26™ South Symposium on Microelectronics
April 25" to 27", 2011
Novo Hamburgo — RS — Brazil

Proceedings

Edited by
Leomar Soares da Rosa Junior
Fernando Gehm Moraes
Ewerton Artur Cappelatti

Promoted by
Brazilian Computer Society
Brazilian Microelectronics Society
IEEE Circuits and Systems Society

Organized by
Universidade Feevale
Universidade Federal do Rio Grande do Sul
Universidade Federal de Pelotas
Universidade Federal do Pampa
Pontificia Universidade Catolica do Rio Grande do Sul

Published by
Brazilian Computer Society

Universidade Feevale

Av. Dr. Mauricio Cardoso, 510
Bairro Hamburgo Velho

Novo Hamburgo - RS - Brazil

Dados de Catalogaciao na Publicacao (CIP) Internacional
Ubirajara Buddin Cruz — CRB 10/901
Biblioteca de Ciéncia & Tecnologia — UFPel

S726p

South Symposium on Microeletronics (26. : 2011 April 25-27 :

Novo Hamburgo)

Proceedings / 26. South Symposium on Microeletronics ;
edited by Leomar Soares da Rosa Junior, Fernando Gehm
Moraes, Ewerton Artur Cappelatti. — Novo Hamburgo : Feevale,
2011. - 215p. : il. — Conhecido também como SIM 2011.

ISSN 2177-5176

1.Microeletrénica. 2.Design digital. 3.Design analogo.
4 Ferramentas CAD. I|.Rosa Junior, Leomar Soares da.

I.Moraes, Fernando Gehm. Ill.Cappelatti, Ewerton Artur.
. Titulo.

CDD: 621.3817

Cover:
Cover Picture:
Edition Production:

Leomar Soares da Rosa Junior
Laura Cappelatti

Eric Falchi Timm

Julio Domingues Saragol Jr.
Renato Souza de Souza
Vinicius Neves Possani

Foreword

Welcome to the 26th edition of the South Symposium on Microelectronics. This symposium, originally
called Microelectronics Internal Seminar (SIM), started in 1984 as an internal workshop of the Microelectronics
Group (GME) at the Federal University of Rio Grande do Sul (UFRGS) in Porto Alegre. From the beginning,
the main purpose of this seminar was to offer the students an opportunity for practicing scientific papers
writing, presentation and discussion, as well as to keep a record of research works under development locally.

The event was renamed as South Symposium on Microelectronics in 2002 and transformed into a regional
event, reflecting the growth and spreading of teaching and research activities on microelectronics in the region.
The proceedings, which started at the fourth edition, have also improved over the years, receiving ISBN
numbers, adopting English as the mandatory language, and incorporating a reviewing process that also involves
students. The papers submitted to this symposium represent different levels of research activity, ranging from
early undergraduate research assistant assignments to advanced PhD works in cooperation with companies and
research labs abroad. This year SIM takes place at Novo Hamburgo, together with the 13th edition of the
regional Microelectronics School (EMICRO).

We would like to thank all individuals and organizations that helped to make this event possible. SIM 2011
was co-organized among FEEVALE, UFRGS, UFPEL, UNIPAMPA and PUCRS, promoted by the Brazilian
Computer Society (SBC), the Brazilian Microelectronics Society (SBMicro) and IEEE CAS Region 9,
receiving financial support from CAPES and CNPq Brazilian agencies. Special thanks go to the authors and
reviewers that spent precious time on the preparation of their works and helped to improve the quality of the
event.

Novo Hamburgo, April 25, 2011

Leomar Soares da Rosa Junior
Fernando Gehm Moraes
Ewerton Artur Cappelatti

SIM 2011 - 26™ South Symposium on Microelectronics

April 25" to 27", 2011
Novo Hamburgo — RS — Brazil

General Chair

Prof. Ewerton Artur Cappelatti (FEEVALE)

SIM Program Chairs

Prof. Leomar Soares da Rosa Junior (UFPEL)
Prof. Fernando Gehm Moraes (PUCRS)

EMICRO Program Chair

Prof. Ricardo Augusto da Luz Reis (UFRGS)
Prof. Alessandro Gongalves Girardi (UNIPAMPA)

IEEE CAS Liaison

Prof. Ricardo Augusto da Luz Reis (UFRGS)

List of Reviewers

Adriel Mota Ziesemer Jr (UFRGS)
Alexandre G. Girardi (UNIPAMPA)
Alexandre de Morais Amory (PUCRS)
Antonio Carlos S. Beck Filho (UFSM)
Bruno Silveira Neves (UNIPAMPA)
Bruno Zatt (UFRGS)

