementation of different arithmetic calculations using the advantages of binary arithmetic in
floating point representation, providing a considerable increase in the performance of computer systems.
Floating-point math operations were first implemented through emulation via software (simulation of floating-
point values using integers) or by using a specific co-processor, which should be acquired in separate (offboard)
from the main processor. Because every computer manufacturer had its own way of represent floating point
numbers, the IEEE (Institute of Electrical and Electronics Engineers) issued a standard for representation of
numbers in floating point. Thus, in 1985, IEEE created a standard known as IEEE 754 [2]. The representation
of a number in floating-point precision 32-bit, according to IEEE 754, is composed of 1 bit for sign, 8 bits for
exponent and 23 bits for “fraction, as shown in Figure 1. We call mantissa M the binary number composed by
an implicit 1 and the fraction:

sign exponent{8-hit) fraction (23-hit)
EDEREEEUDCUECCELLEECEECEELLELCEE

Fig. 1-IEEE Standard for floating point numbers in single precision.

This paper presents the architecture and organization of a floating point unit single-precision 32-bit. The FPU
has developed applications in embedded system [7], with low power dissipation and area restrictions, including
the 4 basic arithmetic operations: addition, subtraction, multiplication and division. The rounding mode was
adopted as specified by IEEE 754. The unit was described in System Verilog and was performed logic
synthesis using Design Compile which is a tool of Synopsys Galaxy Package. This paper is organized as
follows: In Section II presents the operations point floating, Section III describes the proposed data path,
section IV presents the results of the implementation, and, finally section V conclusion on paper.

2. Floating Point Operations

This section is present the operations supported by the floating point unit, as well as their flowcharts and
algorithms used. At the beginning of each flow are conducted the analysis of cases of exceptions such as
overflow / underflow, division by zero and Not-a-Number (NaN), as mentioned in the IEEE 754. The

166 SIM 2010 — 25™ South Symposium on Microelectronics

operations of addition and subtraction are complicated by the need to align the exponents [3]. According to the
block diagram shown in Figure 2, this alignment is required only if the exponents are different. If this statement
is true, the smallest exponent is incremented by the difference calculated by subtracting the exponents. The
outcome as the subtraction of this signal will determine the alignment of the exponents and hence to the
alignment of the mantissa. Thus, according to Figure 2(a), is made first verification of the exponents. The
alignment of the exponents and mantissas is needed when the exponents are different.

In the block diagram of the multiplication, shown in Figure (3), the sign of the operation is defined in parallel
with the sum of the exponents. In this operation, you must subtract the bias (127), since for the sum of the
exponents it is added twice. For the multiplication of the mantissas, we used a multiplier sequence of integers.

1T P
s,c;;es:usl I Special I

exzey sx sy ex>ey

—

e | I R

-

m | | om

. . 4
ex=eyEJ hluies I e:’g::i] ex=ey=ez ‘Lshtﬂer'L I ‘ ‘
miitipt

‘ mx my

—————————2 Add/sub
| .

¥

Litiot
mantissas

biJc;ck i
Fig. 2(a) — The flowchart of addition and Fig. 2(b) — The flowchart of multiplication.
subtraction.

The operation of floating-point division, follows the same data stream by multiplying, with the difference
that the mantissas are divided and the exponents subtracted. In the division of the mantissas used a sequential
divider for real numbers, because even the division of two integers can result in a real number. In Figure 3 is
shown the restoration algorithm [3] used to divide the mantissas. This algorithm is characterized by the

recursive procedure represented by Eq (1):

1. shifter R one bit to the
right

|

2. Shift R one bit to the left
and subtract D
Ri*1 = 2Rl - p

3a. Store original value 3b. Restore original value
Q€1 0. €0
1 |

j=n-1
iteration

i e

Figure 3: Algorithm for restoration division of real numbers.

RG*I):Z-RG)-qJ-+1'D 6))

where j = 0,1, ... , N-1 is the index of recursion, and R O is the rest part of the j-th iteration. The initial partial
remainder R is equivalent to the dividend and R™ is the final rest, and g+ €(0,1),and 0<R 0D < D. In the

SIM 2010 — 25" South Symposium on Microelectronics 167

first step of this algorithm, shifts R one bit to the right, this shift is necessary to ensure that the dividend will
always be less than the divisor.

Thus, shifts RY a bit to the left and subtract D. Thus, it is observed the magnitude of the signal RO™Y e,
the possibility of restoration. In Eq (3) have the multiplying factor g; .; D. This factor is an estimate of the
signal R ;) Thatis, if RY"" >0, q;.; = 1. Therefore, R“"" =2R ¥ - 1 « D. On the other hand, if RY*" <0, q; 1,
=0, then RY ™ = 2RY - 0 « D, which would be the same as a restoration. As the machine does not make a
prediction signal of the operation, it needs to perform a number of deletions and restore them if necessary. Note
that, in the operations of multiplication and division, both the divider and the multiplier are based on sequential
circuits [5]. The choice of sequential architectures due to the fact that they offer better performance in area and
power consumption for the combinational architectures [6]. However, we have a decrease in speed. As the
design requirements of the FPU is to minimize area and power, the reuse of hardware becomes an important
and possible with the choice of these architectures, for both operations have the data path similar, differing only
in control.
Upon completion of the data flow of each floating point operation, the result is sent to the stage of adjustment.
This stage is responsible for the detection of overflow / underflow in an intermediate stage of the operation,
besides the normalization and rounding.

3. PROPOSED ARCHITECTURE

This section presents the data path and control the FPU. The data path of FPU is shown in Figure 4. This
architecture should be able to withstand the flow of operations presented in Section III. We used the following
strategy: the functional units (adder / Subtractor, shifter, registers) are shared by different operations. For
example, the multiplication operation are due to add the exponents, and the addition operation must be adding
the mantissas. Thus the same hardware should be able to perform the sum of both exponents and mantissas. The
great advantage of this technique is the economy of the functional units, resulting in a smaller silicon area and
thus minimizes the costs for synthesis physical the project.

In_rm In_op x[31] yI31] x[30:23] ¥[30:23] x[22:0] y[22:0]
| | | | | |
L
. reg_mx
|o[res_m] fregop) fregsx} [regsy] fregex}] fregey] Jrez mx] Jreg my]
Input registers
L
L multiplication and
iy a0dL | [T
Signal
28 Adder/
Subtractor |
lod
M 3od2
reg_! |
{reg ez] | rezdiexe | Ireg_log Treg_mz |
+ L
[—
—> [mux]
—> Control Control 3
:; Control FPU Multiplier - Divisor
—»] Mantissas R Mantissas = _ Shifter
= %r| 712 3
nRE &
1" N ~ ~
b

Figure 4: Part of the operational architecture of FPU in the IEEE 754 single precision.

The data path of the blocks are highlighted in Figure 4. Block Adder / Subtractor deserves this
architecture, it is used in all operations. The FPU operations begin with the recording of input registers, which
are stored the rounding mode, operation and values of the operands according to the IEEE 754. The exception
block checker analyzes the existence of a special case. Confirming the exception, a signal is sent to the control,
which returns a three-bit flag indicating the special case occurred. If no special case is reported, the next step is
to perform the operation desired. For the addition operation, as the flow presented in section IV, it is necessary
to determine the smallest exponent, shifting the mantissa to the right, add the exponents, and finally, add or
subtract the mantissa. The difference of the exponents is performed in block adder / Subtractor through
subtraction. From the smallest exponent is determined which mantissa should be shifted. In this project, we
used 7 Carry Look Ahead adder (CLA) of 4 bits, as the larger fleet to be added has 27 bits [7]. The exponents
and mantissas are represented in sign magnitude and CLA performs operations in addition to 2. You must then
check the sign of the result of the operation of the CLA and reverse it if necessary. The control used in this

168 SIM 2010 — 25™ South Symposium on Microelectronics

project was based on finite state machine. The control is responsible for sending signals to the operational side
in order to control the functional units of the FPU. The control of the operative part was divided into three
parts: the FPU control, control of multiplication and division control.

4. Results

7.2. We used the tool for Design Compile perform the logic synthesis architecture. The technology used was X-
FAB 0.35. The Table 1 is presented the results of area and frequency. The functional requirements of frequency
of operation of the circuit is SOMHz.

Tab.1 — Results area for the FPU architecture.

Circuito | Combinational | Noncombinatio Net Total cell Total
area(um): nal area(um: |Interconnect| area(um): area(um:
area (um):
FPU 1514736.815285 | 53056.00062 (417839.46217|1567792.81 | 1985632.27
59

5. Conclusion

In this work we presented a new alternative of FPU architecture for embedded systems that support
operations in floating point standard IEEE 754. The hardware is shared between operations and there is only
one functional block for each basic operation, such as integer addition, shift, etc.

As future work, we will perform the physical synthesis Also, some hardware acceleration techniques can
be implemented in order to increase performance without demanding increasing in power.

6. Acknowledgments

This work is part of Brazil-IP initiative for the development of emerging Brazilian microelectronics
research groups. The grant provided by CNPq is gratefully acknowledged.

7. References

[17] R.V.K Pillai, D. Al-Khalili and A.J. Al-Khalili, 4 Low Power Approach to Floating Adder Design,
Proceedings of the 1997 International Conference on Computer Design (ICCD '97); 1997.

[2] IEEE Computer Society (1985), IEEE Standard for Binary Floating-Point Arithmetic, IEEE Std 754,1985.

[3] William Stallings, Arquitetura e Organizag¢do de Computadores, Sth Ed., Pearson Education, 2005.

[4]J. Hennessy and D. Patterson. Computer Architecture: A Quantitative Approach, 3th Ed., 2003.

[5] Asger Munk Nielsen, David W. Matula, C.N. Lyu, Guy Even, An IEEE Complicant Floating-Point Adder
that Conforms with the Pipelined Packet-Forwarding Paradigm, IEEE TRANSACTIONS ON
COMPUTERS, VOL. 49, NO. 1, JANUARY 2000.

[6] Taek-Jun Kwon, Joong-Seok Moon, Jeff Sondeen and Jeff Draper, 4 0.18um Implementation of a Floating
Point Unit for a Processing-in-Memory System, Proceedings of the International Symposium on Circuits
and Systems - ISCAS 2004.

[7] Jean-Pierre Deschamps, Gery Jean Antoine Bioul, Gustavo D. Sutter, Synthesis of Arithmetic Circuits:
FPGA, ASIC and Embedded Systems. Ed.

SIM 2010 — 25" South Symposium on Microelectronics 169

Floating Point Unit Implementation for a Reconfigurable Architecture

'Bruno Hecktheuer, *Mateus Grellert, Jalio Mattos, 2Antonio Beck,
*Mateus Rutzig, 3Luigi Carro

{brunob.ifm,mateusg.ifm,julius} @ufpel.edu.br, caco@inf.ufsm.br,
{mbrutizg, carro}@inf.ufrgs.br

'Federal University of Pelotas
?Federal University of Santa Maria
3Federal University of Rio Grande do Sul

Abstract

With the complexity of embedded systems growing day by day, there are several electronic devices with
different applications in a single device. To cope with this heterogeneous behavior of these applications it is
necessary embedded architectures providing high performance. Reconfigurable architectures present a
solution based on high performance maintaining low power consumption. Thus, this paper presents the
implementation of a combinational Floating Point Unit (FPU) for a reconfigurable architecture. The designed
architecture supports four basic arithmetic operations (addition, subtraction, multiplication and division), and
is compatible with the IEEE 754 standard. In this paper, we present the Floating Point Unit target to a
reconfigurable architecture and the results in terms of area and delay.

1. Introduction

Nowadays, the majority of electronic devices available on the market have computational resources
embedded in their project. Researches show that the average annual growth of embedded systems in many
sectors of industry is always above 5% [1]. Since the growth of the embedded market, the complexity of these
systems has been increasing due to aggregation of different functionalities in a single device, e.g., cell phones.
These devices run applications with heterogeneous behaviors, i.e., distinct hardware resources are needed in
order to support the efficient execution of these applications. The use of general purpose processors to handle
this problem does not guarantee an efficient implementation and results in terms of energy consumption.

Reconfigurable architectures [2] may be a good solution to this problem. These platforms have the ability
to adapt (reconfigure) according to the type of application. The major advantage of this type of architecture is
the flexibility, i.e., efficiency in execution does not depend on the behavior of the application being executed.
These architectures are located between the von Neumann and Dataflow models.

The target architecture used in this work consists in a Reconfigurable Functional Unit (reconfigurable
array), a unit responsible for reconfiguration and a general-purpose processor. The basic idea of this approach is
to find pieces of code that can be executed more efficiently in the Reconfigurable Functional Unit [3] during the
program’s execution. This unit is implemented in a combinational logic. It is composed by functional units that
perform logic and integer arithmetic operations, multipliers and memory access units.

Multimedia and communication algorithms applied in the field of embedded systems make an intensive use
of floating point arithmetic. Due to the complexity and cost of implementations of floating point units in
hardware, algorithms often use emulation in software or conversion (manually or automatically) of floating
point to fixed point operations.

The target architecture of this work did not use floating point operations in hardware, which produced no
suitable solutions in terms of performance and introduced inaccuracies in software implementations (floating
point emulation software is not able to provide the required accuracy).

Therefore, this work presents the Floating Point Unit (PFU) development target to Reconfigurable
Functional Unit. Thus, the reconfigurable architecture will provide more efficiency regarding floating point
operations, making their use more feasible for embedded systems. The designed FPU implements the addition,
subtraction, multiplication and division operations, based on combinatorial logic and the IEEE 754 standard [4].
The architectures modules were described using VHDL and synthesized in FPGA.

The paper is organized as follows: Section 2 presents the related work. Section 3 introduces the
reconfigurable system where the FPU is attached. Section 4 shows the implemented Floating Point Modules.
Section 5 presents the obtained results in terms of FPGA resources and frequency and, finally, Section 6
presents the conclusions and future work.

170 SIM 2010 — 25™ South Symposium on Microelectronics

2. Related Works

There are several works related to floating-point architectures in the literature. These works present
technical enhancements of floating point operations in terms of performance, area and power. Due to the large
area occupied by floating-point units, many studies proposed the area optimization. Chong [5] proposes a multi-
mode unit that can be reconfigured in several operations, providing the economy in area. Several other studies
propose optimizations in FPGA implementation [6][7][8].

Other works present the floating-point units design and implementation for ASIPs. Karuri [9] shows an
architecture target to embedded applications. Chong [10] also shows the generation of a FP unit for ASIPs.

Implementations of asynchronous floating-point units (in a fully combinatorial) are not common, but some
works implement the FPU in this way, usually for dividers. In [11] and [12] are presented an asynchronous
IEEE 754 divider design. Finally, Noche [13] shows a floating point unit fully implemented in a combinational
level of transistors.

3. The Reconfigurable System

The reconfigurable system used as case study in this work is composed by a Reconfigurable Unit
(reconfigurable array), a unit responsible for reconfiguration and a general-purpose processor [3]. The
reconfigurable array is composed by functional units, multipliers, memory access units, multiplexers and
demultiplexers.

The execution is dataflow using combinational logic. Thus, this architecture provides a higher consumption
of area, but allows a simple control unit and energy savings. The binary translation engine is a complex
hardware responsible not only for detecting binary code parts that can run on the array, but also for generating
the configuration bits to configure the array execution flow. These reconfiguration bits are stored in a memory
called reconfiguration cache (index by PC — Program Counter).

This reconfigurable system is coupled to a MIPS processor. Basically, if there is a section of code that can
run on reconfigurable array, it is identified by the binary translator, and in the first time the code is executed in
the processor, the configuration bits are generated and stored in the reconfiguration cache. On other times this
piece of code is detected analyzing the program counter (PC) and when it is detected the execution flow
changes, and it is executed by the array instead of by the processor.

Figure 1 shows the reconfigurable system and a pipeline of five stages representing the processor, where
blocks highlighted in black represents the execution flow when the reconfigurable array is used. The memory
can be accessed by the array, because the main memory is shared by the array and the processor.

It is important to note that the array implementation (using combinational logic) implies a large
consumption of area and power. However, the instruction execution in dataflow is faster and the energy
consumption is reduced significantly.

Reconfigurable Array

Input Output
Context Context

00

Fig. 1 — Reconfigurable System coupled to a five stage MIPS processor.

4. Floating Point Architectures Implementation

Four architectures are developed: addition, subtraction, multiplication and division. These architectures are
single precision, e.g. IEEE 754 32-bit representation [4]. This standard defines how the floating point numbers
are stored in memory, the algorithms of rounding, exception handling and so on. The four modules were
developed in a combinational way, using the standard algorithms and the format specified by IEEE 754. The
rounding technique chosen is called truncation. This technique consists of simply removing the values that
cause overflow.

A. Addition / Subtraction Module

The algorithm implementation of addition / subtraction in sequential logic is simple. However, its
hardware implementation in combinational way may be a challenge. The steps of the algorithm are

(considering two data operands, A and B):

1. Make equal the exponents of A and B (the common exponent must be the highest value);
2. Normalize the mantissa of the operand that the exponent was changed;

SIM 2010 — 25" South Symposium on Microelectronics 171

3. Add/ subtract the normalized mantissas;
4. Check overflow / underflow;
5. Normalize the result (if necessary).

The Step 1 was done by a subtraction between the exponents, where the result is the number of shifts
required in the mantissa so that both assume the same exponent. The step 2 is done by right shifts of the
mantissa using the result of the subtraction as selector. The steps 3 and 4 are arithmetic operations and checking
the overflow and underflow. The result normalization is similar to step 2, but the selection is done by the
number of left zeros present in the mantissa result. Figure 2 shows the module addition / subtraction. The
circuit is simple, however the normalization circuit is complex.

op1 N Exponent
Op2 (0]
(g — N
M —
Mantissa o) Result
R
M

opiB])Di

0p2[31]

v

Fig. 2 - Addition / Subtraction Module.

B. Multiplication Module
The multiplication algorithm has the following steps:
1. Add the exponents of the operands;
2. Multiply the mantissas;
3. Check overflow / underflow;
4. Normalize the result if necessary.
The implementation of the four steps are very similar to the steps of module addition / subtraction. The
multiplication module diagram can be seen in Figure 3.

C. Division Module
The division module was simplified reusing the same architecture of multiplication module. The equation 1
shows the architecture implements the division using multiplication. In other words, divide X by Y is
equivalent to multiply X by the inverse of Y.
x/y =x * (11y) 1)

The values for 1/y are stored in a ROM memory. The ROM size is from 1Kb to 32MB providing different
solutions in terms of area and accuracy. Large memories provide better degree of accuracy, however it is
necessary more area. Despite occupying a large area, this procedure introduces a low complexity architecture.
Figure 3 shows the division module. Besides this, another algorithm (based on subtractions and shifts) was
tested. This is an iterative algorithm making it impossible to implement in combinational way.

Op1[30..23]
Op1 N 0p2[30..23] + | Exponent
Op2 O - v
R R Op1[22..0] 0 |Resut
ol M 0p2[22..0] R —
X Mantissal
M)
Op1[31]
L owm) D _
Op2 Sign
Fig. 3 - Divison Module.
5. Results

This section presents the results of synthesis for the developed architectures. The modules were
implemented using the VHDL language and synthesized using Xilinx ISE 10.1 tools and target to device
XC2VP30 FPGA family Virtex-II Pro. The validation was performed by ModelSim tool from Mentor Graphics
comparing the outputs with reference software implemented in C.

172 SIM 2010 — 25™ South Symposium on Microelectronics

The Table 1 shows the results in terms of area (FPGA resources) and frequency for the FPGA. The
implementation is fully combinational, however for the synthesis, registers are used in the input and output of
the circuits. The multiplication module has better results in area. This happens because the result normalization
is simpler when compared to the other modules normalization. The worst results in terms of area and
performance is also expected: the division module. These results are explained by area and access time spent
with the ROM (a memory containing 1024 possible values for 1/ y are used).