Caio G. Alegretti (UFRGS)

Carlos Eduardo Klock (UFRGS)
Cléaudio Machado Diniz (UFRGS)
Cristina Meinhardt (FURG)

Daniel Munari Palomino (UFRGS)
Denis Teixeira Franco (FURG)
Diego Vrague Noble (UFRGS)
Edgard de Faria Correa (UFRN)
Edson Ifarraguirre Moreno (PUCRS)
Eduarda Monteiro (UFRGS)
Eduardo da Costa (UCPEL)

Eduardo Flores (UFRGS)

Felipe de Souza Marques (UFPEL)
Felipe Marranghello (UFRGS)
Felipe Sampaio (UFRGS)
Guilherme Corréa (UFRGS)
Guilherme Flach (UFRGS)

Gustavo Girdo (UFRGS)

Juliano L. Gongalves (UFPEL)

Julio C. B. Mattos (UFPEL)
Leomar S. da Rosa Jr (UFPEL)
Lisane B. de Brisolara (UFPEL)
Luciano V. Agostini (UFPEL)
Marcello R. Macarthy (UFPEL)
Marcelo Porto (UFPEL)

Marcio Kreutz (UFRN)

Marcio Oyamada (UNIOESTE)
Mateus Rutzig (UFRGS)
Mauricio Lima Pilla (UFPEL)
Mayler Martins (UFRGS)
Osvaldo Martinello Jr (UFRGS)
Paulo F. Butzen (UFRGS)
Rafael Soares (UFPEL)
Reginaldo Tavares (UNIPAMPA)
Renato Hentschke (INTEL)
Roger Porto (UFPEL)

Sandro Sawicki (UNIJUI)
Sandro Silva (UFRGS)

Sidinei Ghissoni (UNIPAMPA)
Thaisa Silva (UFRGS)

Tiago H. Trojahn (USP)
Vinicius Callegaro (UFRGS)
Vinicius Dal Bem (UFRGS)

SIM 2011 — 26" South Symposium on Microelectronics

SIM 2011 — 26" South Symposium on Microelectronics 7

Table of Contents

Session 1: DESIGN AUTOMATION TOOLS 1

VEasy: a Functional Verification Tool Suite
Samuel Nascimento Pagliarini and Fernanda Lima Kastensmidtccccccoccevvvevveveeveeenenne. 13

Gate Sizing Minimizing Delay and Power/Area
Gracieli Posser, Guilherme Flach, Gustavo Wilke and Ricardo Reisccoceceeeeeeeieennnn. 17

Evaluating Stimuli Generation Using the VEasy Functional Verification Tool Suite
Paulo A. Haacke, Samuel N. Pagliarini and Fernanda L. Kastensmidtcccccoceveeevennne. 23

Using Transistor Networks to Reduce Static Power in CMOS Circuits
Gerson Scartezzini and RiCArdo ReiScccoocuiiiiiiiiiiiiiiiieee ettt 27

Transistor Sizing Analysis of Regular Fabrics
Felipe Marranghello, Vinicius Dal Bem, Francesc Moll, André Reis and Renato Ribas 31

Computing Minimum Decision Chains of Boolean Functions
Mayler G. A. Martins, Vinicius Callegaro, Renato P. Ribas and André 1. Reiscc..cc.c........ 35

Session 2: VIDEO CODING 1

Multiprocessing Acceleration of H.264/AVC Motion Estimation Full Search Algorithm under
CUDA Architecture
Eduarda R. Monteiro, Bruno B. Vizzotto, Claudio M. Diniz, Bruno Zatt and Sergio Bampi 41

Synthesis and Comparison of Low-Power Architectures for SAD Calculation
Fabio Walter and Sergio Bampiccoooioiiiiiiiieeeeee ettt 45

A Real Time HDTV Motion Estimation Architecture for the New MPDS Algorithm
Gustavo Sanchez, Diego Noble, Marcelo Porto, Sergio Bampi and Luciano Agostini 49

Multilevel Data Reuse Scheme for Off-Chip Memory Accesses Reduction Applied to a Motion
Estimation Architecture
Mateus Grellert, Felipe Sampaio, Julio C. B. Mattos and Luciano AOStinc..ccccveeuveneen.. 53

Fast Distortion-Based Heuristic and Hardware Design for the H.264/AVC Intra-Frame Decision
Daniel Palomino, Guilherme Corréa, Luciano Agostini and Altamiro Susincccocceeeeee.. 57

Data Reuse Scheme for an Out-of-Order Motion and Disparity Estimation Targeting the Multiview
Video Coding
Felipe Sampaio, Bruno Zatt, Sergio Bampi and Luciano AGOStiNiccccccoeveicenceeiiaeane. 61