Tab. 1 - Synthesis Results.

Architectures ALUT Slices Mult. 18x18 Frequency
Sum/Subtraction 892 498 - 83,8 Mhz
Multiplication 119 64 4 78,1 Mhz
Division 1409 741 4 53,1 Mhz

6. Conclusion and Future Works

This paper presented the implementation of a Floating Point Unit based on combinational logic. The
algorithms for floating point operations area studied and after four architectures for different operations are
implemented in VHDL and prototyped in FPGA.

The Floating Point Unit developed is divided into three modules: addition / subtraction, multiplication and
division. Based on the asynchronous floating point unit, the binary translator should be changed making the
floating point operations compatible with the array. Therefore, the reconfigurable array will be able to run
floating point applications natively.

7. References

[1] S. Vassiliadis. The Hipeac Embedded Systems. Apresentagdo oral no Hipeac Compilation
Architecture, May 2006.
[2] Compton, K. and Hauck, S. Reconfigurable computing: a survey of systems and software. ACM

Comput. Surv. 34,2 (Jun. 2002), 171-210.

[3] Beck, A. C,, Rutzif, M. B., Gaydadjiev, G., and Carro, L. Transgarent reconfigurable acceleration for
lllgtle?fogeneous embedded applications. In Proceedings of DATE 2008. ACM, New York, NY, 1208-

[4] IEEE Standards Committee 754. IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE
Standard 754-1985. IEEE, New York, 1985.

[5] Chong, Y. and Parameswaran, S. 2009. Flexible multi-mode embedded floating-point unit for field
programmable gate arrays. In Proceeding of the ACM/SIGDA international Symposium on Field
Programmable Gate Arrays (Monterey, California, USA, February 22 - 24, 2009). FPGA '09. ACM,
New York, NY, 171-180.

[6] Beauchamp, M. J., Hauck, S., Underwood, K. D., and Hemmert, K. S. 2006. Embedded floating-point
units in FPGAs. In Proceedings of the 2006 ACM/SIGDA 14th international Symposium on Field
Pro*irammabzlez%}ate Arrays (Monterey, California, USA, February 22 - 24, 2006). FPGA '06. ACM, New
York, NY, 12-20.

[7] deLorimier, M. and DeHon, A. 2005. Floating-point s;l)arse matrix-vector multiply for FPGAs. In
Proceedings of the 2005 ACM/SIGDA 13th international Symposium on Field-Programmable Gate
Arrays (Monterey, California, USA, February 20 - 22, 2005). FPGA '05. ACM, New York, NY, 75-85

[8] Gaffar, A. A., Luk, W., Cheung, P. Y., and Shirazi, N. 2002. Customising Floating-Point Designs. In
Proceedings of the 10th Annual IEEE Symposium on Field-Programmable Custom Computing Machines
(September 22 - 24, 2002). FCCM. IEEE Computer Society, Washington, DC, 315.

[9] K. Karuri, R. Leupers, G. Ascheid, H. Meyr, M. Kedia, "DesiFn and Implementation of a Modular and
Portable IEEE 754 Compliant Floating-Point Unit," date, vol. 2, pp.43, Proceedings of the Design
Automation & Test in Europe Conference Vol. 2, 2006

[10] Chong, Y. J. and Parameswaran, S. 2007. Automatic application specific floating-point unit

ienqration. In Proceedings of the Conference on Design, Automation and Test in Europe (Nice, France,

pril 16 - 20, 2007). Design, Automation, and Test in Europe. EDA Consortium, San Jose, CA, 461-466.

[11] M. Hiromoto, H. Ochi, Y. Nakamura. An Asynchronous IEEE754-standard Single-precision Floatin%-

ggbngt Divider for FPGA. IPSJ Transactions on System LSI Design Metodology, vol.2, p.103-113, Feb.

[12] J. Kolouch. Combinational Divider in FPGA. In Proceedings of 17th International Conference
Radioelektronika, p.1-4, 2007.

[13] J. Noche and J. Araneta. An Asynchronous IEEE Floating-Point Arithmetic Unit, Science Diliman,
vol. 19, n.2, p.12-22, July-December 2007.

SIM 2010 — 25" South Symposium on Microelectronics 173

Devices and Analog Design

174 SIM 2010 — 25™ South Symposium on Microelectronics

SIM 2010 — 25™ South Symposium on Microelectronics 175

1V Self-Biased Current Sources
with 10nW of Maximum Power Consumption

'Roddy A. Romero, *Henrique M. Hayasaka,
roddy.romero@ieee.org, hmhayasaka@gmail.com

YUniversidade Federal de Santa Catarina

Abstract

This work presents the design of two ultra-low-power self-biased current sources. We propose the use of a
very simple topology along with a design methodology based on the concept of the inversion level in order to
bias any NMOS or PMOS transistor without dependence on the variation of technologic parameters during
fabrication process. An efficient design methodology has resulted in cells with area around 0.0147 mm’ in the
AMS 0.35um CMOS technology and power consumption around 10nW for a 1V supply. Simulated results
validate the design and show that the current source can operate at supply voltages down to 1V with an
acceptable Power Supply Regulation.

1. Introduction

CMOS Analog design based on the concept of inversion level have been shown to provide a robust
alternative for high performance in very-low power and low-voltage circuits. In addition, it is crucial to
correctly set the operating point of a MOS transistor in order to precisely control its small-signal characteristics
like its transconductance. This fact can be achieved if a bias current dependent on technological parameters,
namely specific current, is available and, thus, any transistor can be operated at a given inversion level using
trivial scaling rules. This work presents the design of a Self-Biased Current Source (SBCS) which was
developed in [1]. This circuit can operate at low supply voltage and provides an output reference current
proportional to the specific current of a MOSFET.

This document is organized as follows: In section 2 the principles of working of each block that compound
the SBCS is briefly explained. The choices employed in the design are exposed in Section 3. The simulations
results of the extracted view of the NMOS and PMOS versions are presented in Section 4. Finally, in Section 5,
conclusions and comments are presented.

2. Circuit description
The core of the SBCS is the Self-Cascode MOSFET (SCM) structure shown in fig. 1.

Fig.1 - Self-Cascode MOSFET

This structure can be used as a specific current generator or as a PTAT voltage reference. This behavior
can be understood from the following equation and its graphical representation is shown in fig. 2.

—_— J1+M.i,—1
V=@ |VI+Mi, —1+i, +In(—=f —
e P P -1 M
Where M is constant variable expressed as:
ify S, 1
M=1t=[1+22 (14—
if, sV N @

176 SIM 2010 — 25™ South Symposium on Microelectronics

' i " " w
'

Fig.2 — V-I plot of the SCM

The transistor M1 works in the triode region and M2 in the saturation region. Expressions from the ACM
model [2] were used to obtain this equation. It is clear that if the inversion level of M2 is fixed and is
independent on the temperature, a PTAT voltage Vx will be generated. On the other hand, if a PTAT voltage
Vx is fixed, a certain level of current will be generated. This last behavior is the main principle of operation of
the current source because this current will be proportional to the specific current because and the inversion
level of any transistors is well defined, as can be seen from the following relation:

Silsn ®

tfi

As can be seen from fig. 2, if the SCM is designed to work as a current generator it is necessary to bias the
transistors out of the weak inversion because in that region a small variation of the fixed voltage Vx could
cause a large variation of current. This can be thought in the opposite way for the behavior of the SCM as a
voltage generator.

To build the SBCS, two SCM working in the two different modes can be used with a block that joins them.
This block is presented in fig. 3 and it is called the voltage follower current mirror (VFCM) because it can copy
a certain voltage Vp to another node Vx and also maintain a fixed relation of currents. For this to be done, M8
and M9 must work in weak inversion [1].

Fig.3 - Voltage-following current mirror

The final circuit of the SBCS is presented in fig. 4.

Start-up SBCS

N, 1] N
S L
M12 Lt -
M2 me Kl
— Vx

M1l |— |

Fig.4 — Self-Biased Current Source

M9

A start-up circuit is important for helping the SBCS achieve a stable output current in a short time.

SIM 2010 — 25™ South Symposium on Microelectronics 177

3. Design procedure

The inversion level of transistor M2 is chosen to be in the moderate inversion in order to the output
reference current be less sensitivity to Vx variations. The parameter N is chosen considering area and power
trades-off. The current level is defined by taking into account the maximum limit of power consumption and
also trying to keep it not too low because the values could be comparable to the leakage currents.

The transistor M1 inversion level is restricted by the sensitivity, low supply voltage and area issues. The
sensitivity with respect to Vx is given by [1]:

-1
6iref SVX ifl
—L =2 /1+' -1+ 4
Lref o, 1 1+M @

Its graphical representation for M=5 is shown in fig. 5:

10° 3

Giref
[e/mv]] &

10 i:

a H . : : : H H
100 5 10 15 20 25 30 35
if1

Fig.5 — Current sensitivity with respect to Vx with M = 5.

It can be noted that for ifl higher than 10 the sensitivity of the output reference current with respect to Vx
is lower than 6%/mV. The minimum supply voltage is defined by the branch containing M1, M2 and MS5, since
Vx is lower than 100mV, and depends mainly on the M1 gate voltage which is given by:

VG1=n-(pt'(1+if1—2+ln(1+if1_1)>+vth0 ®)

Thus, we have a range from 10 to 115.64 for ifl considering 1V as minimum supply voltage and a Vdsg, of
100mV for the PMOS current mirror transistors assuming they are in weak inversion. To choose ifl it must be
consider the occupied area because, for low current level, as ifl increases the M1 channel length also increases.

To design the other SCM we sized transistors M3 and M4 to provide the Vx voltage and work at W.I. For a
certain VX, if4 and M are taken using equation (1) and fig. 2. M3 is sized using equation (2). All other
transistors were sized to work at weak inversion due to the low supply voltage requirements.

For the start-up circuit, C1 has to be at least 10 times higher than the parasitic capacitance associated to its
connected node. The control of the startup time is done by charging the most capacitive node in the circuit.

4, Results

Two SBCS were designed for biasing NMOS and PMOS transistors. The technology used was AMS
0.35pum and the BSIM3v3 model was used for simulations in the ELDO Spice simulator. The layouts of the
circuits are presented in fig. 6. The occupied area by each circuit was of 0.0147 mm?® and 0.0146 mm? for the
NMOS and PMOS version respectively.

(b)
Fig.6 — SBCS layout for biasing (a) NMOS and (b) PMOS transistors

Fig. 7 shows the extracted simulation of the output reference current of both SBCS as a function of the
voltage supply at different temperatures. From these graphics the value of the Power Supply Regulation (PSR)
can be calculated which gives the idea of the sensitivity of the circuits from DC variations on the voltage

supply.

178 SIM 2010 — 25™ South Symposium on Microelectronics

i e

lout (na)
lout (nA)

ﬂ\n n\s [0 1\5 T :\n z‘s 3‘u 3\5 _nln‘ ™ ‘n‘;l ™ ‘1C1 oo .z‘n‘ ™ ‘glg‘ ™ ‘3‘3‘ ™ ‘3‘5
VED (V) (ST W0 (V)
(a) (b)

Fig.7 — Output reference current of the (a) NMOS and (b) PMOS SBCS
Finally, tab. 1 summarizes the main characteristics of both circuits.

Tab.1 — Results of the designed SBCS

NMOS PMOS
Characteristic Min| Typ |Max[Min| Typ [Max|Unit
lout @1V 24| 25 [27 [125] 14 |175] nA
Power Supply Reg. 3.8 5.5 6 9 [%/V
Total Power Consumption| 9.6 10 |10.8] 5 5.6 7 | aW
Start Time 0.2 11 |04] 05 11 | ms
Area 0.0147 0.0146 mm?

5. Conclusions

Two SBCS proportional to NMOS and PMOS transistors specific current in the AMS 0.35pm have been
presented. With these circuits, any transistor can be biased in a well defined inversion level without dependence
on the variation of technological parameters during fabrication process. Both SBCS can be operated at low
supply voltage and exhibit ultra-low power consumption. The area occupied by each version is almost the
same.

6. Acknowledgment

The authors of this work want to thank CNPq, the Brazilian Agency of Science and Technology, for
financial support of this work.

7. Bibliography

[1] CAMACHO-GALEANO, M. E. “Referéncia de Corrente CMOS para Aplicagdes de Ultrabaixo
Consumo de Poténcia”. Floriandpolis, 2004. Dissertagdo (Mestrado em Engenharia Elétrica) — Centro
Tecnologico, Universidade Federal de Santa Catarina

[2] A.IL A Cunha et al., “An MOS transistor model for analog circuit design,” IEEE J. Solid-State Circuits,
vol. 33, no. 10, pp. 1510-1519, Oct. 1998.

SIM 2010 — 25" South Symposium on Microelectronics 179

Automatic Sizing of Analog Integrated Circuits Including Analysis of
Parameter Variation

Lucas Compassi Severo, Alessandro Girardi
Lucascs.eletrica@gmail.com, alessandro.girardi@unipampa.edu.br

Federal University of Pampa — UNIPAMPA - Campus Alegrete

Abstract

This paper presents a tool for analog design automation (ADA) of integrated circuits using an external
electrical simulator for evaluating the electrical specifications and genetic algorithms as optimization meta-
heuristic. The purpose of the tool is to automatically size MOSFET transistors of a basic analog block,
searching for optimized power consumption and gate area, and to evaluate the sensitivity of the electrical
characteristics with respect to the variation of circuit parameters. As example, we designed a differential
amplifier, which has 7 free variables. The results showed that the circuit scale reaches the design
specifications, even considering the worst case of parameter variation.

1. Introduction

The design automation of analog integrated circuits is mandatory on state-of-the-art applications. The goal
of automation is to provide an efficient search in the design space in order to make the circuit as efficient as
possible within a set of arbitrary constraints and specifications. Several works have been done on this theme,
with the main objective of providing low power optimized circuits in an acceptable computational time [1, 2].

In analog integrated circuits, it is important to automate some design stages such as transistor sizing and
layout generation. The large number of free variables - and hence the large design space - makes it extremely
difficult to resolve [3]. Thus, it is essential the use of computational optimization techniques in order to solve
these problems.

In the transistor sizing stage, the automatic optimization-based design can be divided in two types: based
on analytical equation model and based on electrical simulation. Using analytical equations, design
specifications are evaluated by first order models, providing fast but inaccurate results. In the electrical
simulation approach, circuit performance of an analog block is evaluated by electrical simulation provided by
an spice-like electrical simulator with advanced device models. This approach is accurate but slow.

Another advantage of analog design automation is the possibility to analyze the sensitivity of the solution
in relation to process parameters variation. Therefore, due to various manufacture stages of integrated circuits,
the size and some physical parameters of the transistors experience some changes. These changes may cause
some units of the designed circuit to fail to meet the nominal specifications of the design.

In this context, we propose a methodology for fully automatic sizing of analog basic blocks, evaluating the
sensitivity to process variation by circuit electrical simulation. This methodology is based on the global search
strategy performed by genetic algorithms [4, 5] and on the evaluation of the characteristics of the circuit by a
commercial electrical simulator.

2. Automatic synthesis

The proposed methodology is based on optimizing a cost function determined from functional
specifications of an analog basic block. The cost function is dependent on the electrical characteristics and
variables of the circuit, such as power consumption, silicon area, and voltage gain, among others.

We also take into account the sensitivity to parameter variation as design constraints, beyond the
specifications of the circuit. This ensures that the values of the specifications are maintained within a desired
range even when small changes in the nominal values of the parameters are present [6].

The parameters of a MOSFET transistor can be divided into two categories: process parameters (physical
characteristics of the semiconductor, such as oxide thickness or number of dopants in the substrate) and
geometrical parameters (transistor sizes, such as gate width and length). Each parameter variation is related to a
different cause and affects electrical characteristics in different aspects. Corner and Monte Carlo models
provided by the foundries are important tools for simulating the electrical behavior of the designed block.
Statistical simulations are mandatory, mainly in breakthrough designs, whose bias point is located, in general,
on the limits of design space.

The optimization problem is modeled by a meta-heuristic optimization based on genetic algorithms using
an external electrical simulator to provide values for the electrical characteristics of the circuit.

The genetic algorithm is a heuristic for nonlinear optimization inspired on an analogy with the theory of
biological evolution [7]. It is a non-deterministic algorithm and it works with a variety of solutions
(population), simultaneously. The size of this population is defined so as to maintain diversity in the population
and, at the same time, to consider an efficient computational time. Each individual of the population is called a

180 SIM 2010 — 25™ South Symposium on Microelectronics

chromosome and is composed by a vector with the variables of the problem. The quality of a chromosome can
be evaluated by the cost function of the problem.

Figure 1 shows the design flow of the methodology using genetic algorithms. The algorithm takes as input
a randomly generated population of solutions, the parameters for crossover and mutation and the parameters of
the technology model. With this evaluation and selection method, the parent chromosomes are selected to
generate new chromosomes. The generation of new chromosomes is given by a function of recombination and
mutation [8]. The next step is to evaluate these new chromosomes and insert them in the population. Older and
weaker member are excluded from the population. After each iteration, the stopping criterion is tested and, if
true, the optimization is finished. If false, new parents are selected and the process continues.

The synthesis tool developed in this work used the GAOT implementation of genetic algorithms in
Matlab® [10] and Dolphin Smash® as electrical simulator. As transistor model, we used the ACM model with
parameters of AMS 0.35um technology. Using this model, we guarantee an efficient search in strong, moderate
and weak inversion regions, because it has continuous equations in all regions of operation of the transistors

[9].

Initialize Chromosome Evaluation of population
lati (electrical sinulation and
cost function evaluated)

rer
(random W, L and Tref)

Recombination and
mutation operators

(Crossover arithmetic, hemistic... and
Mutation uniform, non-uniformn...)

Technology model

Select the parents for
g(‘ll?l'ﬂﬁ]lg new chromosomes
(best solution cost function)

|Rn ibination and mutati ‘

Exclusion of older members
of the population

[Evaluation of new chr
and insertion in the population ‘

Is stop condition
satisfied?

(n generation or cost

function variation)

End optimization
(Show the best solution)
Fig. 1 - Analog design methology using Genetic Algorithms.

3. Design Example

As an example of the use of the proposed automatic analog synthesis methodology, we designed a
differential amplifier with active load. This circuit is very versatile and usually serves as input stage for
operational amplifiers [11]. The basic function here is to amplify the difference voltage between its inputs. The
circuit is composed by a current mirror load (M2a and M2b), a differential pair (M1a and M1b) and a current
mirror reference (M3a and M3b), shown in Figure 2. The design free variables are the width and length of each
MOSFET transistor (W and L), and the value of the reference current source (Iref). As Mla and M1b are
identical transistors, and the same occurs for M2a and M2b and for M3a and M3b, we have 7 free variables in
this optimization problem: WM1a, LM1a, WM2a, LM2a , WM3a, LM3a and Iref. The population is evaluated
using an external electrical simulator. Given arbitrary values for the design variables, the simulator is executed
and the results (electrical characteristics) are read and evaluated in the cost function.

L|_|

Mib |f'I

VDD= 165V
VES=L63V
CL=10pF

() Iner

]

Fig. 2 - Schematics of a differential amplifier circuit with active load.

The main specifications in this circuit are: low frequency voltage gain (Avy), gain-bandwidth product
(GBW), slew-rate (SR), maximum and minimum common mode input voltage range (ICMR), dissipated power

SIM 2010 — 25™ South Symposium on Microelectronics 181

(Pdiss) and consumed area. The analytical equations that describe the behavior of this circuit are well-known
[11].

As the values of the specifications of the amplifier are provided by an external electric simulator, it is
unnecessary the use of mathematical equations that model the differential amplifier. Thus, the values of the
characteristics of the circuit are obtained by making AC, DC, OP and transient spice simulation analysis, as
shown in Table 1.

Tab. 1 - Types of spice simulation analysis for Tab. 2 - Worst result of voltage gain with
the evaluation of circuit specifications. respect to parameter variation.
Specification Analysis Parameter Worst case

Avy AC w Lower values
GBW AC L Lower values
SR Transient Vt Higher values
ICMR- DC Tox Higher values
ICMR+ DC U, Lower values
Piss OP

To model the sensitivity to variation of circuit parameters, we adopted a percentage change in geometric
and process parameters in the circuit in order to express the variation which provides the worst possible
outcome. For example, in an amplifier circuit it is always desired a high voltage gain Av0. Thus, the worst
possible result is obtained by variations that cause the greatest reduction in voltage gain. For the analysis of
variance, we consider channel width (W) and length (L) as geometric parameters, and threshold voltage (VT),
silicon oxide thickness (Tox) and mobility of carriers in the channel (U0), as process related parameters. By
means of electrical simulation, we analyzed which parameter variations cause the greatest degradation in the
voltage gain of the circuit. Figure 3 shows the curves for the variation of some parameters and sensitivity to
process parameters. The results of this analysis are shown in Table 2.

So, we adopted this behavior of parameter variations in order to emulate the sensitivity of voltage gain. The
same study was realized for the other specifications.

As cost function for this analysis we assumed the sum of dissipated power, gate area and the constraints of
the problem, defined by:

3

20y 4t 2

f= —+-= + R, + R
f ©)

where RR is a constraint function for design specifications considering nominal circuit values and RS is a
constraint function including parameter variation. If all constraints are met, the values of RR and RS are equal
to zero. PO and A0 are the value of power and area references, respectively, used to normalize the terms of the
cost function.

B0 o - 8015
ms - o
o -
€1 - -
& 0 e 005 Pl
0 & .‘“d-. . -".-“
. 1™ - Ju= &
i - 1 o
“ rd 0,85 - o
& ol E
535/ o
F: 75 ““"' rd
d;:, ey P R T T TR @ 19 T B3 0% 0% 7 7 06
U0 (emive) 1 m) 10° W (m) ot
@
60.2|
£,
"
72 74 765 788 B2 84 86 _
=T x10®
(a) (b) () (d)
Fig. 3 - Voltage gain variation with respect to variation of individual parameters. (a)Tox, (b)UO, (c)L and
(d)W.

The optimization was executed using a population of 1000 individuals and a sensitivity analysis with a
variation of 5% for the worst case of all parameters. Figure 4 shows the cost function variation along the
iterations. In this figure it is possible to notice that the value of cost function is slowly reduced along the
optimization process.

182 SIM 2010 — 25™ South Symposium on Microelectronics

Table 3 shows the results of the optimization. In this table we can see that the values satisfy the initial
specifications, achieving at a power consumption of 341.08uW and gate area equal to 726.75um?. The spent
optimization time was approximately 51 minutes. As the variation of the parameters is part of the cost function,
it guarantees that constraints are met even with a variability of 5% on geometric and processes parameters.

cost function

o . Tab. 3 - Optimization results for the differential
ey B ot amplifier
et ¥ e ¥ +* * P '
1 *;tﬁ N - J#{ o+ :* et e Specification Required Achieved Wor_st case
160 - * * ¥ o variation
10 * Av0 >60.00 dB 60.45 dB 60.00 dB
E GBW >1.00 MHz 5.45 MHz 5.46 MHz
ERE SR >5.00 V/us 5.00 V/us 5.01 V/us
E - ICRM- <-070V -0.70 vV -0.70 V
ICMR+ >0.70 V 1.18 V 1.18V
&0 Gate Area Minimize 726.75 pm? -
wal Power Minimize 341.08uW -
W(Mla e M1b) - 84.52 um -
sl W(M2a e M2b) - 49.56 um -
0 20 40 B0 B0 1000 1200 1400 1600 180 W(M3a ¢ M3b) - 34.04 pm -
interations L(Mla © Mlb) - 2.25 pm -
Fig. 4 - Cost function variation. i%g: Z ﬁgg; - 122'.2155};121 -
Tref - 51.67 uA -
Time - ~ 51 minutes

4. Conclusion

This paper presented a tool for automatic design of a differential amplifier with 7 free variables, with
optimization in area and dissipated power. Sensitivity analysis guarantees that the designed block can meet
specifications even at worst cases, in which process parameters contributes for performance degradation. The
employment of genetic algorithms provides the search in the entire design space, allied to the use of a transistor
model continuous in all operation regions, which permits a good optimization in terms of dissipated power. The
proposed automatic design methodology is precise and has good possibilities to be expanded for sizing large
analog blocks with dozens of free variables. Another advantage of the methodology is the short time spent in
modeling the circuit, because all evaluations are performed by electrical simulations, without the need of
experienced human interference.

5. Acknowledgment
The grant provided by FAPERGS research agency for supporting this work is gratefully acknowledged.

6. References

[1] M. Degrauwe, O. Nys, E. Dukstra, J. Rijmenants, S. Bitz, B. L. A. G. Goffart, E. A. Vittoz, S.Cserveny, C.
Meixenberger, G. V. der Stappen, and H. J. Oguey, “IDAC: An interactive design tool for analog CMOS Circuits”,
IEEE Journal of Solid-State Circuits, SC-22(6):1106{1116, December 1987.

[2] M. D. M. Hershenson, S. P. Boyd, and T. H. Lee, “Optimal design of a CMOS op-amp via geometric Programming”,
IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, 20(1):1{21, January 2001.

[3] A. Girardi and S. Bampi, “LIT - An Automatic Layout Generation Tool for Trapezoidal Association of Transistors for
Basic Analog Building Blocks”, Design Automation and Test in Europe, 2003.

[4] R. S. Zebulum, M.A.C. Pacheco, M.M.B.R., Vellasco, “Evolutionary Electronics: Automatic Design of Electronic
Circuits and Systems by Genetic Algorithms”, USA: CRC, 2002.

[5] Taherzadeh-Sani, M. Lotfi, R. Zare-Hoseini, H. Shoaei, O., “Design optimization of analog integrated circuits using
simulation-based genetic algorithm”, Signals, Circuits and Systems, 2003, International Symposium on, Iasi, Romania.

[6] T. Massier, S. Little, C. Myers, N. Seegmiller, T. Yoneda, “The Sizing Rules Method for CMOS and Bipolar Analog
Integrated Circuit Synthesis”, IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, 27,
December 2008.

[7] P. Venkataraman, “Applied Optimization with Matlab Programming”, John Wiley & Sons, New York, 2002.

[8] R. Linden, “Algoritmos Genéticos — Uma importante ferramenta da inteligéncia artificial”, Brasport, Rio de janeiro,
2006.

[9] A. 1. A. Cunha, M. C. Schneider, and C. Galup-Montoro, “An MOS transistor model for analog circuit design”. IEEE
Journal of Solid-State Circuits, 33(10):1510{1519, October 1998.

[10] Christopher R. Houck, Jeffery A. Joine and Michael G. Kay, “A Genetic Algorithm for Function Optimization: A
Matlab Implementation”, North Carolina State University, available at
http://www.ise.ncsu.edu/mirage/GAToolBox/gaot/.

[11] P. E. Allen and D. R. Holberg, “CMOS Analog Circuit Design”, Oxford University Press, Oxford, Second Edition,
2002.

SIM 2010 — 25" South Symposium on Microelectronics 183

Photoluminescence Behavior of Si Nanocrystals Produced by Hot
Implantation into Silicon Nitride

'Fellipe C. Pereira, 'Pietro S. Konzgen, Felipe L. Bregolin, *Uilson S. Sias
pereira.cti@gmail.com, pietroserpa@yahoo.com.br, felipe.bregolin@ufrgs.br,
uilson.sias@gmail.com.

YInstituto Federal de Educacéo, Ciéncia e Tecnologia Sul-rio-grandense - Campus
Pelotas, RS - Brazil
?Instituto de Fisica, Universidade Federal Rio Grande do Sul, Porto Alegre, RS -
Brazil

Abstract

Silicon nanoparticles have being known for their intense light emission in the visible and near-infrared
spectral range, emerging as a quite attractive alternative for development of optoelectronic devices. A recent
improvement on emission quality was achieved by performing the Si implantation on heated substrates (hot
implantation). In the present contribution we report the photoluminescence (PL) from Si nanocrystals (Si NCs)
embedded into a 380 nm thick Si;N, matrix, produced by Si hot implantation. The sample excitation was
performed by an Ar ion laser at 488nm, obtaining a PL emission in the 400 - 900 nm range. The excess of Si
was obtained by a 170 keV implantation with the substrate at different temperatures with the fluence of 1x10"
Si/em’. Samples were annealed since the room temperature (RT) up to 600°C in a N, atmosphere. We have
observed that samples annealed at 475 °C and implanted at 200°C present a 20% PL increase as compared to
RT implanted one. The PL emission was attributed to radiative states at the matrix and silicon nanocrystals
interface.

1. Introduction

Since the discovery of strong visible light emission in porous Si and in Si nanocrystallites an intense
research activity has been devoted in studying Si nanostructures due to their promising applications in
optoelectronic and photonic devices [1]-[3]. Quantum confinement has led to a dramatic improvement of light
generation efficiency in Si nanostructures [4], [5]. High emission efficiencies have been achieved in oxidized
porous Si [4-6] and sizeable optical gain have been obtained from Si nanocrystals (Si NCs) embedded in a SiO,
matrix, as recently demonstrated by several groups [1], [7]-[9]. In addition to the quantum confinement, the
presence of interface states located at the nanocrystals surface has also shown a strong influence on the light
emission from the Si NCs. In fact, for some systems the mechanism responsible for the light emission is still an
open question.

On the other hand, in the last years an increasing research activity has been observed concerning the
light emission from Si NCs embedded in Si nitride films [10]-[12]. Photoluminescence (PL) bands have been
observed in the range of 400-900 nm, being their origin still unclear. The number of PL bands with quite
different characteristics already reported in the literature should be attributed to the origin of the Si NCs,
obtained either from near stoichiometric or from nitrogen/silicon—rich amorphous SiNj films.

In the present article we report the PL results obtained by Si ion implantation into a stoichiometric
Si3N, film followed by a high temperature anneal. To our knowledge this is the first time that ion implantation
technique has been employed in this system in order to obtain the Si NCs. In order to maximize the PL yield we
have changed the annealing temperature, the implantation fluence and even the temperature of implantation.
Finally, we have compared the present with the previous results already reported in the literature.

2. Experimental details

A 380 nm thick SizN, film was grown on a Si <100> wafer by the plasma enhanced chemical vapor
deposition technique. The stoichiometry was verified using the Rutherford backscattering technique. Samples
were implanted keeping constant the substrate temperature from room temperature (RT) up to 600 °C with 170
keV Si ions at a fluence of 1x10'7 Si/ecm? providing a peak concentration profile at around 100 nm-depth and
an initial Si excess of about 10%. The as-implanted samples were further annealed for one hour at temperatures
that range from 350 up to 900 °C in a N, atmosphere using a conventional quartz-tube furnace. This is a
standard procedure in order to nucleate and precipitate the Si NCs and, eventually, remove the implantation
damage [13].

Subsequently we have changed the implantation temperature in order to observe if this procedure induce
any change in the PL yield and /or in its position. In previous experiments dealing with Si NCs embedded in a
Si0O, matrix we have shown that the implantation temperature plays an important role not only in the induced

184 SIM 2010 — 25™ South Symposium on Microelectronics

PL yield but also in the position of the PL band [7]. As a final step, with the aim to verify if the Si excess on the
Si3N; film has any influence on the PL emission behavior, we have changed the Si implantation fluence.

The PL measurements were performed at RT using an Ar ion laser (488 nm) as an excitation source. The
emission was dispersed by a 0.3 m single spectrometer and detected with a visible near-infrared silicon detector
(wavelength range from 400 to 1100 nm).

3. Experimental results

3.1. PL intensity as a function of the annealing temperature:

In this sequence of experiments we have implanted the samples at RT and then submitted those to one hour
anneal in N, atmosphere in a range of temperatures from 350 up to 900 °C.

In Fig.1 are shown typical PL spectra of samples annealed at different temperatures. It can be observed that
the spectra are broad ranging from 600 up to around 1100 nm with a small structure at around 750 nm which
should be attributed to reflection at the Si/SiO, interface. In all cases the maximum of the PL band remains
around 900 nm without showing any dependence with the annealing temperature.

10000 T T T T T T
—m—475C
—e—350C
400031y B00C oo A
[] .
z i) L
2 . g
2 6000 u . -
i i "
E .
B | . ., " J
= 4000 ! s
z - .‘ .. n
=) e =
=l i
-
20001 5 o
P
A
OJ T T T T T
500 800 700 800 900 1000 1100 1200

Wavelength(um)

Fig. 1 — Typical PL spectra of samples implanted at RT and annealed at different temperatures.

In Fig. 2 are summarized the results of the present experiment where the maximum PL yields is shown as a
function of the annealing temperature. As can be observed the higher yield was obtained for T, =475 °C. For
lower or higher temperatures the PL yield decreases without substantial change in their shape. We have also
performed the annealing procedure in vacuum, Ar or even in a forming gas atmosphere without obtaining any
substantial change in the PL emission.

10000 T T T

8000 g T
6000 . 1

4000 A i =

Inftensity(arb. units)
| |

2000 % T

T T T
200 400 600 800 1000

Annealing temperature("C')

Fig. 2 — PL intensity as a function of annealing temperature for samples implanted at RT with a fluence of
1x10" Si/em’.

3.2. PL intensity as a function of the implantation temperature:

In this set of experiments we have changed the implantation temperature (Ti) from 200 up to 600 °C and
subsequently annealed the samples at 475 °C. The best result was obtained at Ti= 200 °C. For this implantation

SIM 2010 — 25" South Symposium on Microelectronics 185

temperature the PL yield is 20 % higher as compared with the one obtained with RT implantation. For higher Ti
the PL even became lower when compared with the RT results [see Fig. 3. Finally, it is interesting to point
out that a direct implantation at Ti = 475 °C without further annealing was able to induce the same PL band but
with a yield that was three times lower than the one obtained with Ti = 200 °C and Ta = 475 °C — see Fig. 3. As
observed in Fig. 3 for the implantation at 475°C, even without annealing, a PL is already induced.

10000 —

—@®—RT +475C
—®—200C + 475C

8000 4 —4&— 350C + 475C

—0—475C As-Implanted

6000 -

4000 4 . ®

Intensity(arb. mnits)

20004 fag

r T T T T T T 1
500 600 700 800 900 1000 1100 1200
Wavelength(nm)

Fig. 3 — PL intensity as a function of implantation temperature for samples annealed at 475°C and implanted at a
fluence of 1x10'7 Si/cm?.

3.3. PL intensity as a function of the implantation fluence:

As a last step we have changed the Si excess at the SizNy film by varying the implantation fluence between
0.5 and 2.0x10"7 Si/em?. This was done at T; = 200 °C and T,= 475 °C. As revealed by analysis of Transmission
Electron Microscopy (TEM), the Si NCs size have changed with the implantation fluence, however, no
variation have been observed nor in the yield neither on the position of the PL band. This is a clear indication
that the origin of the present band is due to Si Nes/SiO, interface radiative states.

4, Discussion and Conclusions

Although systems formed by Si nanocrystals embedded in SiO, matrix have an excellent structural
stability, which is crucial for reliable fabrication of light emitting devices (LEDs), they have some problems.
For example, the high annealing temperature over 1100 °C to form the luminescent nanocrystals is very high
when integrating the LEDs with electronic components. Another problem is related to carrier injection for
electroluminescence, which takes place by a tunneling mechanism. Being the SiO, matrix band gap of order 8.5
eV, the operating voltage of the LEDs should be inappropriately high. Then, would be suitable to have Si NCs
produced in a low temperature and in a matrix with smaller band gap, like Si;Nj.

In the last decade it has been observed an increasing activity related to the search for enhancing and
explaining the PL emission from Si NCs embedded into a Si nitride film.

Up to the moment all the experiments were done either using Si or N into amorphous SiNx or non-
stoichiometric nitride films. In this way PL bands ranging between 400 up to 900 nm were obtained. Moreover,
in [11] it was shown that, by varying the conditions used to form the non-stoichiometric films the authors were
able to change the characteristic wavelength of the emitted PL band.

To our knowledge the present work is the first attempt to obtain Si NCs into a stoichiometric nitride film
by using the ion implantation technique followed by further annealing. The 170 keV, RT Si implanted into the
Si3N, film, followed by a 475 °C anneal has produced Si NCs which, when excited, have given place to a broad
PL distribution centered at around 900 nm. High temperature implantation (at 200 °C) has increased the PL
yield (20 %) when compared to the RT implantation. This behavior is qualitatively similar with what was
observed for the case for Si NCs [7] and Ge NCs [14] produced in a SiO, matrix, where a strong increase in the
PL yield was obtained as a result of a high temperature implantation.

It was also shown that the annealing atmosphere does not have any influence on the characteristics of the
PL band. Even anneals performed in a forming gas environment did not produce any change in the PL band.

When the present results are compared to the ones obtained in previous works, which have used different
techniques to provide the Si excess, it can be observed that in most of the cases the obtained PL bands were
centered in the 400-600 nm region. One exception can be observed in the reference [12]. By using the plasma
enhanced chemical vapor deposition technique to obtain a non-stoichiometric film they have obtained a PL
band similar to the one obtained in the present work. However, one major difference that is found between both
methods in order to obtain the maximum PL yield is the annealing temperature used in each experiment. While

186 SIM 2010 — 25™ South Symposium on Microelectronics

in the present case it was 475 °C, in the cited work it was 700 °C. This feature could be attributed to the fact that
for Si NCs growth kinetics in nitrides is faster than in other matrix like for example SiO, which require higher
annealing temperatures (Ta =1100 °C). Consequently, since the implantation process already produce an excess
of Si in a localized region (Rp= 100 nm and ARp= 60 nm), then it requires a lower temperature to form small
size Si NCs. Moreover, as was described above, a high temperature implantation is already enough to induce
the formation of Si NCs, but with less efficiency than the normal procedure of initially performing the
implantation and then, the high temperature anneal.

By changing the Si implantation fluence we have modified the size of the nanocrystals, as revealed by
TEM observations. However, no modification was observed nor in the yield, neither in the position of the PL
band. This last feature clearly indicates that the origin of the present band is due to radiative defects at the
interface between the nanocrystals and the matrix. This feature is in agreement with what was observed in [12]
where the authors attributed the existence of the PL band to radiative defects of the type Si-N.

5. References

[1] L. Pavesi, L. dal Negro, C. Mazzoleni, G. Franzo and F. Priolo. “Optical gain in silicon nanocrystals”.
London: Nature, 408, 2000, pp., 440 - 444.

[2] A. T. Fiori and N. M. Ravindra. “Light emission from silicon: Some perspectives and applications”. Boston:
J. Electron. Mater., 32, 2003, pp 1043-1051.

[3] L. Brus in Semiconductors and Semimetals edited by D. Lockwood. New York: Academic, 1998, 49, p.
303.

[4] Silicon Photonics, edited by L. Pavesi and D.J. Lockwood (Springer, Berlin, 2004).

[5] B. Gelloz. “Possible explanation of the contradictory results on the porous silicon photoluminescence
evolution after low temperature treatments”. Amsterdam: Appl. Surf. Sci., 108, 1997, pp. 449-454.

[6] B. Gelloz, T. Nakagawa and N. Koshida. “Enhancement of the quantum efficiency and stability of
electroluminescence from porous silicon by anodic passivation”. Woodbury: Appl. Phys. Lett., 73, 1998,
pp. 2021-2023.

[7] U.S. Sias, L. Amaral, M. Behar, H Boudinov, E.C. Moreira and E. Ribeiro. “Photoluminescence behavior of
Si nanocrystals as a function of the implantation temperature and excitation power density”. Woodbury:
J. Appl. Phys.,98, 2005, pp. 34312-34317.