Session 3: DESIGN AUTOMATION TOOLS 2
Area Overhead and Performance Impact of Regular Transistor Layout Design in Digital Integrated
Circuit
V. Dal Bem, P. F. Butzen, F. S. Marranghello, A. I. Reis and R. P. Ribasccccccocceucieeennne.. 67

SET and SEU Simulation Toolkit for LabVIEW
Walter Calienes Bartra, Fernanda G. de Lima Kastensmidt and Ricardo Reiscccccceeue..... 71

Prematurely Aborting Linear System Solver in Quadratic Placement
Guilherme Flach, Marcelo Johann and Ricardo Reiscccccccccoiiieeeiiiiiiiiiieeiiiieeeeieeeeiennn 75

Decreasing Transistor Count Using an Edges Sharing Technique in a Graph Structure
Vinicius N. Possani, Luciano V. Agostini, Felipe S. Marques and Leomar S. da Rosa Jr. 79

SIM 2011 — 26" South Symposium on Microelectronics

Sroute: A Router Tool for Structured ASICs
Erico de Morais Nunes and Reginaldo da Nobrega Tavaresccccocceeceeceeceneeneaeaeene 83

An Algorithm for Generating Logical Expressions Using a Graph-based Approach
Julio S. Domingues Jr., Renato S. de Souza, Vinicius N. Possani, Felipe S. Marques and Leomar S.
AA ROSA JT: ..ottt 87

Session 4: VIDEO CODING 2

A Media Processing Implementation for ISDTV Middleware with Optional Hardware Acceleration
Support

Jean F. G. Quadro, Tiago H. Trojahn, Juliano L. Gongalves, Luciano V. Agostini and Leomar S.
AQ ROSA JURTOF ...ttt 93

Random Search Motion Estimation Algorithm for High Definition Videos
Cassio Cristani, Pargles Dall'Oglio, Diego Noble, Marcelo Porto, Luciano Agostini and Sérgio
BAMPI i e ettt 97

CABAC Integration Into an H.264/AVC Intra-only Hardware Video Decoder
Alonso A. de A. Schmidt and Altamiro A. SUSITLccccooueiiiiiiiiiiieieeeee e 101

A High Throughput Hardware Solution for the H.264/AVC Quarter-Pixel Motion Estimation
Refinement

Marcel Moscarelli Corréa, Mateus Thurow Schoenknecht and Luciano Volcan Agostini 105

A Rate-Distortion Metric Targeting Perceptual Video Coding
Bruno George de Moraes, Ismael Seidel and José Luis A. Gtintzelcccccooceeveiivcinceavnnnnn. 109

Processor and Demux Integration for the SoC-SBTVD
Jeffrei Moreira, Jonatas Rech, Henrique Klein and Altamiro Susinc.cccccoeeeovevencennn. 113

Session 5: DESIGN AUTOMATION TOOLS 3

On Placement Coloring
Guilherme Flach, Marcelo Johann, Lucas Nunes and Ricardo Reisccc.ccoovvvveiniean... 119

A Test Environment for Validation of Subthreshold and Leakage Current Estimation Method in
CMOS Logic Gates
Kim A. Escobar, Paulo F. Butzen, André 1. Reis and Renato P. Ribascccccoovvvnvninnin. 123

CAD Tool for Switch Network Profiling
Carlos E. Klock, Vinicius Callegaro, André I. Reis and Renato P. Ribasccccccceveven.. 127

A Lookup Table Method for Optimal Transistor Network Synthesis
Anderson Santos da Silva, Vinicius Callegaro, Renato P. Ribas and André I. Reis 131

Session 6: NOCS, MPSOCS AND ANALOG DESIGN

A Self-adaptable Distributed DFS Scheme for NoC-based MPSoCs
Thiago Raupp da Rosa, Douglas Cardoso and Fernando Moraesc.ccccevceivceioennnnncnn. 137

Analog Design Methodology adopted in Training Center 1
Sandro Ferreira, Everton Ghignatti, Alcides Costa and Ervic Fabrisc.ccccccovvvvvenvannnnnn. 141

Energy-efficient Cache Coherence Protocol for NoC-based MPSoCs
Tales M. Chaves and Fernando G. MOFAEScccuecueveriiiiiiiiieieeeee sttt 145

SIM 2011 — 26" South Symposium on Microelectronics 9

Digital Logic Cancellation Block for a Cascade Feed-Forward Sigma-Delta Analog-to-Digital
Converter

Paulo César C. de Aguirre, Felipe C. Lucchese, Lucas Teixeira, Cristian Miiller and César
AUGUSEO PFIOF ..ottt ettt ettt ettt ettt ettt e e st 149

Efficient Processing Element Unit for MPSoC NoC-based
Paulo Santos, Jonathan Martinelli, Cezar Reinbrecht, Débora Matos and Altamiro Susin 153

Session 7: DIGITAL DESIGN AND EMBEDDED SYSTEMS

Design and Verification of a Layer-2 Ethernet MAC Classification Engine for a Gigabit Ethernet
Switch
Jorge Tonfat and RiCArdo RELSccoocueeiuiiieiieiiieieeiie ettt 159

Functional Verification of logic modules for a Gigabit Ethernet Switch
Jorge Tonfat, Gustavo Neuberger and Ricardo ReiScc.cccoovvevieiiaciieiiiiieiieieee e 163

A Direct Memory Access Controller (DMAC) IP-Core using the AMBA AXI protocol
Ilan Correa, José Luis Giintzel, Aldebaro Klautau and Jodo Crisostomo Costacuuu...... 167

GenCode: A tool for generation of Java code from UML class models
Abilio G. Parada, Eliane Siegert and Lisane B. de Brisolaracccccoceevveiivevvecnannnne. 173

Review of Localization Schemes Using Artificial Neural Networks in Wireless Sensor Networks
Stephan Hermes Chagas, Leonardo Londero de Oliveira and Jodo Baptista S. Martins 177

Power Analysis of a Floating Point Unit for a Reconfigurable Architecture
Bruno Hecktheuer, Eduardo Nicola, Mateus Grellert and Julio C. B. Mattosc.ccc......... 181

Session 8: ARITHMETIC AND DIGITAL SIGNAL PROCESSING

Impact of Process Variability considering Transistor Networks Delay
Jerson Paulo Guex, Cristina Meinhardt, Ricardo ReiScccccoevevieciieiiinieiieiieeeeeeeene 187

Area and power Optimization of Radix-2 Decimation in Time (DIT) FFT Implementation Using
MCM Approach Along the Stages
Sidinei Ghissoni, Eduardo Costa and Ricardo ReISoooeeen 191

Development of the Overlap and Add Block for SoOC-SBTVD Audio MPEG4-AAC Decoder and
Hardware Interface with the wm8731 CoDec
René A. Benvenuti, Adriano Renner and Altamiro A. SUSITcccccoveeeieiiii 197

Cell-Based VLSI Implementations of the Add One Carry Select Adder
Jucemar Monteiro, Pedro V. Campos, José Luis Giintzel and Luciano Agostini 201

Iterative Mode Hardware Implementation of CORDIC Algorithm
Raphael A. Camponogara Viera, Paulo César C. de Aguirre, Leonardo Londero de Oliveira and

JOGO BAPTISIA MAFTINS ..ottt ettt ettt 205

Test-Chip Structures for Local Random Variability Characterization in CMOS 65 nm
Felipe Correa Werle, Juan Pablo Martinez Brito and Sergio Bampic.cccccoecveceacennennen. 209

AT INACX .o, 215

10

SIM 2011 — 26" South Symposium on Microelectronics

SIM 2011 — 26" South Symposium on Microelectronics 11

Design Automation Tools 1

12

SIM 2011 — 26" South Symposium on Microelectronics

SIM 2011 — 26" South Symposium on Microelectronics 13

VEasy: a Functional Verification Tool Suite

Samuel Nascimento Pagliarini and Fernanda Lima Kastensmidt
{snpagliarini, fglima} @inf.ufrgs.br

Instituto de Informatica - Universidade Federal do Rio Grande do Sul (UFRGS)
Programas de Pés-Graduaciao em Microeletronica e Computacgio
Porto Alegre, Brasil - 91501-970

Abstract

This paper describes a tool developed specifically for aiding the process of Functional Verification. The
tool has three main built-in modules: a Verilog Linter, a Verilog Simulator and a Graphical User Interface for
Testbench Automation. On top of these modules there is a methodology for collecting and analyzing functional
and structural coverage. Results show that the built-in simulator enables a higher number of cycles per second
while the user interface allows the creation of complex test scenarios.

1. Introduction

The primary goal of Functional Verification (FV) is to establish confidence that the design intent was
captured correctly by the implementation [1]. However, the continuous increase in terms of the number of
transistors per chip is resulting in a diminished validation effectiveness. Simulation is getting more expensive
and providing less coverage [2]. FV strives to cope with that complexity increase trend but some of the related
challenges are overwhelming. So far those challenges have been addressed with methodologies and Electronic
Design Automation (EDA) tools but there is a claim for more innovation and automation improvement.