[8] L. dal Negro, M. Cazannelli, L. Pavesi, S. Ossicini, D. Pavesi, G. Franzo, F. Priolo and F. Iacona.
“Dynamics of stimulated emission in silicon nanocrystals”. Woodbury: Appl. Phys. Lett., 82, 2003, pp.
4636-4638.

[9] L. Kriachtchev, M. Rasanen, S. Novikov and J. Sinkkonen. “Optical gain in Si/SiO2 lattice: Experimental
evidence with nanosecond pulses “. Woodbury: J. Appl. Phys., 79, 2001, pp.1249- 1251.

[10] Kwang Son Seol, Tsuyoshi Futami, Takashi Watanabe, Yoshimichi Ohki. “Effects of ion implantation and
thermal annealing on the photoluminescence in amorphous silicon nitride”. Woodbury: J Appl. Phys.,
85, 1999, pp. 6746-6750.

[11] Y.Q.Wang, Y.G.Wang, L. Cao and Z. X. Cao. “High-efficiency visible photoluminescence from
amorphous silicon nanoparticles embedded in silicon nitride”. Woodbury: Appl. Phys. Lett., 83, 2003,
pp. 3474 - 3476.

[12] L. dal Negro, J. H. Yi, J. Michel, L. C. Kimerling, T. W. F. Chang, V. Sukhovatkin and E.H. Sargent.
“Light emission efficiency and dynamics in silicon-rich silicon nitride films”. Woodbury: Appl. Phys.
Lett., 88, 2006, pp. 233109 -233111.

[13] M. Y. Valahnk, V. A. Yukhimchuk, V. Y. Bratus, A. A. Konchits, P.L.F. Hemment, T. Komoda, J. Appl.
Phys. 85, 68 (1999).A. G. Cullis, and L. T. Canham. “Visible light emission due to quantum size effects
in highly porous crystalline silicon”. London: Nature, 1991, pp. 335-338.

[14] F.L. Bregolin, and M. Behar, and U.S. Sias, and E.C. Moreira. “Photoluminescence induced from hot Ge
implantation into SiO,”. Holanda: Nucl. Instr. and Meth. B, 2009, pp. 1321- 1323.

SIM 2010 — 25" South Symposium on Microelectronics 187

Study of the Electroluminescence from Ge Nanocrystals Obtained by
Hot lon Implantation into SiO,

pietro S. Konzgen, 'Fellipe C. Pereira, *Uilson S. Sias, *Felipe L. Bregolin
pietroserpa@yahoo.com.br, pereira.cti@gmail.com, uilson.sias@gmail.com,
felipe.bregolin@ufrgs.br

YInstituto Federal de Educacéo, Ciéncia e Tecnologia Sul-rio-grandense Campus
Pelotas, RS-Brazil
? Instituto de Fisica, Universidade Federal Rio Grande do Sul, Porto Alegre, RS,
Brazil

Abstract

Usually, photoluminescence (PL) and electroluminescence (EL) from Ge nanocrystals (Ge NCs) have
been obtained by room temperature (RT) Ge implantation into a SiO, matrix followed by a high temperature
annealing. In the present work, we have used a novel experimental approach: we have performed the Ge
implantation at high temperature (Ti) and subsequently a high temperature annealing at 900 °C in order to
grow the Ge NCs. By performing the implantation with the matrix kept at Ti = 350 °C, the electrical stability of
the MOSLED devices were enhanced, as compared to the ones obtained from RT implantation. Moreover, by
changing the implantation fluence with ® = 0.5 x 10" and 1.0 x 10" Ge/cm’ we have observed a blueshift in
the EL emission peak.

1. Introduction

Since the discovery of photoluminescence (PL) in porous Si [1], a large number of studies concerning the
properties of Si or Ge nanoclusters (NCs) have been reported. Among the several techniques used to produce
the NCs embedded in a matrix, the ion implantation technique has shown to be a very reliable tool because it
offers several advantages [2]-[4]: in addition to the compatibility with the microelectronic technology, it is very
precise in controlling the amount and depth of the excess ions introduced in the matrix, thus presenting great
reproducibility.

First experiments using ion implantation as a technique to produce Si or Ge NCs were already reported in
the early 1990’s [2]-[4] and their promising results were followed by an intense research activity, as illustrated
by the review of Rebohle et al. [5]. However, in all the cases, the Ge implantation was performed at room
temperature (RT), followed by a high temperature anneal.

Recently we have used a different experimental approach. Instead of performing Ge implantation into the
SiO2 layer at RT, we have done it keeping the substrate at 350 °C and then annealed the samples at 900 °C. As
consequence, the 390 nm band increased its PL yield by a factor of almost four as compared with the RT
implantation. Moreover by finding the proper Ge implanted concentration we were able to further increase the
PL yield of the 390 nm band by another factor of 3 [6].

The main goal of the present paper is to study the electroluminescence (EL) emitted by metal-oxide—
semiconductor (MOS) devices made with the Ge NCs obtained by hot implantation and compared the results
with those produced by RT implantation results of EL obtained using implantation at hot and at RT in the
various fluencies of Ge used.

2. Experimental procedure

A 195 nm-thick SiO, layer, thermally grown onto a n-type Si <100> wafer by dry oxidation at 1050 °C,
was implanted with 120 keV Ge ions keeping constant the substrate temperature at RT and 350 °C,
respectively. The implantations were done at fluences of 0.5 and 1.0 x 10" Ge/cm? corresponding to a
Gaussian-like depth profile with a peak concentration of about 1.5 at. % and 3 at. %, respectively, 90 nm far
from the SiO, surface. Subsequently, the as-implanted samples were submitted to a furnace anneal at 900 °C for
30 min in flowing N,. Then, a SiON layer with a thickness of 100 nm was deposited onto the SiO, layer by
plasma-enhanced chemical vapor deposition (PECVD) in order to enhance the electrical stability of the device
[7], followed by the same annealing process. MOS dot structures for EL studies were prepared using sputtered
layers of indium tin oxide (ITO) and Al as front and rear electrodes, with a thickness of 100 nm and 150 nm,
respectively. Photolithography was used to make a dot matrix pattern with a dot diameter of 200 pm. Finally,
an annealing procedure of 400 °C for 30 min was performed to improve the ohmic behavior of the contacts. A
sketch of the device is shown in Fig. 1.

188 SIM 2010 — 25™ South Symposium on Microelectronics

The EL measurements were performed at room temperature utilizing a Triax 320 spectrometer with a R928
Hamamatsu photomultiplier. Current injection was done by a Keithley 2410 sourcemeter, with a positive
voltage applied to the gate, corresponding to a electron injection from the Si substrate into the SiO, layer.

Structural characterization of the samples were performed by transmission electron microscopy (TEM),
using a 200 keV JEOL microscope with the samples prepared in a cross sectional mode by mechanical
polishing and ion milling techniques.

+

N

1ITO
SiON
1 D o
I n-Si

Fig. 1 — Schematic diagram of the MOSLED (not drawn to scale). In Detail: Representation of the Ge NCs for
a) RT implantation b) High temperature implantation

3. Experimental results

3.1. TEM Results

The TEM measurements reveal the formation of crystalline Ge nanoclusters in both RT and hot implanted
samples after the 900 °C annealing, as shown in Fig. 2 a) and b), respectively. For the RT implanted sample
(Fig. 2a) we have found a Gaussian—like NCs size distribution with quite regular sizes varying from 2.5 up to 5
nm diameter, resulting in a mean diameter of 4.2 nm (6=1.2 nm).

Concerning the hot implantation (Fig. 2b), the mean size and size distribution differ significantly from the
one observed when the Ge implantation is done at RT. In fact, the Ge NCs distribution presents a positive
gradient profile of crystal sizes along depth. The shallow region shows quite small nanocrystals having about 2
to 3 nm in diameter. The intermediate one contains medium size Ge NCs of around 3 to 5 nm and in the deepest
region it is possible to observe larger NCs ranging from 5 to even 9 nm in diameter.

3.2. Electroluminescence measurements

In this set of experiments, the electrical properties of the MOS light emitting devices (MOSLED) were
analyzed. Fig. 3 shows the EL spectra of the devices under a constant current density of 320 pA/cm? for the hot
and RT samples implanted at the two different fluences. The first observed feature is that the intensities of the
EL peaks of the hot implanted samples are around 30 % lower than the ones corresponding to the RT implanted
ones. Another interesting feature present in this spectra is the blueshift in the EL peak position, of 8 nm, in the
devices implanted with the higher fluence (1.0 x 10'® Ge/cm?), as compared to the ones implanted with the
lower fluence (0.5 x 10'® Ge/cm?). It should be mentioned that the 310 nm band seen in [6] could not be
detected in the present experiment because non UV-transparent optics were utilized.

Figure 4 displays the EL intensity as a function of the injected carriers under constant current density of
320 pA/cm’® with the spectrometer centered on the wavelength of the EL peak of each device. The experiments
were done for the hot and the RT implanted samples, and for both implanted fluences. It was verified that the
hot implanted samples show an electrical stability that is around three times larger than the one obtained by the
RT implants.

4. Discussion and conclusions

In previous works [4]-[6] the Ge NCs embedded in SiO, matrix were obtained by RT implantation
followed by a high temperature anneal. When excited at 5.1 eV, two PL bands were obtained, one at 310 nm
(4.0 eV) and the other, with much higher yield at 390 nm (3.1 eV). The origin of the PL bands was attributed to
radiative defects present at the Ge NCs/matrix interface, specifically, neutral oxygen vacancies (NOV) like
=Ge-Si= and/or =Ge—Ge= defects generated the local deficiency of oxygen and the incorporation of Ge into
the SiO2 network surrounding the NCs [5], [8],[9]-

SIM 2010 — 25™ South Symposium on Microelectronics 189

Related to the EL measurements, the lower EL intensity of the hot implanted samples—see Fig. 3—can be
explained based on the results of the TEM observations. The hot implanted samples have significant larger NCs
at the deepest region of the implantation profile, as compared to the RT implanted ones. These larger NCs act
as scattering centers for the electrons during the injection process as illustrated by Fig. 1 causing a kinetic
energy loss and thus decreasing the corresponding EL cross section, producing a less intense emission. The
blueshift in the EL spectra observed for the highest implantation fluence (see Fig. 3) can qualitatively be
explained as follows. The EL induced by the Ge NCs is due to NOV-type radiative defects, such as =Ge-Si=
and/or =Ge-Ge=, with emission energies of 2.92 and 3.1 eV, respectively [7]. Both of them are among the ones
that contribute the most to the observed EL band. A higher Ge implantation fluence produces larger NCs, after
the thermal annealing, due to the higher Ge concentration in the matrix. Consequently, the or =Ge—-Ge= to
=Ge-Si= ratio increases, producing a more intense emission of the 3.1 eV component and a corresponding
reduction of the 2.92 eV component of the EL band, resulting in a slight blueshift, as observed in Fig. 3.

Fig. 4 indicates that the hot implanted samples can sustain an approximately three times larger number of
injected charges before the breakdown device (Qgp) occurs, as compared to the RT implanted ones. Since the
Qgp is depending, among other factors, on the injected current density and operation time, this means that a
MOSLED made utilizing hot implantation can sustain a current density three times higher, giving a higher EL
intensity, or, for the same current density, results in a three times higher operation time. As the breakdown is a
statistical event, the improvement factor may vary, however, the general tendency is clear.

The above feature in principle can be attributed to the fact that the hot implantation produces less damage
in the SiO, layer during the implantation process and a higher quality of the SiO,/Si interface, thus resulting in
lower number of nonradiative defects present in the oxide and in the interface.

In order to compare, under the same conditions the PL and EL emission yields, all the implantation and
annealing parameters were the ones reported in [6], which gave place to the maximum PL emission. It is
possible that the best conditions for the PL emission are not the same as the EL ones.

In summary, in the present communication we have found that devices based on Ge NCs produced by hot
implantation have greater electrical stability, as compared with the ones produced by RT implantation.
Concerning the EL yield, as mentioned above, it is possible that the best conditions for the EL emission are not
the same as compared with the PL ones. It is necessary to perform further optimizations in order to increase the
EL emission of the MOS devices. In this sense, work is on the way.

Fig 2- Detailed TEM view showing the NCs size distribution for a) RT implantation b) high
temperature implantation (samples implanted to @ = 1.0 x 10'® Ge/cm” and annealed at 900
°C for 1 h.

190 SIM 2010 — 25™ South Symposium on Microelectronics

1000 T T T T T T T

J=320 pAlem® _ RT 350°C
< —o——o0— 0.5x 10'"° Ge/cm?

—s——=— 1.0x 10'"° Ge/em?

600

400 -

EL Intensity (arb. units)

200

0 S L L L s,
360 380 400 420 440 460 480 500

Wavelength (nm)
Fig. 3 — EL spectra from the MOS devices, implanted at different temperatures(gray
lines:RT, black lines:350°C) RT, Black lines: 350 °C), and fluences (Open circles: ® = 0.5 x
10'® Ge/em?, Solid Squares:® = 1.0 x 10" Ge/cmz).

10000 —————
J=320 pAlem? ——RT

EL Intensity (arb. units)

| 0.5 x 10" Ge/em? | 1.0x 10" Gelem?

10 VIR d -l l il d d il

IE16 1E17 1EI8 1E19 1E20 1E21 1El6 1EI7 IEIS 1E19 1E20 1E21

Injected Charges (e/cm?)
Fig 4 - EL peak intensity over injected charges, implanted at different temperatures (gray lines: RT and
black lines: 350°C) and fluences (Left: ® = 0.5 x 10'® Ge/cm?, Right: @ = 1.0 x 10'® Ge/cm?)

5. References
[1] L. T Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers.”
Woodbury: Appl. Phys. Lett., 57, 1990, pp. 1046-1048.

[2] T. Shimizu-Iwayama, K. Fujita, S. Nakao, K. Saitoh, T. Fujita, and N.Itoh. “Visible photoluminescence in Si*-implanted
silica glass”. Woodbury: J. Appl. Phys. 75, 1994, pp.7779-7784.

[3] L. Rebohle, J. von Borany, R. A. Yankov, W. Skorupa, I. E. Tyschenco, H.Frob, and K. Leo. “Strong blue and violet
photoluminescence and electroluminescence from germanium-implanted and silicon-implanted silicon-dioxide
layers”. Melville: Appl. Phys. Lett., 71, 1997, pp. 2809-2811.

[4] K. V. Shcheglov, C. M Yang, K. J. Vahala, and H. A. Atwater, “Electroluminescence and photoluminescence of Ge-
implanted Si/SiO,/Si structures”. Melville: Appl. Phys. Lett., 66, 1995, pp. 745-747.

[5] L.Rebohle, J. von Borany, H. Frob, and W.Skorupa. “Blue photo- and electroluminescence of silicon dioxide layers ion-
implanted with group IV elements”. Berlin/Heidelberg: App. Phys. B: Laser and Optics, 71, 2000, pp. 131-151.

[6] F. L. Bregolin, M. Behar, U. S. Sias, and E. C. Moreira. “Photoluminescence induced from hot Ge implantation into
Si0,”. Amsterdam: Nucl. Instrum. Methods Phys. Res. B, 267, 2009, pp.1321-1323.

[7]J. M. Sun, L. Rebohle, S. Prucnal, M. Helm, and W. Skorupa. “Giant stability enhancement of rare-earth implanted Si02
light emitting devices by an additional SiON protection layer”. Melville: Appl. Phys. Lett., 92, 2008, pp. 071103-
071105.

[8] Y.H Ye, J.Y. Zhang, X.M. Bao,X.L Tan,and L.F Chen, “Visible photoluminescence from Ge+-implanted SiO2 films
thermally grown on crystalline Si”. Berlin/Heidelberg: Appl. Phys. A, 67, 1998, p. 213-217.

[9] J. MJ. Lopez, F. C. Zawislak, M. Behar, P. F. P.Fichtner, L. Rebohle, and W.Skorupa, “Cluster coarsening and
luminescence emission intensity of Ge nanoclusters in SiO, layers”. Melville: J. Appl. Phys., 94, 2003, pp. 6059-
6064.

SIM 2010 — 25" South Symposium on Microelectronics 191

Digital Design and
Embedded Systems

192 SIM 2010 — 25™ South Symposium on Microelectronics

SIM 2010 — 25" South Symposium on Microelectronics 193

Designing NBT1 Robust Gates

'Paulo F. Butzen, Vinicius Dal Bem, André I. Reis, “Renato P. Ribas
{pbutzen, vdbem, andreis, rpribas}@inf.ufrgs.br

'PGMICRO - Universidade Federal do Rio Grande do Sul
2 |nstituto de Informatica — Universidade Federal do Rio Grande do Sul

Abstract
Negative Bias Temperature Instability (NBTI) has become a critical reliability for nanometer PMOS
transistors. In this paper, the pull-up transistor arrangement of CMOS gates is restructured to reduce the
number of PMOS transistors under severe NBTI biasing and consequently mitigates the performance
degradation due to NBTI phenomenon. The proposed technique introduces no gate area penalty. Simulation
results show that on average 10% of performance degradation due to NBTI can be recovered.

1. Introduction

CMOS technology has been permanently scaling down during last decades. Several aspects ignored in
earlier technology nodes, such as leakage currents, variability and aging effects, are becoming critical concerns
in nanoscaled design. Aging effects, particularly Negative Bias Temperature Instability (NBTI), are factors that
limit circuit lifetime by modifying their characteristics over time. NBTI refers to the generation of positive
oxide charge and interface traps in metal-oxide-silicon structure under negative gate voltage bias (Vg = — V),
in particular at elevated temperature. It mostly affects PMOS transistors, since these devices are negatively
biased when they are conducting. This effect is measured as an increase in the transistor threshold voltage (V)
magnitude, impacting consequently the device drive current and circuit speed.

NBTI degradation needs to be taken into account during the design to ensure product reliability over time.
Several logic functions can be designed using different transistor arrangement structure, as the OAI21 gates
depicted in Fig. 1. It is well know that these solutions present different delay and power consumption
behaviors. They also present different levels of degradation due to NBTI. In this paper, the structural PMOS
transistor arrangement is explored considering its influence in terms of the gate delay and NBTI degradation.

Vdd Vdd
b b-c a-
a b -
ouT ouT
b b
a ba
c c
GND GND
(a) (b)

Fig. 1: Logically equivalent AOI21 CMOS gates.

2. Background

The NBTI degradation is proportional to the temperature, power supply, threshold voltage and probability
of the transistor is negative gate biasing, i.e. the gate signal be ‘0’ and the source potential be ‘1’. This
probability defines the time that a PMOS transistor stays in the stress or recovery phase. A lower signal
probability means a longer recovery time and a smaller 7, degradation due to NBTI effect.

When a transistor stack is considered, as in AOI gates depicted in Fig. 1, the steady state of the
intermediate nodes determine whether each individual device is under negative bias stress [1]. It means that the
signal probability of each PMOS transistor in a stack can not be considered individually. Instead of, it has to be
associated to the device position in the transistor stack and to the other inputs probability. A basic rule to reduce
the NBTI degradation can be simplified by “PMOS transistors that are connected to the power supply (V)
suffer more V, degradation due to NBTI than the ones far from that”. Fig.2 shows the degradation time (%) of
a four transistor stack when all inputs have signal probability of 0.5.

194 SIM 2010 — 25™ South Symposium on Microelectronics

w B0%

g

; 40%

g?

5 B 20%

==

E

@ 0% : : T

E T2 Ex E= E=

= s a 2= 2= 2=
o o= L= L=y = o
c = = =3 = =
EUT! = W n'?m ;Uﬂ
[=a=] o
S

Position in stack

Fig. 2: Time under stress biasing versus position in
a four transistor stack.

Several design techniques to mitigate NBTI effects are reported in the literature [1-4]. The tuning of V,
and V,, are effective techniques to compensate the performance degradation due to NBTI, since it is
exponentially dependent of these parameters [2]. Gate sizing has been another proposed technique to deal with
performance uncertainties. Sufficient design margin to compensate NBTI degradation can be set before
fabrication by oversizing the gate properly [3]. The signal probability and the position of the device in a
transistor stack are explored in several ways. Pin reordering is used to reduce NBTI degradation when the
circuit is in active mode [1]. Input vector is explored in order to minimize static degradation when the circuit is
in standby state [4]. Functional symmetries are used to manipulate the stress probability by logic restructuring
to reduce the NBTI effects in circuit critical paths [5].

3. Transistor Network Restructuring

Assuming all gate inputs with equal signal probability, PMOS transistors that are connected to the power
supply (V) suffer more V;, degradation due to NBTI than the ones far from that, as shown in Fig. 2. The
proposed methodology explores the transistor arrangement restructuring in the PMOS pull-up plane to evaluate
the robustness of CMOS gates in terms of the NBTI effect considering both signal probability and position of
the transistor in a stack.

In simple PMOS stack topology, such as in NOR gates, the proposed restructuring approach is not applied
since there is no structural difference in the position of the transistors in the stack. In this case, previously
referenced techniques can be used to mitigate this aging effect.

However, in logic cells where more complex transistor arrangements are observed, such as AOI gates
depicted in Fig. 1, the transistor network presents significant influence in gate delay, power consumption and
also in delay degradation due to NBTI effect. It is expected a smaller degradation in the arrangements that have
a smaller number of transistors closer to the power supply, i.e., a more robust CMOS gate design with respect
to NBTI degradation may connect as few as possible transistors at V.

4. Simulation Results

To confirm such behavior, the AOI gates depicted in Fig. 1, 3, and 4 were designed in a predictive 45nm
CMOS technology process [S]. Two versions of each gate (“new” and “after 10 years of degradation”) have
been characterized using the Encounter Library Characterized considering an input slope of 50ps and a
FANOUT4 load.

For a given time ‘¢’ and a probability of each device is under negative bias stress ‘a’, the V;, degradation
can be predicted by the long term prediction model, as expressed in equation (1):

AV, =b(at) M
where b =3.9x 10~ Vxs "% and ‘n’ is the time exponential constant, equals to 0.16 [4].

To evaluate the PMOS transistor V;, degradation due to NBTI, the equation (1) has been considered for a
time equal to 10 years and all input signal probability equal to 0.5. As mentioned before, the probability of each
device is under negative bias stress in a transistor stack is not the same as the respective input signal
probability. Both, the position of the device in the stack and the input signal probability have to be considered
together to compute the probability of each device is under negative bias stress.

Tab. 1, Tab. 2 and Tab. 3 presents absolute the rise propagation delays and the delay degradation of each
input signal and the average delay for the gates depicted in Fig. 1, Fig. 3, and Fig. 4 respectively. The results for
the gates depicted in Fig. 3b and 4b are not presented since they represent an intermediate solution between the
extreme cases illustrated in Fig. 3a — Fig. 3c, and Fig. 4a — Fig. 4c, respectively.

In the pull-up arrangement of the logic cell illustrated in Fig. la, two transistors suffer high NBTI
degradation since they are connected directly to V. In Fig. 1b, just one transistor is connected to Vy, and
consequently suffers high degradation. Simulation results show that the delay degradation of minimum and
maximum rise propagation delays do not present high differences between the two distinct arrangements, since
they are the best case (transistor connected to cell output — small NBTI degradation) and the worst case
(transistor connected at V,, — high NBTI degradation). Differences are verified when the average value is

SIM 2010 — 25" South Symposium on Microelectronics 195

computed. In this case, the gate shown in Fig. 1b presents higher robustness than the one depicted in Fig. 1a in
terms of delay degradation due to NBTI effect. This robustness is due to the fact that only one transistor in
arrangement (b) suffers high NBTI degradation instead of two transistors in arrangement (a). The same analysis
can be performed for the data presented in Tab. 2 and Tab. 3. On average, 10% of performance degradation due
to NBTI effect can be recovered by restructuring the transistor arrangement.

Vdd Vdd Vdd
o4 - e pa
o o p-d b
b-b P_b c b-d
ouT ouT —— OUT
c c c
J-b J-a S b Ja
d o o d
GND GND GND
(a) (b) (c)

Fig. 3: Logically equivalent AOI211 CMOS gates.

Vdd
b-a
ouT
d—|
-a
e
GND
GND
(a) (b) (c)
Fig. 4: Logically equivalent AOI221 CMOS gates.
Tab.1 — Gate Delay and degradation of AOI21 gates depicted in Fig.1
Gate Delay (ps) Difference Delay Degradation (ps) Difference
Fig. 1b | Fig. la | (ps) (%) Fig. 1b Fig. la (ps) (%)
Ato OUT 91,9 73,0 18,9 | 26% 8,3 5,7 2,5 44%
B to OUT 74,7 81,8 -7,0 | 9% 52 7,3 2,1 | -28%
Cto OUT 79,1 86,1 -7,0 | -8% 5,6 7,9 -2,3 | -30%
Average Delay | 81,9 80,3 1,6 2% 6,4 7,0 -0,6 | -9%
Tab.2 — Gate Delay and degradation of AOI211 gates depicted in Fig.3
Gate Delay (ps) Difference | Delay Degradation (ps) Difference
Fig. 3c | Fig.3a | (ps) (%) Fig. 3¢ Fig. 3a (ps) (%)
A to OUT 139,2 116,2 | 23,1 | 20% 10,9 10,1 0,8 8%
B to OUT 131,9 94,4 37,5 | 40% 10,0 7,9 2,1 26%
Cto OUT 95,5 122,6 | -27,1 | -22% 7,1 11,7 -4,6 | -39%
D to OUT 100,7 127,5 | -26,8 | -21% 7,6 11,6 -4,0 | -34%
Average Delay | 116,8 1152 1,7 1% 8,9 10,3 -1,4 | -14%

196 SIM 2010 — 25™ South Symposium on Microelectronics

Tab.3 — Gate Delay and degradation of AOI221 gates depicted in Fig.4

Gate Delay (ps) Difference | Delay Degradation (ps) Difference
Fig.4c | Fig.4a | (ps) (%) Fig. 4c Fig. 4a (ps) (%)
A to OUT 160,0 106,2 | 539 | 51% 13,9 8,6 5,3 62%
B to OUT 1423 145,1 2,8 | 2% 11,2 13,1 -1,9 | -15%
Cto OUT 1473 150,0 | -2,7 | 2% 12,5 14,1 -1,6 | -11%
D to OUT 104,7 129,7 | -25,0 | -19% 8,1 10,5 24 | -23%
E to OUT 109,8 134,7 | -24,9 | -18% 8,6 11,4 -2,8 | -24%
Average Delay | 132,8 133,1 -0,3 0% 10,9 11,5 -0,7 | -6%

5. Conclusions

An analysis that explores the transistor arrangement restructuring in the PMOS pull-up plane to evaluate
the robustness of CMOS gates in terms of the NBTI effect considering both signal probability and position of
the transistor in a stack is presented. Three different AOI gates have been evaluated and the results shows that
on average, 10% of performance degradation due to NBTI effect can be recovered by restructuring the
transistor arrangement.

6. Acknowledgments

Research partially funded by Nangate Inc under a Nangate/UFRGS research agreement, by CNPq Brazilian
funding agency, and by the European Community's Seventh Framework Programme under grant 248538 —
Synaptic

7. References
[1T S.V.Kumar, C. H. Kim, and S. S. Sapatnekar. “NBTI-Aware Synthesis of Digital Circuits”. DAC 2007.

[2] L.Zhangand R. P. Dick. “ Scheduled Voltage Scaling for Increasing Lifetime in the Presence of NBTI”.
ASPDAC 2009.

[3] B.C. Paul et al. “Temporal Performance Degradation under NBTI: Estimation and Design for Improved
Reliability of Nanoscale Circuits”. DATE 2006.

[4] Y. Wang et al. “Temperature-Aware NBTI Modeling and the Impact of Input Vector Control on
Performance Degradation”. DATE 2007.

[51] K.-C. Wu and D. Marculescu. “Joint Logic Restructuring and Pin Reordering against NBTI-Induced
Performance Degradation”, DATE 2009.

[6] N. H. E. Weste. “CMOS VLSI design: a circuits and systems perspective”. Boston: Pearson/Addison
Wesley, 2005.

[5] FreePDK 45nm Predictive Technology. Avaliable at: http://www.eda.ncsu.edu/wiki/FreePDK. 2009.

SIM 2010 — 25" South Symposium on Microelectronics 197

A Study About Transient Vulnerabilities in Combinational Circuits

'Mayler G. A. Martins, *Fernanda L. Kastensmidt, ‘Renato P. Ribas,
'André 1. Reis
{mgamartins,fglima,rpribas,andreis } @inf.ufrgs.br

YUniversidade Federal do Rio Grande do Sul

Abstract

The new technology ICs have become more vulnerable to radiation single-event transients (SET) which are
temporary perturbation in logic gates and more critical with increased clock speeds. They are generated by
alpha particle or neutron strikes, which can cause a transient voltage, probably generating a fault. In bulk
CMOS the most sensitive areas are depletion regions at transistor drains. This paper proposes a study of
combinational blocks and gates vulnerability to single event transients, using different descriptions for the
same equation. This will be achieved by simulating the CMOS circuits and analyzing the effects induced by
SETs. A tool was developed to achieve the objective, with SPICE parsing ability and with using event-driven
simulation. The analysis is made exhaustively, checking all values in primary inputs and in the end of analysis,
informing the degree of vulnerability of a combinational block or circuit. The result will be used for comparing
different implementations for the same logic function.

1. Introduction

The advances in microelectronics field have pushed the silicon process limits in terms of scaling, making
deep-sub micron (DSM) effects appear with more intensity, involving crosstalk, noise, tunnelling and second
order effects, including short channel effect and drain current. Device shrinking, power supply reduction and
increasing operating speeds that follow the technological evolution towards nanometric technologies, reduce
significantly the noise margins and this the reliability of DSM ICs. This process is now approaching a point
where it becomes unfeasible to produce ICs that are free from these effects.

The new technology ICs have become more vulnerable to radiation single-event transients (SET) which are
temporary perturbation in logic gates and are more critical with increased clock speeds. They are generated by
alpha particle or neutron strikes, which can cause a transient voltage in a part of the circuit and propagates
through it and can latch to an erroneous data, probably generating a circuit fault [1]. In bulk CMOS the most
sensitive areas are depletion regions at transistor drains. Hole-electrons produced here will be swept apart by
the electric field that the injected charge tends to change the state of the struck node with a brief voltage pulse.

Fault injection is usually used to simulate single event upsets (SEUs), since it allows perturbing the
systems with faults, generating effects of soft errors during normal circuit operation. There are many techniques
used and the simulation-based fault injection is very interesting because it is flexible since faults can be injected
in any component of the system. But it needs high CPU times for simulating complex circuits. [2]

In this context, it will become mandatory to design the future ICs that are used normally in aerospace
equipment to be less vulnerable for SEUs. Sometimes, traditional fault tolerant design such as triple modular
redundancy (TMR) or shielding cannot be used due its high cost. In safety critical systems, fault masking
techniques are often used to obtain the necessary level of dependability [3].

This paper proposes a study of combinational blocks and gates vulnerability to SET, using different
descriptions for the same equation. This will be achieved by simulating the CMOS circuits and analyzing the
effects induced by SETs in nodes that are vulnerable to that fault. The analysis is made exhaustively, checking
all values in primary inputs and in the end, informing the degree of vulnerability of a combinational block. The
result will be used for comparing different implementations for the same logic function.

2. Background

Cosmic particle strikes are simulated using lasers and heavy ion beams to simulate them with a range of
Linear Energy Transfer (LET) levels. The LET of a particle is a measure of how much energy is deposited as it
passes through some material. The SET response of a component is dependent on LET for characterization. At
high LET levels the particles have sufficient energy to cause an upset when they strike any sensitive node and
this total sensitive area is known as the “saturated cross section”. For radiation tolerant design it is desirable to
raise the LET upset threshold as high as possible and to minimize the saturation cross section.

In the last years, several approaches to simulation-based transient analysis have been proposed. Some
works have focused on modeling effects of transients occurring in registers. But a combinational logic can own
a multiple fanout in the logic and generate multiple bit flips. Other works, proposed the use of switch-level
simulators [4] for analyzing transient propagation through a circuit. The switch level can model important
parameters of MOS circuits such as charge sharing and variant driving strengths.

198 SIM 2010 — 25™ South Symposium on Microelectronics

3. Simulation and Transient Detection Algorithm

The tool concept used in analysis was adapted with a simplified form for execution of fault injection
targeting soft errors in combinational logic and saturated cross-section for the analysis of this work.

The tool algorithm uses an event-driven simulator to load the inputs and evaluate the outputs of the
circuits. An event-driven simulator evaluates only changes, e.g. The propagation of the value in a transistor is
made automatically when there is a defined value for the gate and also a defined value for either drain or
source. In this situation, the defined value in the drain (source) propagates to the source (drain).

The primary inputs are controlled, and all values are generated in the appropriate time, generating an
exhaustive test. After simulation and analysis, all internal values are reset to default state, to assure the correct
operation.

There is an initial transient count before the optimizations run. This adjust will calculate how many
transistors in a logic gate will have a vulnerability. The tool considers the drain sharing (parallel MOS) and
only counts one drain when this happens.

The first transient counting reduction is a global circuit optimization that can be considered a logical
masking. It will analyze each gate and test other gates connected in the output of the former gate (the output
fanout) to verify if they are affected with the transient propagation until some primary circuit output. If the
output of the latter gates connected doesn’t change, the former has no vulnerability. In this work it is assumed
that a transient pulse will have enough strength to go to the primary output of circuit.

The second counting reduction is a local component optimization that can be considered a electrical
masking. It will analyze each gate internally and test the drain nodes that are still detected as transient
vulnerable and will check a way to the gate output. If not detected in any way, the node will not be considered a
vulnerable drain and will be discarded in transient counting. The algorithm is in Figure 1.

for each input vector
simulate
for each gate
do (Initial Count)
end for each
optimize (Logical Masking)
for each gate
optimize (Electrical Masking)
end for each
reset
end for each

Fig. 1: Algorithm used for the tool.

CIRCUIT 1 CIRCUIT 2

I 10¢aw
J:
T

¥
CIRCUIT 4 f])‘ CIRCUIT &
i B"' W
nin o4
5 b o i

o P nl .
10C aw

—*

Fig. 2: Circuits for outputs y9 and y10 of circuit C17.

SIM 2010 — 25" South Symposium on Microelectronics 199

4, Results and Analysis

In this section, it will be shown the analysis of various implementations of ISCAS85 benchmark C17
which implements two logic functions: y9 and y10. The following functions are represented below (see Eq. 1
and 2) :

yo = (il +i4) - (i2’ +i3") (1)
y10 =i0 -2 +il - (2’ +i3"))

Fig. 2 depicts some possible implementations for these functions, in static CMOS. Circuits 1 and 2
implement function y10, circuits 3, 4, and 6 implement function y9, and circuit 5 implements both functions.

The purpose of this experiment is to evaluate the quantity of transient drains in circuit and analyze the
impact of complexity of circuit in the number of vulnerable drains. In Table 1 we have the number of the
vulnerable drains in the circuit and a metric of robustness of the circuit that is given by the sum of transient
vulnerable drains.

Tab.1 - Results of transient drains in C17 implementations

Circuit (out) | Vulnerable drains | Sum of transient
in circuit vulnerable drains
(STVP)

1 (y10) 12 61

2 (y10) 16 69

3(y9) 11 63

4 (y9) 18 99

5 (y9+y10) 17 238

6 (y9) 10 67

The purpose of this experiment is to evaluate the quantity of transient drains in circuit and analyze the
impact of complexity of circuit in the number of vulnerable drains. In table 1 we have the number of the
vulnerable drains in the circuit and a metric of robustness of the circuit that is given by the sum of transient
vulnerable drains.

The groups of circuits to be compared are (1,2) and (3,4,6), characterizing y9 and y10 outputs. The level
of complexity informed is about the more complex gate implemented in the circuit. The SVTP is an index that
measures the overall vulnerability (less is better).

In circuit 1, it has a large gate (aoiol2) and in circuit 2, it has a simpler gate (0ai21). The metrics appoints
the circuit 1 more robust with less vulnerable drains and lesser STVP.

In the circuit 3, it has a medium gate (0ai22), as like circuit 6 (0ai21), which is a little simpler and in circuit
4, only simple gates (nand2). The SVTP appoint circuits 3 and 6 similar, with a little advantage to circuit 3 that
has a little more complex gate than circuit 6. The circuit 4, which has only simple gates has far more (almost
30% more) SVTP than the circuit 3 and 6, that uses a complex gate.

The circuit 5 is a different circuit that has 2 outputs, but has a SVTP almost the double of the circuit 1 and
3 that implements the y10 and y9 separately. Despite the number of vulnerable drains of circuit 5 is lesser than
circuit 1 + circuit 3 (17 — 23), the logic sharing has a large impact on propagating at least one output the SEU,
increasing the SVTP.

With this test, it can be observed that a circuit that shares logic has much more vulnerability than a circuit
that has independent logic. Using complex ports to represent the logic functions minimizes vulnerability drains,
which is desirable for a more robust circuit.

5. Conclusions

In this paper, a circuit analysis tool was shown that targets combinational circuits and makes a logic
simulation and evaluates it’s robustness to SETs. The model used a switch level algorithm that can model
important parameters and can process large circuits fast and with a high level of accuracy. The simulator makes
exhaustive input evaluation to make a counting of vulnerable drains, considering shared drains and making
optimizations. The logical masking analyses the logic ahead of each gate and the electrical masking analyses
each node inside the gate, searching for a valid way to the gate output. Both optimizations improve the
counting, lowering the drains affected in each vector.

200 SIM 2010 — 25™ South Symposium on Microelectronics

6. Acknowledgements

Research partially funded by Nangate Inc. under a Nangate/UFRGS research agreement, by CNPq
Brazilian funding agency, and by the European Community’s Seventh Framework Programme under grant
248538-Synaptic.

7. References

[1] K. J. Hass, J. W. Gambles, B. Walker and M. Zampaglione. Mitigating single event upsets from
combinational logic. In Proc of the 7th NASA Symposium on VLSI Design, 1998.

[2] M. S. Reorda and M. Violante, “Efficient Analysis of Single Event Transients,” Journal of Systems
Architecture, vol.50 no 5, pp.239-246,2004.

[3] L. Anghel and M. Nicolaidis, “Cost Reduction and Evaluation of a Temporary Faults Detecting
Technique,” Proc. Design, Automation and Test in Europe (DATE 00), IEEE CS Press, 2000, pp. 591-
598.

[4] P. Dahlgren and P. Liden, “A Switch-Level Algorithm for Simulation of Transients in Combinational
Logic, ” Proc. IEEE 25th Int’l Symp. Fault-Tolerant Computing, pp.207-216, June 1995.

SIM 2010 — 25" South Symposium on Microelectronics 201

Design and Verification of a Layer-2 Ethernet MAC Search Engine and
Frame Marker for a Gigabit Ethernet Switch

Jorge Tonfat, Gustavo Neuberger, Ricardo Reis
jltseclen@inf.ufrgs.br, neuberg@inf.ufrgs.br, reis@inf.ufrgs.br

Grupo de Microeletrénica (GME) - PGMICRO - UFRGS, Porto Alegre, RS, Brasil

Abstract

This work presents the design and verification of two main blocks of a gigabit Ethernet switch for a FPGA-
based SoC implementation. The main function of the Layer-2 search engine is to forward Ethernet frames to
their corresponding output ports. To accomplish this task the block stores the source MAC address from frames
in a SRAM memory and associates it to one of the ports. This search engine uses a hashing scheme that has
been proven to be effective in terms of performance and implementation cost. It can search an average of 8
million frames per second, which is enough to work at wire-speed rate in a four-port gigabit switch. The main
challenge was to achieve wire-speed rate during the “learning” process using external SRAM memory. The
frame marker is the mechanism to classify frames by means of data rate configured for each input port. It
works in a credit-based system that uses buckets to track the rate of each port. This block will be part of a QoS
mechanism. These two blocks are verified using System Verilog. A constrained-random stimulus is used in a
layered-testbench environment with self-checking.