This paper describes and compares VEasy, an EDA tool suite developed by the author. VEasy aim is to be
a FV solution, including a simulator and a testbench automation interface. This paper is organized as follows:
Section 2 explains the tool in detail, including the possible work-flows while Subsections 2.1 and 2.2 deal with
the linting and simulation built-in modules. Subsection 2.3 explains the methodology used for creating complex
test scenarios. The different types of functional and structural coverage are shown in Subsection 2.4. Finally,
Section 3 provides some concluding remarks

2. VEasy and the work-flows

The tool has two distinct work-flows: the assisted flow and the simulation flow. Fig. 1 illustrates the
assisted mode. This flow starts when the Verilog [3] description of the Design Under Test (DUT) is parsed and
analyzed. If the analysis is not successful the user must fix the errors reported by the linter before continuing.
From that same input, the interfaces (i.e. Input and output signals) and special signals (i.e. clock and reset) are
automatically extracted. This information is sufficient to build a template of a verification plan. The template is

the input of the simulation flow.
Verification
Plan template

DUT s Verilog I
description

Fig. 1 — VEasy assisted flow.

Fig. 2 illustrates the tool simulation flow. Initially, a verification plan file is loaded. This file contains all
the information that is required to generate and simulate the test scenarios that the user creates through the
Graphical User Interface (GUI). VEasy then is ready to create a simulation snapshot, combining the circuit
description and the test generation capabilities. The use of a golden model is optional. All the generated code is
ANSI-C [4], which allows it to be used in the majority of platforms and compilers. After the simulation is
complete the tool automatically collects the coverage results, saves them into the verification plan and provides
this info for the user analysis. If suitable a new simulation round may be started in a attempt to reach coverage
holes. The verification plan file used by VEasy is actually a complete view of the verification effort. It includes
the traditional lists of features and associated test cases but it also contains simulation and coverage data. This
approach makes it a unified database of the current verification progress.

2.1. VEasy as a Verilog RTL Linter

Linting [5] guarantees that the input is written using strictly Register Transfer Level (RTL) Verilog
constructions. A series of items are checked for RTL compliance. Passing all those checks means that the code
may be converted to a C-like version.

14 SIM 2011 — 26" South Symposium on Microelectronics

Simulation
Verification Snapshot
Plan
Updated
Verification
—_ - Plan
l Golden
| Model |

Fig. 2 — VEasy simulation flow.

2.2. VEasy as a Verilog RTL simulator

FV relies on fast and accurate simulation. In order to improve the number of cycles simulated per second,
VEasy integrates the test case generation (i.e. the generation of inputs that build a certain test case) with the
circuit description. The circuit description portion of the simulation snapshot is obtained from extracting three
profiles from the Verilog code: the combinational logic, the reset sequential logic and the regular sequential
logic. The combinational logic simulation is performed using a signature-based method. A pseudo code of the
method is given in fig. 3.

Algorithm 1: Combinational logic simulation

Data: S such that .S contains all combinational signals.
Result: Frozen S after a simulation cycle.

1 begin

Local Signature +—)

_ e b

Signature +— ()
do_it_again :
5 execute update logic on S
6 foreach s £ S do
7 Local Signature(i] +— s
8 end
0 if Local Signature = Signature then
10 return
11 end
2 else
13 Signature +— Loecal Signature
14 goto do_it_again
15 end
16 end

Fig. 3 — Combinational logic simulation.

The signatures used are arrays, sized according to the number of signals being updated in the
combinational logic. A signal may be a primary output or a internal wire or register. If the signature is the same
for two consecutive evaluations then the combinational logic is considered to be frozen since not a single signal
changed from one evaluation to another, which can be observed on line 9. The update logic (line 5) is very
similar to the original input since C and Verilog have similar syntaxes and operators. The main difference
resides in the fact that C has no direct single bit access. This issue is resolved by using masks and logical
operators (and/or) to set or clear specific bits. This method reflects the combinational logic of a circuit where
the signals have a switching behavior.

The reset sequential logic simulation is trivial: all resettable signals will receive the determined reset
values. On the other hand, the regular sequential logic simulation must provide the concurrency of assignments
as if the clock edge were reaching all the signals at the same time. For that matter, a method that uses local
copies of the signals was developed. Such method works by performing all the sequential update logic
assignments at the local signal copies but using the actual signal values, i.e. no actual signal is written until the
logic has evaluated. After the logic is evaluated the local signals are written on the actual signals. Therefore the
order in which the signals are assigned is no longer important.