1. Introduction

Ethernet is the most popular layer-2 protocol (data link layer according to the OST model). It is widely used
in Local Area Networks or LANs and recently also in Metropolitan Area Networks or MANS. Its popularity is
mainly due to the low cost and high performance characteristics and also its fast standardizations: 10 Mbits/s in
1983, 100 Mbits/s in 1995, 1 Gbit/s in 1998, and 10 Gbits/s in 2002.

At the beginning, LANs were designed using one shared communication channel. During late 80s and early
90s, two main factors changed the way LANs were designed [1]: the LAN topology that change to a structured
wiring system using central hubs and the improvement of computing systems and applications, which exceed
the capacity of shared LANS, limiting the overall performance.

These factors together with the advances in microelectronics technology, allow the development of “LAN
switches” that use the wiring structure already installed to create a microsegmented network. These changes
have the following advantages: first, the possibility to eliminate collisions, if the full-duplex operation mode is
used and the fact that each device has dedicated bandwidth and independent data rate.

In the present work, we propose a layer-2 search engine and a frame marker for a gigabit Ethernet switch.
This paper is organized as follow. In section 2 an introduction to the NetFPGA Platform is presented. In section
3 and 4 are presented the design of the L2 search engine and the frame marker respectively. Section 5 presents
the verification methodology used for the two blocks. Section 6 shows the results for a FPGA implementation,
and in section 7 the conclusions and future work are presented.

2. The NetFPGA Platform

The NetFPGA platform [2] was developed by a research group at Stanford to enable fast prototyping of
networking hardware. It basically contains an FPGA, four 1GigE port and buffer memory. The core clock of the
board runs at 125 MHz. NetFPGA offers a basic hardware modular structure implemented in the FPGA as
shown in Fig. la. Frames inside the pipeline have their own header format as shown in Fig. 1b. New modules
also can add more headers. This pipelined structure allows us to implemented specific functions on modules
and integrate them quickly.

---- Register Bus '
—— Packet Bus Register 10 aver PCI

. Ctrl Bus . Data Bus .
H oles o

NetFPGA iz
e Register Bus i 0xFF Dest Port One-Hat Word Length | Src Part Binary Byte Length
| s i XX Other Module Header
i
i ! 0Ky Other Module Header
oo b Fegstes | Rogsters = ... - Fegeters |1 ; :
Modlule, | | Module, | ... | Module, [o00] Firat Packet Word |
DMA DA | 0x00 | Second Packet Word |
from Facket Facket | Packel ta —— :
hest Frocessing Frncassing | Procagsing hest H : H :
—_—e mo T i
| T s - B [0 | [eogs] Example last word wih e vaid Eyies]
From ! Ta : .
Ethemet Ethernet
() 0]

Fig. 1 — (a) The NetFPGA framework. [2] (b) The NetFPGA header format. [2]

202 SIM 2010 — 25™ South Symposium on Microelectronics

3. L2 search engine architecture

The L2 search engine is the block that implements the main function in a gigabit Ethernet switch, the frame
forwarding. It uses the MAC destination address (MACDA) and the MAC source address (MACSA) of the
frame to forward them to their proper destination port. In order to achieve this task, it will need to create a table
entry with the MACSA and the input port in a process called “learning”. When the MACDA is not found on the
table (miss), the frame will be sent to all ports except the source port. According to the IEEE 802.1D standard
[3], it is necessary to age out all the entries that are not accessed for a certain amount of time; this is not a
priority task and should not interrupt the main learning/forwarding process. VLAN tags should also be
considered during the frame learning/forwarding to be compliant with the IEEE 802.1Q [4] standard.

Every frame needs at least two read accesses from the lookup table, one for the MACDA (forwarding) and
another for the MACSA (learning). If the MACSA is not found or the source port associated is different, then a
third access (write) should be necessary to update the input port number or create a new entry in the table.

Hashing is used as the method to store the 48-bit MAC addresses. Other methods such as CAMs were
discarded due to the elevate cost and large power consumption. Using hashing methods leads to the possibility
of collisions, which will reduce the performance of the system. That’s why the hash function has to produce a
relatively uniform distribution of the output values. The hash function selected is the CRC-CCITT
(x"*+x'+x>+1) because according to the results in [5] CRC polynomials are excellent hashing functions.

Each entry is composed of a MAC address, the input port, the VLAN id, and three status bits. These status
bits are: the valid bit, the static bit and the age bit. When a new MAC address is learned, the valid and the age
bit are set. If this MAC address is founded later, the age bit is refreshed. In the aging process, the age bit of
each valid entry will be cleared. If the age bit is not set, then the valid bit is cleared and the entry is aged out.
The aging process will not modify the entries with the static bit set. The static bit denotes an entry programmed
by software and is more commonly used with multicast MAC addresses.

This search engine should be able to support 4 GigE ports at wire-speed or to process 6 million frames per
second in the worst case [1]. Considering the minimum frame size (64 bytes) and the inter-frame gap, a frame
should be processed at least in 168 ns (672 ns for a single GigE port) or 21 clock cycles for a 125 MHz clock.
To achieve this goal, this block needs to be tightly-coupled with the external SRAM memory. Since the SRAM
is accessed by three different sources (the forwarding/learning module, the aging module and the external
access through the register bus) an arbiter is needed. This arbiter is configured to serve in a WRR (Weighted
Round Robin) manner giving the preference to the forwarding/learning module. The block diagram is presented
in figure 2.

EXTERNAL

&
SRAM ZBT < 'ACCESS

\ 4

SRAM ARBITER —

A A

DATA BUS HEADER

7| PARSER 3
EXACT AGING
MATCH &

LEARNING

REGISTER BUS OUTPUT REGISTER BUS

LOOKUP REGS -

\ 4

A

RESULT
FIFO

DATA BUS
;» OUTPUT >

% LOOKUP FSM

. INPUTFIFO
>

L2 SEARCH ENGINE

Fig 2 — L2 search engine block diagram.

The header parser module will extract the MACSA, MACDA and the VLAN tag ID from the frame and
send this information to the Exact Match & Learning block. The frame will wait for the lookup using the input
fifo as a buffer. Considering the worst case (MACSA not found), the module have a latency of 15 clock cycles.

4. Frame marker architecture

The frame marker is part of the QoS system of the switch. The rate control works in a credit-based system
that uses buckets to track the rate of each port. The credits are continuously added in a bucket accordingly to
the programmed bucket bit rate and they are decremented each time a frame ingresses at the port. If no frames
arrive, credits are added until the programmed bucket size. The bucket can absorb bursts of frames limited to its
size; when emptied the rate is limited to bucket bit rate. Up to this point, depending upon suppression method
used, the frames can be dropped or a flow control mechanisms takes place forcing the port to reduce the rate
making use of pause frames.

The frame marker will use a two-bucket credit system that makes possible to implements single rate Three
Color Marker (strTCM) and two rate Three Color Marker (trTCM) metering and marking systems as described
in RFC 2697 [7], RFC 2698 [8] and RFC 4115 [9]. The bucket system described in RFC2698 is slightly

SIM 2010 — 25™ South Symposium on Microelectronics 203

different from RFC 2697 and RFC 4115. To get maximum flexibility and still meet all desired
recommendations we must implement both approaches and make selection available through configuration
registers.

b. RFC 2697 and RFC 4115 a. RFC2698

Fig. 3 — Flow diagram of the three marking systems.

Figure 3a. describes a particular RFC 2697 and RFC 4115 two-bucket system configuration where B
represents the frame size, CBS is the Committed burst size, EBS is the Excess burst size, CIR is the Committed
information rate, EIR is the exceed information rate, T¢ is the current size of CBS, Tg is current size of EBS.
Note that to change marker behavior between RFC 4115 and RFC 2697 is just necessary to make EIR = CIR.
Figure 3b. describes RFC 2698 system where Tp is current size of PBS. This block will add a new module
header (See Table 1). This header will be used to identify colored frames in future QoS classifier/marker.

Tab.1 — Frame marker header format.
Control Bus (8 bits) Data Bus (64 bits)
0xFE Reserved [63:2] | Color Frame [1:0]

The bucket rate for each bucket is configured in n x 8kB/s steps with n =0 ... 128000. Each bucket has its
own 32 bits register to support this configuration. Another 32 bits register is used to program the bucket depth.
The configuration interface also support an additional general register used to enable frame marker function per
port and additional status registers to track classified/dropped packets per port.

The block diagram of the module is shown in figure 4; includes a fall-through input fifo with a depth of 4
positions. The block latency depends on the configuration of each port. If the color marker is disabled for all
ports then the latency is zero. On the other hand, if the color marker is only disabled for some ports, then the
latency is 1 cycle for the disabled ports and 3 cycles for the enabled ports.

The finite state machine has 5 states using the one-hot codification style. Depending on the configuration
of each port, the state machine calculates the color of each frame. The state machine also detects if the frame
already have a color and will change the color only when the calculated color elevate the frame status (towards
to green).

DATA
DATA INPUT FIFO BUS =
BUS _E [y R —— -]
FRAME I Environment .| 5
=3 MARKER o
FSM : 1 '5“
1 -
1 — 2
4| 1 I Agent }—'l Scoreboard H Checkerl) 9
1 <
1] - - ! o
MULTIPLIERS) I Dnverl IAssertlons | I Monitor | — ‘g
REGISTE O) S S A L]
BUS FRAME
5| MARKER REGISTER BUS DUT
| REGISTERS |
Fig. 4 — Frame Marker block diagram. Fig. 5 — Full Testbench environment from [6].

5. Verification Methodology

For the verification stage, we use System Verilog and Modelsim to create the testbench environment. Since
the two modules share the same 1/O interface, the testbench interface for both blocks is the same. The testbench
architecture is better explained in Figure 5.

For each block, a testcase have been done with particular constraints that will limit the random stimulus
generation. With these constraints the generator will create a programmable amount of random frames that will
be inserted in the DUT (Design under Test). The agent or transactor will take these frames and will transform

204 SIM 2010 — 25™ South Symposium on Microelectronics

them into signals (bytes) and will send them through the interface (driver). The scoreboard will predict the
expected result from each block and this result will be used by the checker to compare them with the received
data from the DUT. During this process tens of bugs were founded in the design and corrected. It is always
preferable that the testbench and the design are designed by different persons; this will add some redundancy to
the interpretation process of the specification.

6. FPGA Implementation

The implementation results are shown in table 2. The FPGA used is the Xilinx Virtex-IIPRO XC2VP50-7.
This is the device used in the NetFPGA card. For the complexity of the search engine, the maximum frequency
obtained is lower. The frame marker is occupying more flip-flops due to the large amount of 32-bit registers
needed to configure the marker algorithm for each of the input ports. Both blocks achieve the expected
frequency of 125 MHz that will be used as the core clock for the entire switch. Further comparisons are needed
but the lack of related works in the literature make this complicated. The L2 search engine architecture used
here is shown in [10] but in this case is an ASIC implementation with embedded SRAM.

Tab.2 — Synthesis Results for a Xilinx XC2VP50 FPGA.

Circuit 4-input LUTSs | Flip-flop slices | Frequency (MHz)
Frame marker 4774 3895 160.5
L2 search engine 3570 1966 142.9

7. Conclusions and Future work

Two modules for a gigabit Ethernet switch were presented. These two blocks are part of the design of a 4-
port gigabit Ethernet port. Due to the modular nature of the NetFPGA structure, the design and verification of
these two blocks were possible to be done separately without worrying about timing issues between them for
instance. The verification stage is very important to find bugs that will only appear in some special cases. The
random-constrained approach is more time-efficient to reach the coverage goal than other simpler methods such
as direct-test.

The architecture presented in this work achieves the necessary throughput for a 4-port GigE. The next step
is to work in order to improve the throughput of the L2 search engine. The main idea is to reduce the number of
clock cycles needed to process a frame.

8. References

[1] Seifert, R.; Edwards, J. "The All-New Switch book: The Complete Guide to LAN Switching
Technology", Second Edition. Wiley, 2008.

[2] J. Naous, G. Gibb, S. Bolouki, and N. McKeown. "NetFPGA: reusable router architecture for
experimental research". In: Proceedings of the PRESTO, pages 1-7, New York, NY, USA, 2008. ACM.

[3] IEEE std. 802.1D, "IEEE Standard for Local and Metropolitan Area Networks Media Access Control
(MAC) Bridges," IEEE Std 802.1D-2004, pp.1-269, 2004

[4] IEEE std. 802.3Q, "IEEE Standard for Local and Metropolitan Area Networks Virtual Bridged Local
Area Networks," IEEE Std 802.1Q-2005, vol., no., pp.0_1-285, 2006

[5T R.Jain, "A comparison of hashing schemes for address lookup in computer networks," IEEE Trans. On
Communications, vol. 40, no. 3, pp. 1570-1573, Oct. 1992.

[6] Spear, C.; "SystemVerilog for Verification: A Guide to Learning the Testbench Language Features";
Springer; New York; 2008.

[71 Heinanen J. and Guerin R., ““A single rate three color marker,” IETF, RFC 2697, Sept. 1999.
[8] Heinanen J. and Guerin R., “A two rate three color marker,” IETF, RFC 2698, Sept. 1999.

[91 Aboul-Magd O. and Rabie S., “A Differentiated Service Two-Rate, Three-Color Marker with Efficient
Handling of in-Profile Traffic,” IETF, RFC 4115, Jul. 2005.

[10] Lau, M.V, et.al. "Gigabit Ethernet switches using a shared buffer architecture," Communications
Magazine, IEEE, vol.41, no.12, pp. 76- 84, Dec. 2003

SIM 2010 — 25" South Symposium on Microelectronics 205

Evaluating the Efficiency of Software-Only Techniques in Microprocessors

José Rodrigo Azambuja, Fernando Sousa, Lucas Rosa, Jodo Almeida e Fernanda
Lima Kastensmidt
{jrfazambuja, faacsousa, llrosa, jpvalmeida, fglima}@inf.ufrgs.br

Universidade Federal do Rio Grande do Sul (UFRGS) - Instituto de Informatica

Abstract

This paper presents a detailed evaluation of the efficiency of software-only techniques to mitigate SEU and
SET in microprocessors. A set of well-known rules is presented and automatically implemented to transform an
unprotected program into a hardened one. SEU and SET are injected in all sensitive areas of a MIPS-based
microprocessor architecture. The efficiency of each rule and a combination of them are tested. Experimental
results show the inefficiency of the control-flow techniques in detecting the majority of SEU and SET faults.
Three effects of the non-detected faults are explained. The conclusions can lead designers in developing more
efficient techniques to detect these types of faults.

1. Introduction

The last-decade advances in the semiconductor industry have increased microprocessor performance
exponentially. Most of this performance gain is due to smaller dimensions and low voltage transistors.
However, the same technology that made possible all this progress also lowered the transistor reliability by
reducing threshold voltage and tightening the noise margins [1, 2] and thus making them more susceptible to
faults caused by energized particles [3]. As a consequence, high reliable applications demand fault-tolerant
techniques capable of recovering the system from a fault with minimum implementation and performance
overhead.

One of the major concerns is known as soft error, which is defined as a transient effect fault provoked by
the interaction of energized particles with the PN junction in the silicon. This upset temporally charges or
discharges nodes of the circuit, generating transient voltage pulses that can be interpreted as internal signals,
thus provoking an erroneous result [4]. The most typical errors concerning soft errors are single event upsets
(SEU), which are bit-flips in the sequential logic and single event transients (SET), which are transient voltage
pulses in the combinatorial logic that can be registered by the sequential logic.

In areas where computer-based dependable systems are being introduced, the cost and development time
are often major concerns. In such areas, highly efficient systems called systems-on-chip (SoC) are being used.
SoC’s are often designed using intellectual property (IP) cores and commercial off-the-shelf (COTYS)
microprocessors, which are only guaranteed to function correctly in normal environmental characteristics, while
their behavior in the presence of soft errors is not guaranteed. Therefore, it is up to designers to harden their
systems against soft errors. Fault tolerance by means of software techniques has been receiving a lot of
attention on those systems, because they do not need any customization of the hardware.

Software implemented hardware fault tolerance (SIHFT) techniques exploit information, instruction and
time redundancy to detect and even correct errors during the program flow. All these techniques use additional
instructions in the code area to either recompute instructions or store and check suitable information in
hardware structures. In the past years, tools have been implemented to automatically inject such instructions
into C or assembly code, reducing significantly the costs. Nevertheless, the drawbacks of software only
techniques are the impossibility to achieve complete fault coverage [5], usual high overhead in memory and
degradation in performance. Memory increases due to the additional instructions and often memory duplication,
while the performance degradation comes from the execution of redundant instruction [6, 7, 8].

In this paper, the authors implemented a set of software-only techniques to harden a matrix multiplication
algorithm in order to point out the main vulnerable areas that are not mitigated by these techniques, more
specifically the ones affecting the control-flow. Results can guide designers to improve efficiency and detection
rates of soft errors mitigation techniques based on software.

The paper is organized as follows: Section 2 presents the case-study methodology and describe
transformation rules to harden the program. Section 3 presents the fault injection campaign and results. Section
5 concludes the paper and presents future work.

2. The proposed case-study hardened program methodology

A set of transformation rules has been proposed in the literature. In [9], eight rules are proposed, divided in
two groups: (1) aiming data-flow errors, such as data instruction replication [9, 10] and (2) aiming control-flow
errors, such as Structural Integrity Checking [11], Control-Flow Checking by Software Signatures (CFCSS)
[12], Control Flow Checking using Assertions (CCA) [13] and Enhanced Control Flow Checking using

206 SIM 2010 — 25™ South Symposium on Microelectronics

Assertions (ECCA) [14]. The proposed techniques could achieve a full data-flow tolerance, concerning SEU’s,
being able to detect every fault affecting the data memory, which would lead the system to a wrong result. On
the other hand, the control-flow techniques have not yet achieved full fault tolerance.

Most control-flow techniques divide the program into basic blocks by starting them in jump destination
addresses and memory positions after branch instructions. The end of a basic block is on every jump instruction
address and on the last instruction of the code.

ECCA extends CCA and is capable of detecting all the inter basic block control flow errors, but is neither
able to detect intra-BB errors, nor faults that cause incorrect decision on a conditional branch. CFCSS is not
able to detect errors if multiple BBs share the same BB destination address. In [15], several code transformation
rules are presented, from variable and operation duplication to consistency checks.

Transformation rules have been proposed in the literature aiming to detect both data and control-flow
errors. In [9], eight rules are proposed, while [16] used thirteen rules to harden a program. In this paper, we
address six rules, divided into faults affecting the datapath and the controlpath.

2.1. Errorsin the datapath

This group of rules aims at detecting the faults affecting the data, which comprises the whole path between
memory elements, for example, the path between a variable stored in the memory, through the ALU, to the
register bank. Every fault affecting these paths, the register bank or the memory should be protected with the
following rules:

e Rule #1: every variable used in the program must be duplicated,;

e Rule #2: every write operation performed on a variable must be performed on its replica;

e Rule #3: before each read on a variable, its value and its replica’s value must be checked for
consistency.

Fig. 1 illustrates the application of these rules to a program with 3 instructions. Instructions 1, 3, 7 and 8
are inserted due to rule #3, while instruction 3, 6 and 10 are inserted due to rules #1 and #2.

st Fxl]), =2 =t frl), =2

0: =t [rl + offzset], r2

1: bne r4, rd’, error
1d r1, [x4] 2: Id x1, [z4]

3: 1d rl, [rd + offset]

4: bne r2, r2’', error
add r1, 2, 1 5: add 1, 3,1

6: add r1’, r3, 1

T7: bne rl, rl’, error

8: bne r2, r2’', error

g

1

Fig. 1 - Datapath rules

These techniques combined require more data, such as registers and memory addresses and, therefore, the
microprocessor must have spare registers and the memory must have spare memory positions. This issue can
also be solved by setting the compiler options to restrict the data section and the program to a given number of
registers.

2.2. Errors in the controlpath

This second group of rules aims at protecting the program's flow. Faults affecting the controlpath usually
cause erroneous jumps, such as an incorrect jump address or a bitflip in a non-jump instruction's opcode which
becomes a jump instruction. To detect these errors, three rules are used in this paper:

e Rule #4: every branch instruction is replicated on both destination addresses;

e Rule #5: an unique identifier is associated to each basic block in the code;

e Rule #6: At the beginning of each basic block, a global variable is assigned with its unique
identifier. On the end of the basic block, the unique identifier is checked with the global variable.

Branch instructions are more difficult to duplicate than non-branch instructions, since they have two
possible paths, when the branch condition is true or false. When the condition is false, the branch can be simply
replicated and added right after the original branch, because the injected instruction will be executed after the
branch. When the condition is taken, the duplicated branch instruction must be inverted and inserted on the
branch taken address.

SIM 2010 — 25" South Symposium on Microelectronics 207

beq rl, r2, € 1: ‘beqg =1; 2, 6
2: mv rX, signature 1
beq rl, r2, 6 Iz ‘beq Ty r2;: 5 add rz, r3, 1 3: add r2, r3, 1
2: beq rl,r2, error 4: bne rX, signature 1, error
add r2, r3, 1 3% add r2, ¥3, 4 5: mv rX, signature 2
4: jmp 6 add rz, r3, $ 6: add r2, r3, 9
5: bne rl,r2, error st [rl], r2 Tz iste [el]l, 22
8: b X i t 2
add r2, r3, 9 6: add r2, r3, 9 BE &5 SIORALMIe S SEEOT
jmp end 7: jmp end jmp end 9: jmp end
(a) Rule #4 (b) Rules #5 and #6

Fig. 2 - Rules #4, #5 and #6

Fig. 2(a) illustrates rule #4 applied to a simple program. For the branch if equal (BEQ) instruction,
instructions 2, 4 and 5 must be inserted to replicate it, where instruction 5 is the inverted branch (branch if not
equal). Instruction 4 is necessary to avoid false error alerts.

The role of rules #5 and #6 is to detect every erroneous jump in the code. They achieve this by inserting a
unique identifier to the beginning of each basic block and checking its value on its end. Fig. 2(b) illustrates a
program divided in two basic blocks (instructions 2-4 and 5-8). Instructions 2 and 5 are inserted to set the
signature, while instructions 4 and 8 are inserted to compare the signatures with the global value.

3. Fault Injection Experimental Results

The chosen case-study microprocessor is a five-stage pipeline microprocessor based on the MIPS
architecture with a reduced instruction set called miniMIPS [17]. In order to evaluate both the effectiveness and
the feasibility of the presented approaches, an application based on 6x6 matrix multiplication algorithm is used.

A tool called PosCompiler was developed to automate the software transformation. The tool receives as
input the program’s binary code and therefore is compiler and language independent and is capable of
implementing the presented rules, divided in 3 groups. The first group, called variables, implements rules #1,
#2 and #3; group 2, called inverted branches, implements rule #4 and, finally, group 3, also known as
signatures, implements rules #5 and #6. The user is allowed to combine the techniques in a graphical interface.

We generated through PosCompiler four hardened programs, implementing: (1) signatures, (2) variables,
(3) inverted branches and (4) signatures, variables and inverted branches combined. Table 1 shows the original
and modified program’s execution time, code size and data size.

Tab. 1 — Original and hardened program’s characteristics

Source Original (1) 2) 3) 4)
Exec. Time (ms) 1.24 1.40 2.55 1.30 | 2.71
Code Size (byte) 2060 3500 | 4340 | 2580 | 6012
Data Size (byte) 524 532 1048 524 | 1056

First, thousands of faults were injected in the non-protected microprocessor, one by program execution. At
the end of each execution, the results stored in memory were compared with the expected correct values. If the
results matched, the fault was discarded. The amount of faults masked by the program is application related and
it should not interfere with the analysis.

When total signal coverage was achieved and at least 3 faults per signal were detected we normalized the
faults, varying from 3 to 5 faults per signal, and those faults build the test case list.

In order to achieve a detailed fault analysis, we sorted the faults by their source and effect on the system.
We defined four groups of fault sources to inject SEU and SET types of faults: datapath, controlpath, register
bank and ALU. We assumed the program and data memories are protected by Error Detection and Correction
(EDAC) and therefore faults in the memories were not injected.

The fault effects were classified into 2 different groups: program data and program flow, according to the
fault effect. To sort the faults among these groups, we continuously compared the Program Counter (PC) of a
golden microprocessor with the PC of the faulty microprocessor. In case of a mismatch, the injected fault was
classified as flow effect. If the PC matched with the golden’s, the fault was classified as a data effect.

When transforming the program, new instructions were added and therefore the time in which the faults
were injected changed. Since the injection time is not proportional to the total execution time, we mapped each
fault locating the instruction where the fault was injected (by locating its new PC) and pipeline stage where the
fault was manifested. Around 1% of the total number of faults could not be mapped and were changed by new
faults.

208 SIM 2010 — 25™ South Symposium on Microelectronics

Tab. 2 - (1) Signature, (2) Variables, (3) Inverted Branches and (4) All Techniques Combined.

Hardened program Hardened program
Source S'# Ofl Data versions (%) Flow versions (%)

e Ol loelw ODloloelw
Reg. Bank 2 9 - 100 - 100 1 - 100 - 100
ALU 10 22 - 100 - 100 21 - 523 | 28.5 | 80.8
SET | Controlpath 29 90 - 100 - 100 46 2.17 | 239 | 2.17 | 23.9
Datapath 8 37 - 100 - 100 3 - 100 - 100
Total 49 158 - 100 - 100 71 1.4 36.7 9.8 | 45.1
Reg. Bank 36 18 - 100 - 100 18 - 100 5.5 100

ALU 2 2 - 100 - 100 0 - - - -
SEU | Controlpath 126 63 - 100 - 100 56 1.8 17.8 1.7 19.6
Datapath 20 19 - 100 - 100 1 - - 100 100

Total 184 102 - 100 - 100 75 1.3 37.3 4 40

Results show that the technique called variables (2) presented the highest detection rate among the three. It
was capable of detecting all the faults injected in the register bank and the faults that caused errors on the data
flow. The ALU was not completely protected because it also has control flow signals and some of these signals
affected the program’s flow. With 110% code size overhead, this technique could detect 77% overall.
Technique (3) was able to complement technique (1) by detecting faults on branch instructions, mainly in the
ALU, where most of the branch errors were found. By using technique (2) and (3), with 135% in code size
overhead, these techniques combined could detect 79% overall.

The signatures (1), on the other hand, were responsible for detecting the faults affecting the program’s
flow, but it could not reach a high detection rate.

Combining all techniques, fault detection coverage reaches 80% with a code size increase of 192% and
execution time increase of 118%. However, 20% of faults remain undetected.

4. Conclusion

In this paper we presented a set of rules based on software-only techniques to detect soft errors in
microprocessors. A set of faults was built and a fault injection campaign was realized on the implemented
techniques. Results showed that the variables and inverted branches presented a high detection rate, up to 77%,
while the signatures showed results below expected.

We are currently working on improving the detection rates and decreasing the impact of the drawback on
the signatures technique.

5. References

[1T R.C. Baumann. Soft errors in advanced semiconductor devices-part I: the three radiation sources. IEEE
Transactions on Device and Materials Reliability, 1(1):17-22, March 2001.

[2] T. J. O’Gorman, J. M. Ross, A. H. Taber, J. F. Ziegler, H. P. Muhlfeld, I. C. J. Montrose, H. W. Curtis,
and J. L. Walsh. Field testing for cosmic ray soft errors in semiconductor memories. In IBM Journal of
Research and Development, pages 41-49, January 1996.

[3] International Technology Roadmap for Semiconductors: 2005 Edition, Chapter Design, 2005, pp. 6-7.

[4] P. E. Dodd, L. W. Massengill, “Basic Mechanism and Modeling of Single-Event Upset in Digital
Microelectronics”, IEEE Transactions on Nuclear Science, vol. 50, 2003, pp. 583-602.

[5] C. Bolchini, A. Miele, F. Salice, and D. Sciuto. A model of soft error effects in generic ip processors. In
Proc. 20th IEEE Int. Symp. on Defect and Fault Tolerance in VLSI Systems, pages 334—342, 2005.

[6] Goloubeva O, Rebaudengo M, Sonza Reorda M, Violante M (2003) Soft-error detection using control
flow assertions. In: Proceedings of the 18th IEEE international symposium on defect and fault tolerance
in VLSI systems—DFT 2003, November 2003, pp 581-588.

[71 Huang KH, Abraham JA (1984) Algorithm-based fault tolerance for matrix operations. IEEE Trans
Comput 33:518-528 (Dec).

[8] Oh N, Shirvani PP, McCluskey EJ (2002) Control flow Checking by Software Signatures. IEEE Trans
Reliab 51(2):111-112 (Mar).

[9] M. Rebaudengo, M. Sonza Reorda, M. Torchiano, and M. Violante. Soft-error detection through
software fault-tolerance techniques. IEEE Int. Symp. on Defect and Fault Tolerance in VLSI Systems,
pages 210-218, 1999.

[10] C. Bolchini, L. Pomante, F. Salice, and D. Sciuto. Reliable system specification for self-checking
datapaths. In Proc. of the Conf. on Design, Automation and Test in Europe, pages 1278-1283,
Washington, DC, USA, 2005. IEEE Computer Society.

[11] D.J. Lu, “Watchdog processors and structural integrity checking,” IEEE Trans. on Computers, Vol. C-
31, Issue 7, July 1982, pp. 681-685.

SIM 2010 — 25" South Symposium on Microelectronics 209

[12] N. Oh, P.P. Shirvani, and E.J. McCluskey, “Control-flow checking by software signatures,” IEEE Trans.
on Reliability, Vol. 51, Issue 1, March 2002, pp. 111-122.

[13] L.D. Mcfearin and V.S.S. Nair, “Control-flow checking using assertions,” Proc. of IFIP International
Working Conference Dependable Computing for Critical Applications (DCCA-05), Urbana-Champaign,
IL, USA, September 1995.

[14] Z. Alkhalifa, V.S.S. Nair, N. Krishnamurthy and J.A. Abraham, “Design and evaluation of system-level
checks for on-line control flow error detection,” IEEE Trans. on Parallel and Distributed Systems, Vol.
10, Issue 6, June 1999, pp. 627 — 641.

[15] Cheynet P, Nicolescu B, Velazco R, Rebaudengo M, Sonza Reorda M, Violante M (2000)
Experimentally evaluating na automatic approach for generating safety-critical software with respect to
transient errors. IEEE Trans Nucl Sci 47(6 part 3): 2231-2236 (Dec).

[16] B. Nicolescu and R. Velazco, “Detecting soft errors by a purely software approach: method, tools and
experimental results”, Proceedings of the Design,Automation and Test Europe Conference and
Exhibition, 2003.

[177 L. M. O. S. S. Hangout, S. Jan. The minimips project. available online at
http://www.opencores.org/projects.cgi/web/minimips/overview 2009.

210 SIM 2010 — 25™ South Symposium on Microelectronics

SIM 2010 — 25" South Symposium on Microelectronics 211

Exploring Embedded Software Efficiency through Code Refactoring

"Wellisson G. P. da Silva, *Lisane Brisolara, “Ulisses B. Corréa, *Luigi Carro

wguilhermino@gmail.com, lisane.brisolara@ufpel.edu.br, ubcorrea@inf.ufrgs.br,
carro@inf.ufrgs.br

!Instituto de Fisica e Matematica — Departamento de Informética — Universidade
Federal de Pelotas (UFPEL) - Pelotas — RS — Brazil

?Instituto de Informatica — Universidade Federal do Rio Grande do Sul (UFRGS)
Caixa Postal 15.064 — 91.501-970 — Porto Alegre — RS — Brazil

Abstract

Nowadays, power-efficient and high performance systems are a constant demand on the electronic
industry. The power and energy consumption are important issues for the design of portable embedded systems,
since users want to do more without recharging the device’s battery. Although these issues are more directly
related to hardware aspects, the way how the software interacts to the hardware resources has an impact on
system power/energy efficiency. The increasing complexity of systems and the use of object-oriented languages
can increase power and energy consumption as well as decrease performance. In this scenario, embedded
software designers are searching for strategies to produce efficient software. This paper analyzes how the
inline method refactoring, a software optimization technique, can affect the performance and energy of
embedded software written in Java.

1. Introduction

Usually, in embedded software development, hard constraints should be considered, such as high
performance and timing requirements, small memory footprint, or low power and low energy requirements [1].
Low power and low energy consumption is a crucial factor for embedded systems, mainly for portable and
handheld devices based on batteries. Nowadays, several techniques are used to manage the power/energy
consumption of electronic systems, being applied to the hardware [2]. However, the way the software interacts
with system power-consuming resources, and the code efficiency has also impact on power and energy
consumption as well as on performance.

To handle the increasing complexity of embedded software and the hard time-to-market requirements, the
use of object-oriented languages became more important mainly due its modular and reusable code. However,
object-oriented languages can introduce penalties to system power and energy consumption and performance
[3]. In this scenario, embedded software designers should handle the software complexity and produce efficient
software at the same time.

Refactoring is a technique of software engineering in which the code is modified in order to improve its
readability and maintainability without changing its computation [4]. A common refactoring method is “method
inline”, which is also a known compiler optimization technique. This paper analyzes through experiments the
impact on the system performance and power consumption achieved by method inline when it is applied to Java
codes. This study can help designers to understand how object-oriented practices affect properties like
performance and power consumption.

Section 2 gives the background about refactoring and how it can impact power consumption. Section 3
discusses the methodology and target platform used in the experiment. Experimental results are analyzed in
Section 4 and Section 5 concludes this work and presents future work.

2. Background

There are three main sources of power consumption in embedded systems [3], which are: processor power
consumption, due to the processor activity, memory power consumption, for accessing data and instructions in
memory, and the power consumption to connect the processor and memories. All these operations should be
taken in account, when developing embedded software. Moreover, some software engineering practices can
directly impact system power consumption and performance, like code refactoring.

Refactoring is a process of modifying the code to make it easier to understand and modify without
changing its computation as defined in [4]. These code changes can also affect the system performance and
power consumption, since it modifies the instructions that will be used, and thus, introducing or removing some
overhead which change the behavior of the system even if it do not change its computation. Examples of

212 SIM 2010 — 25™ South Symposium on Microelectronics

changes that can be done are Extract Method — which consists in the creation of a method to represent duplicate
code, or to simplify long methods — or Inline Method — which is the opposite of the Extract Method, once it
exchanges a method call for its body. Inline is not recommended by the software engineering best practices,
because it can make the code hard to understand and so decrease code maintainability.

Although, the Inline Method is expected to increase performance since it removes the overhead of a
method call — in Java Virtual Machine each method call creates a frame with its own local variables, operand
stack, and reference to the runtime constant pool of the class [5]. This work has as objective to analyze how
method inline affects performance and power consumption for Java codes.

3. Methodology and Target Platform

Through dynamic profiling of application code, information about the number of method calls is obtained.
This information is used to choose method candidates for refactoring. To increase gains achieved with the
reduction of method invocations, the method inline is applied for the methods more called. The method inlines
were incrementally done, i.e., in the code original version, the most frequently called method was inlined
(generating a version nominated lferationl), after that the second most frequently called method was inlined in
the lterationl version (generating the lteration2 version), and so on.

In order to obtain performance and energy consumption for these several Java code versions, an estimation
tool called Desejos was used [6]. As embedded platform, we adopted the FemtoJava [7] processor. This
processor is a stack based Java Virtual Machine implementation, executing Java bytecodes natively. We
adopted FemtoJava and DESEJOS due to their use of Java, a language that is gaining attention on the
embedded community.

The FemtoJava processor implements a stack machine compatible with Java Virtual Machine (JVM)
specification and that is able to execute Java code in hardware. Two different versions of the FemtoJava
processor are available: multicycle and pipeline. In this experiment, we adopted the multicycle version that is
targeted to low power embedded applications.

4. Experiments

As case study, an Mpeg layer-3 audio decoder (float-point centric) from the Spec jvm2008 benchmark set
[8] was used. This benchmark set contains several real life applications and was designed to evaluate the
performance of a Java Virtual Machine and underlying hardware.

Execution cycles and energy consumption estimation have been obtained for each version of Java code.
Figure 1(a) and 1 (b) illustrates the obtained results for performance (in cycles) and energy consumption (in
Joule), respectively.

The experimental results show that a reduction on cycles needed to run the application was achieved, as
expected, since cycles from creating frames for each method call were eliminated. However, the energy
consumption results were not as expected. After the third iteration, which has a greater gain from its
antecessors, all remaining versions have higher consumption and the last ones have a consumption worse than
the original code (without any inline applied).

Cycles ENERGY (J)

8,04E+10 226,00
8,02E+10 225,00

BE+10 22400
7,98E+10 223,00
7,96E+10 222,00
7,94E+10 221,00
7,92E+10 220,00
7,9E+10 219,00
7,8BE+10 218,00
7,86E+10 217,00
7,84E+10 216,00

Original Iteration [teration Iteration teration Iteration Iteration Iteration Original Iteration Iteration Iteration Iteration Iteration Iteration Iteration
1 2 3 4 5 6 7 & 2 3 4 5 6 £ 4

(a) Performance results (b) Energy consumption results

Fig 1. Experimental results: Performance and energy consumption estimates

To better analyze the achieved results for energy consumption, we have analyzed the Java bytecode
and have obtained the instruction histogram for the code versions in which the results are not the expected.
Summarized results of these histograms can be observed in Table 1 and Table 2. Table 1 shows the instructions
that presented different number of calls between the Iterations two and three, whose versions present the lowest
energy consumption (see Fig. 1b). A reduction in the number of iload I instructions can be observed in the
Iteration3 results in Table 1, as well as an equivalent increase in the number of iload instructions. These
instructions require one more access to memory than the iload <n> instructions (like iload 0, ..., iload 3).
This extra memory access is used to load the index of which variable in the pool will be popped on the JVM

SIM 2010 — 25" South Symposium on Microelectronics 213

operand stack, unlike the simpler iload <n> instructions that has this address implicitly defined. Moreover,
these results show reductions in the number of invokevirtual and ireturn instructions that represents an
invocation of a class instance method in Java and the return instruction, respectively. These reductions were
expected, since the inline removed method calls. Besides, a great reduction in the number of the aload 0
instructions can be observed in Table 1.

Tab 1. Main instructions used for the Iteration 2 and 3

Instruction Iteration 2 Iteration 3 Difference
iload 2256402932 2284795276 28392344
iload 1 117059899 88667555 -28392344
aload 0 1058245488 916283768 -141961720
istore 372594809 400987153 28392344
istore 1 28458885 66541 -28392344
ireturn 41305600 12913256 -28392344
invokevirtual 37981918 9589574 -28392344

To observe the increasing on energy provoked by inline, the difference between the third and fourth
iterations is analyzed. Table 2 shows the number of used instructions for each code version (Iteration 3 and
Iteration 4) and the difference between these numbers. The results show a great increase in the number of iload
instructions and also a decrease in aload I instructions, and yet an increase in the number of getfield
instructions. Moreover, Table 2 shows the effect of the inline method, where the number of method calls is
decreased, provoking a reduction in the number of invokevirtual and return instructions. In addition to that, the
inline affected the number of method’s local variables causing a changing of position in the variable pool. This
changing can be noted in the variation of istore and istore I instructions. With the method scope increasing the
variable that occupied the second position in the variable pool went to a new position after the fourth position,
generating the necessity of an isfore instruction.