Each of the profiles is built into a C function. The simulation process will repeatedly call these functions
until the desired number of simulation cycles is reached. Separating the reset behavior from the regular
sequential logic behavior saves some simulation time. A set of simple circuits was defined for the purpose of
comparing the speed of the simulator. Fig. 4 shows those results, where dffnrst is a d-type flip-flop with reset
(negative edge), adder in an 8-bit adder with registered outputs, fsm is a simple FSM that has 8 states and
performs different 16-bit data operations on each state and t6507Ip [6] is a 8-bit micro-controller with 100
opcodes and 10 addressing modes.

SIM 2011 — 26" South Symposium on Microelectronics 15

All simulations of fig. 4 were done using 10 millions of clock cycles. The reset signal was asserted only
during the first simulation cycle. The other signals were generated every cycle with a random value.
Commercial I is a simulator from a major vendor in the ASIC domain. Commercial II is a simulator used
mostly In the FPGA domain. Icarus Verilog [7] is a free software. The scale on the Y axis of Fig. 4 is
logarithmic. When compared with the simulation times of Commercial I, VEasy performs, on average, the same
simulation within less than 5% of the time Commercial I requires.

1000

100

0O VEasy
0O Commercial I
@ Commercial 11
@ Icarus
1
0.1

dffnrst adder fsm t65071p

=

Time (s)

Fig. 4 — VEasy simulation results.

2.3. VEasy and the Testbench Automation

The main feature of the tool is the testbench automation. Using a strong GUI the user is able to drag-and-
drop sequence to build larger sequences. One example of that operation is shown in Fig. 5, where the user is
dropping a layer? sequence item (press_and_releaseY) into a layer3 (correct_password) list of sequence
items. The possibility of combining more and more layers allows the construction of sophisticated test cases
that are of particular interest for the functional verification of a design. There are only a few rules that must be
observed:

1) Sequence items of /ayer(are the only ones capable of interfacing with the design.

2) Sequence items of /ayer(will always generate values for all the inputs of the design, whether they are
constrained or not.

3) If a member is not under any constraint then it is assigned a random value within its possible values.

4) Sequence items of layer(are the only ones that can make the simulation advance in time.

5) The only communication channel between two layers is through logical members. All data exchange
relies on this approach.

6) All members must be uniquely identified to allow any layer to use them unambiguously.

7) Each sequence must have at least one sequence item, except for layer(Q sequences which do not have a
list at all.

Layers = g

q e correct_p. d:
Layc?r?ect_password Members and rules
La?ferZ Name Size Rules
press_and_releaseV example 4 2
press_and_releaseS aof 3 0
press_and_releaseE possible 2 0
press_and_releaseA members 1 1
- Layer 1
releaseY
releaseV
releases
releaseE Sequence items
releaseA
pressY press_and_releaseV
pressVY press_and_releaseE
presss press_and_releaseA
pressE press_and_releaseS
pressA
- Layer 0 b

Fig. 5 — VEasy simulation flow.

The process starts by defining at least one /ayer(sequence that contains all of the physical inputs of the
DUT. To build a layerN sequence it is only required that the user adds at least one layerN-1 sequence item. It is
also possible to add logical members into sequences of all layers. Fig. 6 contains an example of a possible
layering. The example shows a sequence called top of a layerN. This sequence has two logical members
(memberA and memberB) and each member is constrained with a set of rules. This same sequence has four
items in its list of sequence items. One of these items is referred as main, which is a sequence from /ayer(. This
sequence item in particular has no list of items since it is in the bottom of the hierarchy. Yet, since this is a

16 SIM 2011 — 26" South Symposium on Microelectronics

sequence from /ayer0, it contains a physical member referred as phy member. As mentioned, each member of a
layer, either physical or logical, might be constrained using rules. Currently the tool supports 7 types of rules:

e Keep value less than (<) or greater than (>)

e Keep value less or equal than (<=), or greater or equal than (>=)

e Keep value equal to (==)

e Keep value ranged between ([a:b]) or in a list of possible values ([a,b,c])

layerN: top

memberA

srule 1.1, rule 1.2, ...
memberB

srule2.1. rule 2.2, ...

seq _items: {something, main, item?7,

item8}

layerN-1: something layer(: main layerN-2: item7 layerN-2: item8
memberC phy_member memberE
srule 1.1, rule 1.2, ... srule 1.1, rule 1.2, ... srule 1.1, rule 1.2, ...
memberD memberF
srule2.1.rule2.2, ..
seq_items: {low, high, low, seq_ltems: {start, stop, end, seq_items: {main}
high, low} main}

Vo1 I ¢ 11

Fig. 6 — Layering example.

2.4. Coverage Methodology

The quality of the verification relies on coverage metrics, either functional or structural [8]. VEasy has
integrated three different metrics that are based on structural coverage: block coverage, expression coverage
and toggle coverage.

On the functional coverage side, VEasy allows coverage of inputs and outputs. The output coverage is
performed directly on the primary outputs of the design. The input coverage, on the other hand, may be
performed on the primary inputs or using specific logical members of the layers. The user must choose such
members manually. In another words, this allows the user to define the functional coverage metrics of interest.

3. Conclusion

Design verification has been accomplished following two principal techniques, known as formal and
functional verification [9]. FV is mainly simulation based. Although new methodologies that combine formal,
semi-formal and functional solutions have been proposed [10] and adopted by the industry, these
methodologies are still limited. In that context, this paper described a tool that enhances the FV traditional flow.
Therefore, results comparing different simulators were shown on Fig. 4. Later the layering scheme was detailed
and a example was provided as well. Combining the simulation speed of the integrated simulator with the GUI
that allows the creation of complex test scenarios, it is possible to perform the FV of designs without writing a
single line of code, lowering the verification effort considerably.

4. References

[1] Specification for VC/SoC Functional Verification, VSI Alliance, 2004.

[2] C. Yan and K. Jones, “Efficient simulation based verification by reordering,” presented at the Design and
Verification Conference, 2010.

[3] Standard for the Verilog Hardware Description Language, IEEE Std. 1364, 2001.

[4] The C Programming Language Standard, ANSI Std. X3.159, 1989.

[S] L. Bening and H. Foster, Principles of verifiable RTL design: a functional coding style supporting
verification processes in Verilog. Springer.

[6] S. Pagliarini and G. Zardo. (2009) t65071p ip core. [Online]. Available: http://opencores.org/project,t65071p
[7] S. Williams. (1999) Icarus verilog. [Online]. Available: http://www.icarus.com/eda/verilog/

[8] R. Grinwald et al., “User defined coverage - a tool supported methodology for design verication,” in Proc.
35th annual Design Automation Conference, San Francisco, United States, June 15-19, 1998, pp. 158-163.

[9] J. Bergeron, Writing Testbenches: Functional Verification of HDL Models, 2nd ed. Boston: Kluwer
Academic, 2003.

[10] O. Cohen et al., “Designers work less with quality formal equivalence checking,” presented at the Design
and Verification Conference, 2010.

SIM 2011 — 26" South Symposium on Microelectronics 17

Gate Sizing Minimizing Delay and Power/Area

Gracieli Posser, Guilherme Flach, Gustavo Wilke, Ricardo Reis
{gposser,gaflach,wilke,reis} @inf.ufrgs.br

Universidade Federal do Rio Grande do Sul (UFRGS)
Instituto de Informatica —- PPGC/PGMicro
Av. Bento Gongalves 9500 Porto Alegre, RS - Brazil

Abstract

In this work we present a gate sizing tool based on Geometric Programming. The optimization can be done
targeting both, delay and power/area minimization. In order to qualify our approach, the ISCAS’85 benchmark
circuits are mapped for 350nm and 45nm technologies using typical standard cell libraries. Next, the mapped
circuit is sized using our tool and the result is comparated to the original mapped circuit. The speed is
increased by 21% and 4.5%, on average, for 45nm and 350nm technology, respectively, keeping the same area
and power values of the sizing provided by standard-cells library. For power/area optimization, where the
delay was restricted to the delay value found at delay minimization, the reduction was 28.2% in area and
27.3% in power consumption, on average, considering 45nm technology and 29.9% in area and 28.5% in
power, on average, considering 350nm technology.

1. Introduction

One can make a circuit faster or consume less power by sizing its logic gates properly. Sizing a gate means
that the transistors, which compose the gate, are made shorter or larger according to a scale factor.

There is an optimal scale factor for each gate, considering that increasing the size of the gate and,
consequently, of the transistors, increases their ability to carry a load, reducing the time required for the gate
switching its signal. However, by increasing the port size reduces its output resistance, and increases its input
capacitance, giving its driver higher capacitive load.

The gate sizing tool developed in this work is able to handle CMOS circuits and can be configurable to
several CMOS manufacturing technologies. Moreover, the optimization can be done in two ways: (1) delay
minimization subject to an area constraint and (2) area minimization subject to a delay constraint. Elmore Delay
[1] is used in order to model the gate sizing problem as a Geometric Program (GP) [2]. GP is a mathematical
optimization problem that can be efficiently solved in polynomial time guaranteeing that the optimal solution is
found if one exists.