This increase in iload instructions explains the increase in power consumption (and consequently
increasing energy consumption) since this instruction is more complex and need more accesses to the memory
to be executed when compared to the iload <n> instructions. The increase of iload is a consequence of the
inline method, which inserted more local variables to the method and the instructions iload 0, iload 1, iload 2
and iload_3 cannot be used.

Tab 2. Main instructions used for the Iteration 3 and 4

Instruction Iteration 3 Iteration 4 Difference
iload 2284795276 2383364176 98568900
iload 2 289277504 190708604 -98568900
aload 0 916283768 939206768 22923000
aload 1 203437622 178986422 -24451200
istore 400987153 401751253 764100
istore 2 16634671 15870571 -764100
return 6336716 5572616 -764100
getfield 1169270767 1241096167 71825400
invokevirtual 9589574 8825474 -764100

5. Conclusions

This paper studies the impact on the embedded system performance and energy consumption achieved by
the method inline, a well known refactoring method, when applied to Java codes. The Inline Method was
expected to increase performance and decrease energy consumption since it would reduce the number of cycles
and memory accesses to create a frame in Java Virtual Machine in every method call. However, the
experimental results have shown that if the method in which the inline is applied become much complex, with
many local variables, to address all its variables in the class stack can require instructions exchanging.
Sometimes, simpler instruction like iload_ 0, for instance, which are optimized to access positions in memory,
are exchanged by the iload instruction, which is more complex and needs one more access to the memory and
consequently costs more in terms of energy.

Then when applying inline in a method, the complexity of the method should be taken in account. It is
because the reduction of a method call does not result in a gain when the method has so many variables to be
addressed in the stack, as the experiments shown.

As future work, we plan to perform experiments using other applications as case studies, and explore other
refactoring methods.

214 SIM 2010 — 25™ South Symposium on Microelectronics

6. References

[1] Graaf, B.; Lormans, M.; Toetenel, H. “Embedded Software Engineering: the State of the Practice”. IEEE
Software, v. 20, n. 6, p. 61- 69, Nov. — Dec. 2003.

[2] Saxe, E. “Power Efficient Software”. Communication of the ACM. v. 53, n. 02, Feb. 2010.

[3] Chatzigeorgiou, A. and Stephanides, G. “Evaluating Performance and Power of Object-Oriented vs.
Procedural Programming in Embedded Processors”, In: 7th International Conference on Reliable
Software Technologies, Ada-Europe 2002, Vienna, Austria, June 17-21, 2002.

[4] Fowler, M. “Refactoring: Improving the Design of Existing Code”, Addison Wesley, 14th printing, 2004.

[5] Sun Microsystems, Inc. “The JavaTM Virtual Machine Specification”,
http://java.sun.com/docs/books/jvms/second _edition/html/VMSpecTOC.doc.html, March, 1999.

[6] Mattos, J.C.B., Carro, L. “Object and Method Exploration for Embedded Systems Applications. In Proc. of
the Symposium on Integrated Circuits and Systems Design”, In: 20" Symposium on Integrated Circuits
and System Design, SBCCI, Rio de Janeiro, Brazil, 2007. New York: ACM Press, 2007.

[7] Ito, S. A., Carro, L., & Jacobi, R. P. “Making java work for microcontroller applications”. IEEE Design &
Test of Computers, v.18, n. 5, 100-110, 2001.

[8] SPECjvm2008 (Java Virtual Machine Benchmark), http://www.spec.org/jvm2008.

SIM 2010 — 25™ South Symposium on Microelectronics 215

A Front-End Development Environment for the Brazilian Digital
Television System

Jbénatas Romani Rech, Leonardo Faganello, Altamiro Amadeu Susin
{jrrech, Irfaganello} @inf.ufrgs.br, {altamiro.susin}@ufrgs.br

Universidade Federal do Rio Grande do Sul

Abstract

The objective of this paper is to describe the research and implementation process of a development
environment for open-source CPUs, such as the OpenCores Plasma processor. This CPU will integrate the
SoC- SBTVD (Access terminal for the Brazilian digital television system) as a front-end module, which primary
role in the SoC is to demultiplex the data stream from a signal source (e.g. an antenna,).

1. Introduction

The SoC — SBTVD project main objective is to design an implementation of a fully-functional set-top box
(or an access terminal) for the Brazilian digital television system on a single silicon wafer, reducing costs and
improving the system performance and reliability.

The system consists in an aggregation of several modules that perform different tasks, each one crucial to
the system as a whole. Figure 1 pictures a primary diagram of the system architecture:

ASIP
uP Decod.

(Demux,
Audio Parser)

Audio Audio
Decod. Qutput
I

l

o toiis Video 500 MB/s
“}" 7| Decod.

Memory
Video + Graphic

Tuning and TS (Audio, video and data) {x MB/s)
Demodulation

Graphic 282 MBJs

Bridge Processor
- e —

1
94 MB/s -
\ v Video
B b samBis (Yuv) Output
= 188 MB/s (RGB)

v
A\
Generic I User I
Interface Interface Main CPU Memory
(AT Control, 0S) - /D
Disk Channel
Interface Return —

Fig.1 — SoC Architecture.

The main goal of this research is to provide the SoC — SBTVD project a front-end module, capable of
demultiplexing data come directly from the MPEG-TS (transport stream) and routing the different streams into
the correct processing units. The front-end module must also master a bus that connects the processing units to
assure the correct stream routing. These tasks can be accomplished by a small-sized CPU, such as the
OpenCores Plasma, which will be approached in this text. Since there's not a well defined and validated
development environment for Plasma on Linux platforms, this document will also describe the process of
combining open-source tools to implement such environment.

2. Implementation

2.1. Choosing processor and bus

Processors can be implemented in two ways, hard or soft-processors. Those of the soft kind are IP
(Intellectual Property) cores, implemented with logic primitives of a reconfigurable technology, as FPGA. They
are developed using a hardware description language, which provides them a high flexibility level. This
flexibility is vital when the need is for performance, for area minimization or even for something that is a
balance between both. Although the final goal of this project is to have the whole access terminal implemented

216 SIM 2010 — 25™ South Symposium on Microelectronics

directly in a silicon piece, our current concern is the FPGA prototyping, what makes us lean towards the soft-
processor alternative.

Tab. 1: comparative table of Plasma and ARM processors.

Plasma ARM
Developer OpenCores ARM
Implementation FPGA ASIC-otimized
Aim
Open-source Yes no
Ditribution format Soft module Hard and semi-hard
modules
Type of Open-source Open-source License
distribution
Bus Interface None AMBA
Compiler GCC GCC

So far, the Plasma CPU has met these criteria, and was chosen to integrate the SoC with the role of
demultiplexing data and routing streams between processing units. Eventually, the additional function of
parsing audio streams may be implemented. Table 1 compares Plasma CPU and ARM processors when it
comes to implementation technology, open-source/proprietary descriptions and soft/hard module distribution.

Considering the bus, the best choice available is the AMBA (Advanced Microcontroller Bus Architecture)
standard, which compiles to several processor families (ARM and MIPS), and also to many peripherals
developed by our research laboratory[1], like the H.264 Video Decoder.

2.2. Plasma Processor

The Plasma Processor, developed by Steve Rhoads, is a small 32-bit RISC processor and it implements
almost all of the MIPS T instructions, except for the unaligned load and store, since these operations were
patented. This means that, when loading or storing 32-bit values, the memory address must be on a 32-bit
aligned address. This limitation, however, is easily avoided by the compiler, because the GCC MIPS compiler
seldom generates unaligned accesses to memory. Another limitation of the Plasma processor is that exceptions
must not be placed immediately after a branch instruction [2]. Synthesis Data of Plasma is available on Table 2.

Plasma operates in Big Endian mode by default, but it can be easily changed to Little Endian. It also can
use a 2 or 3 stage pipeline.

Tab. 2: Synthesis Data of Plasma Processor.

Xilinx Virtex 2 Pro VP30
Maximum Frequency 72.127MHz
Used Available %
Flip-Flops 424 27392 1.55
LUT-4 3219 27392 11.75
Slices 1660 13696 12.12
Brams 4 136 2.94

Further development for Plasma required a C cross-compiler, aside to additional tools like a linker, an
assembler and a debugger. MIPS Technologies [3] has made available a ready-to-go toolchain for MIPS
processors, which fits very well to our needs. As we intended to compile C source codes using the standard C
library, an in-between layer was needed to handle syscalls generated by those functions. The Plasma
downloadable pack includes an RTOS (Real Time Operating System) that supplies stubs for such syscalls. The
RTOS source code must be compiled and linked together with the programs we intend to run, and so does the
source code of a small C library that supplies basic functions (I/O, memory allocation/dump, string handling,
etc).

The toolchain currently in use features Binutils 2.19.51 (linker, assembler, dumper), GCC 4.4.1 (compiler)
and GDB 7.0.5 (debugger).

2.3. AMBA Bus

As mentioned before, the great advantage in using the AMBA standard is being able to integrate many
peripherals developed by our research laboratory. Also, the AMBA protocol is an open standard.

This project will be using AMBA 3 (AHB-Lite) specification because it’s a simple implementation of the
standard with only a single master. It supports burst transfers from 8 to 1024 bytes, depending on the bus width.

SIM 2010 — 25" South Symposium on Microelectronics 217

The AMBA protocol uses an Address Phase and a Data Phase. On the first cycle (Address Phase), the
Memory Address is defined. On the second cycle (Data Phase) the data is transferred. While the data is being
stored or loaded, the next memory address is defined by the CPU. Figure 2 illustrate the two phases of the
transfer.

The “HCLK” signal is the clock signal. “HADDR” is the memory address, “HRDATA” is the loaded data
and “HWDATA” is the stored data. The “HREADY” signal is used to determine the duration of the transfer,
used on burst transfers [4].

+—Address phas -+ Data phase o —— Address phas ,e Data ph .

S S e B HoLK | |
HADOR(310) A b B M vaoorsta) B A) B W
HWRITE || I | B 7 1 | 18
HROATAG0]]) J0ata &)) oaratan :ﬁ(0 Data (A) i
wresoy T T T weor 7y 7 T

Fig.2 — AMBA transfer. Load and Store operations respectively.

3. Results

3.1. Tools utilized in simulations and tests

The Plasma VHDL project was built on Xilinx ISE 10.1; simulations were run on Modelsim XE IIT 6.4b
and ISE Simulator. In order to test the compiler tools, we must compile the source code, link the object files
and insert the binaries into the RAM module of the Plasma ISE project. This is done by a couple of tools
provided in the Plasma package, “convert_bin” and “ram_toimage”. The UART output is captured into a file
named “output.txt”. We will watch this file for the text output of our C programs.

3.2. Toolchain Test

This section describes the tests of the compiler tools in a few steps:

e Writing a C source-code (Figure 3);

e Using the tools to compile/link the sources and add the binaries to the RAM VHDL file;
e Run the binaries in a ISim simulation and observe the “output.txt” text file (Figure 4).

#include "rtos.h"
Binclude “"plasma.h"

void MainThread(void *Arg)

{
printf(" Hello world from test program over RTOS!\n"};
return;

Fig. 3: C language test program.

1080081c 27bd58c8 ADDIU $29 $29 $18 $83 50c8

10000020 acabboee SW $65 $00 $00 $00 0880

1=Debug 2=Trace 3=Step 4=BreakPt 5=Go 6=Memory 7=Watch 8=Jump 9=Quit=>
Starting RTOS
SimIsr

Hello world from test program over RTOS!

Figure 4: “output.txt” file, containing the text output of the source code running on Plasma.

3.3. Amba and Plasma compatibility test

The Plasma processor is described in VHDL and its Bus Interface is very flexible and adaptable. However,
the temporization of the AMBA (Address and Data phases) needed to be compatible with Plasma. In order to
verify its compatibility it was made a simple test: a project containing only the Plasma CPU core, memory and
a simple GPIO module previously developed and tested with Arm Processor using the AMBA protocol. The
test is well illustrated by the Figure 5.

To achieve this compatibility, it was created an area on memory map, on CPU control, that allows
switching the access from regular memory to the GPIO module. From 0x00000000 to Oxfffffff it accesses the
Internal RAM. From 0x10000000 to Ox1fffffff it accesses External RAM. From 0x30000000 to Ox3ffffftf it
accesses the GPIO module.

After changing the original Memory Map, the signals between CPU Core and Memory were duplicated to

EEINT3

reach the new GPIO module. Those signals were “address”, “address_next”, “byte _we”, and “byte_we next”.

218 SIM 2010 — 25™ South Symposium on Microelectronics

—HWDATA[31:0]
b ADDR[31:0}

¥
Decoder ~HSEL_2 "
—HSEL_:!—‘
Master | —L_ Slave 2
Multiplexor
select
“|4—HRDATA_3

|4-HRDATA[31:0] l¢——HRDATA_2
_|[—HRDATA_1

Fig.5 — An example of the test, where the Slaves 1 and 2 are the memory and the GPIO module.

Using the signals “address_next” and “byte_we_next” (byte write enable - which enables storing data in
memory) from the CPU core it was possible to anticipate the address and create an Address Phase. In the next
cycle, the memory is accessed using the “address” and “byte we” signals (previously “address next” and
“byte_we next”) while the current “address_next” is used to anticipate the next memory access, creating the
second Address Phase. This simple test was enough to verify the compatibility of the Plasma Processor with the
AMBA Protocol. Figure 6 shows an access to the GPIO module, using AMBA standard (HCLK, HADDR,
HRDATA, HWDATA and HWRITE).

| waave - default
& Moenchiu]_plazmalhclk.
B Mbenchiul_plasmalhaddr nest i
B Abenchiul_plasmalbwrite_nest [N
B¢ Aberchiul_plasmalcpu_addiess E AN
Maenchiul_plasmalcpu_brbe_we

Moerchiul_plasmadcpu_data_p
fMberch/ul_plasmalcpu data w

Mbench/ul _plasmadram_hidsta
Aberchiul _plasmaliam hdata
faenchiul_plasmaliam_hadd:
Abenchiul _plasmaliam_hwiba
Moerchiul_plasmaliam_ensbie
E- Abenchiul_plasmalopin_haddr aooarvoo
& Mberch/ul_plasmalopio hoike 0
4 Mbenchiul_plasmalgpio_hwdata 00000000
B Mberch/ul_placmalopio hidata iy |

Fig.6 — Plasma accessing the GPIO module, with Address and Data phases.

4. Conclusion

This paper describes the implementation of a development environment for a front-end module in the
Brazilian digital television system, so as the integration of a small open-source processor with the AMBA bus
standard. Our future works will focus on the FPGA programming and performance measuring having Plasma
and AMBA working together, as well as the other peripherals such as the video and audio decoders. A software
h.264 demux has been developed in the meantime of this work, being a good test subject for this still under-
construction environment. Later optimizations of this software for Plasma are also a goal we expect to achieve.

5. References

[1] LaPSI — Laboratorio de Processamento de Sinais. Departamento de Engenharia Elétrica — DELET.
Universidade Federal do Rio Grande do Sul — UFRGS.

[2] MIPS TECHNOLOGIES MIPS Technologies — MIPS Everywhere, 2006-2010. [Online]. Available:
http://www.mips.com. [Accessed: Feb. 20, 2010].

[3] S. Rhoads, "Plasma — most MIPS I(TM) opcodes", OpenCores. Sep. 25, 2001. [Online]. Available:
http://www.opencores.org/project,plasma. [Accessed: Dez. 10, 2009].

[4] ARM, “AMBA 3 AHB-Lite Protocol Specification” ARM — The Architecture For The Digital World,
ARM THI 0033 A, 2006. [PDF]. Available: http://www.arm.com. [Accessed: Feb. 23, 2010].

SIM 2010 — 25" South Symposium on Microelectronics

219

Author Index

Agostini, Luciano: 41, 49, 53, 57, 61, 75, 93, 97,
101, 105, 109, 113

Lima, Fernanda: 197, 205
Lubaszewski, Marcelo: 119

Aguiar, Marilton: 19
Almeida, Jodo: 205
Almeida, Sérgio: 157
Altermann, Jodo: 41
Amory, Alexandre: 119, 141
Azambuja, José: 205
Bampi, Sergio: 41, 45, 49, 61
Beck, Antonio: 169
Beckmann, Marco: 101
Borges, Mateus: 83
Bregolin, Felipe: 183, 187
Brisolara, Lisane: 101, 211
Butzen, Paulo: 193
Callegaro, Vinicius 31
Carara, Everton: 133

Carro, Luigi: 137, 169, 211
Castro, Iuri: 165

Concatto, Caroline: 137
Corréa, Guilherme: 49
Corréa, Marcel: 57

Corréa, Ulisses: 11

Costa, Eduardo: 41, 149, 153, 157
Costa, Angelo: 19

Dal Bem, Vinicius 193
Depra, Dieison: 45

Diniz, Claudio: 49
Dornelles, Robson: 61, 97, 113
Escobar, Kim: 161
Faganello, Leonardo: 215
Ferreira, Luigi: 87
Figueiro, Thiago: 23

Flach, Guilherme: 35
Fonseca, Mateus: 153
Franco, Denis: 83

Ghissoni, Sidinei: 149
Girardi, Alessandro: 179
Gongalves, Juliano: 101, 105, 109
Grellert, Mateus: 169
Guex, Jerson: 71
Guimaraes Jr, Daniel: 27
Guindani, Guilherme: 125
Hecktheuer, Bruno: 169
Indrusiak, Leandro: 125
Johann, Marcelo: 35
Kastensmidt, Fernanda: 137
Klock, Carlos: 31
Kologeski, Anelise: 137
Konzgen, Pietro: 183, 187
Kreutz, Marcio: 137
Lazzari, Cristiano: 119, 149
Leonhardt, Charles: 79

Lucas, Alzemiro: 141
Mamoru, Henrique: 175
Manique, Luca: 161
Marques, Felipe: 13, 31, 67
Martinello Jr, Osvaldo: 13, 67
Martins, André: 45

Martins, Jodo: 153

Martins, Mayler: 197
Matos, Débora: 137

Mattos, Julio: 109, 169
Meinhardt, Cristina: 71
Metzler, Carolina: 87
Monteiro, José: 149
Moraes, Fernando: 119, 125, 129, 133, 141
Neuberger, Gustavo: 201
Neves, Raphael: 165

Noble, Diego: 53

Oliveira, Rafael: 83

Ost, Luciano: 125
Palomino, Daniel: 93
Pereira, Fellipe: 183, 187
Pereira, Rafael: 109

Porto, Marcelo: 41, 53
Possani, Vinicius 75

Posser, Gracieli: 27

Rech, Jonatas: 215

Reis, André: 13, 23, 31, 67, 193, 197
Reis, Ricardo: 27, 35, 71, 79, 87, 149, 201
Ribas, Renato: 13, 23, 31, 67, 161, 193, 197
Romero, Roddy: 175

Rosa Jr, Leomar: 31, 75, 105
Rosa, Lucas: 205

Rosa, Thiago: 129

Rosa, Vagner 45

Rutzig, Mateus: 169
Sampaio, Felipe: 93, 97
Sanchez, Gustavo: 97, 113
Schiavon, Alexsandro: 157
Schoenknecht, Mateus: 57
Severo, Lucas: 179

Sias, Uilson: 183, 187
Siedler, Gabriel: 53

Silva, Wellisson 211

Sousa, Fernando: 205

Susin, Altamiro: 215, 137
Tedesco, Leonel: 129
Timm, Eric: 75

Tonfat, Jorge: 201

Trojahn, Tiago: 101, 105
Wilke, Gustavo: 27, 35, 87
Ziesemer, Adriel: 27, 79

220 SIM 2010 — 25™ South Symposium on Microelectronics