The contributions of this work are:

e a gate sizing tool based on GP that can be used along with an automatic cell layout generation tool
taking advantage of “continuous” gate sizing avoiding the rounding-off problems;

e a gate sizing configurable to several manufacturing technology by changing the technology parameters;

e a gate sizing tool targeting both, delay and area;

e amore accurate gate sizing method combining [3] and [2] works.

The paper is organized as follows. On section II, some related works are shown. We show the problem
formulation on section III. The section IV presents the gate sizing development using GP. On section V, we
show the results and, finally, on section VI, we present our conclusions.

2. Related Works

Gate-sizing problem has been studied in many papers using different ways to solve it. The most widely
known is the logical effort method [4], which provides fast heuristics or design guidelines for solving the gate-
sizing problem approximately. Linear Programming is used in [5] and [6]. In [7] and [8] is used Non-Linear
Programming. [9] are concerned about scalability of the circuit, i.e., the execution time needed to size large
circuits. The traditional gate sizing methodologies [10], [3], [2] use Elmore delay to model delay as posynomial
functions allowing the gate sizing to be formulated as a Geometric Program.

This work combines the ideas of the works [3] and [2]. [3] presents a method for transistor sizing, where
the sizing problem is modeled and solved by GP. The gates are modeled using the Switch-Level RC Gate
Model. In this model, a gate is viewed as a set of RC trees one for each possible input vector and the gate delay
is the maximum delay generated by its compound RC trees. The RC tree is built by replacing turned-on
transistor by an equivalent resistance. Node capacitances is composed by source-to-bulk and drain-to-bulk
capacitances. A load capacitance is connected to the output node of the gate.

Work [2] shows a gate sizing method, where a variable X; is associated for each logical gate. The scale
factors are the optimization variables of the GP. The gate delay is estimated by a linear function on the scale

18 SIM 2011 — 26" South Symposium on Microelectronics

factors. Circuit area is the sum of the area of each port that make up the circuit. The path delays are given by
the RC product and circuit delay is the maximum delay among all paths of the circuit.

3. Problem Formulation

This work supports two different formulations, delay minimization subject to an area constraint and area
minimization subject to a delay constraint. The two formulations are shown below.

3.1. Minimizing Delay Subject to Maximum Area

When the objective is minimize delay, the optimization problem is formulated as following:
minimize D =max(D,...D,)
subjectto X, <X <X)
max
C:in S Cin A S ATTBX
where D values are the delay of the circuit paths. The X, and X, are the minimum and maximum size of the
gate. C™ is the maximum input capacitance acceptable to the circuit and A™ is the maximum circuit area.

3.2. Minimizing Area Subject to Maximum Delay

For this optimization, we make a change, the objective function becomes the area and delay becomes a
constraint. The formulation is the following:
minimize Area

subjectto X, <X <X 2
C < le;ﬂx D S Dmax

in —

4. Gate Sizing Development

It can be said that the gate sizing problem is the problem of choosing the scale factors in order to find the
minimum delay (area) subject to limits on the total area (delay) and others constraints.
Our gate sizing tool was developed as follow:

1) The logic gates are modeled using the Switch-Level RC Gate Model [3].

2) For each port is set a scale factor that multiplies the transistor widths.

3) Capacitance and resistance values used to calculate delay and power are obtained throughout SPICE
simulations for PMOS and NMOS transistors. The capacitances that compose a gate are proportional to the
scale factor and the driving resistance is approximately inversely proportional.

4) The delay is calculated using the Elmore delay model, which produces posynomial functions, enabling the
problem solution by Geometric Programming.

5) Circuit delay is the maximum delay among all circuit paths.

6) The area of a scaled gate i is proportional to the gate scale factor X;, where, n is the number of gates of the

circuit and A, (7Y;) is the area base of the gate i, as shown below:
n

Atotal = ZX/ * Abase(yi) (3)
i=1
7) The power is calculated considering only switching. It is made using the equation (4), where, C,,4 is the
load capacitance of the circuit. C;, is the input capacitance of each gate of the circuit. Vdd is 1.1V for 45nm
technology and 3.3V considering 350nm technology. a is the probability of switching, we considerate that
the circuit switching 20% of the time and f'is the clock frequency and it was set S00MHz for our test cases.

P=(C+2.Cin)*Vdd® * a* f)

i=1

5. Results

[11] highlighted that once the minimum delay is achieved, a new optimization program may be performed
targeting area minimization using the minimum delay as constraint. This allows the area to be further
minimized since the former problem are not concerned in area minimization. This approach is used in this
work. First, the delay is minimized. Then, the area is further reduced with no delay penalty.

We use a set of the ISCAS’85 benchmark circuits for our tests. Initially, the circuit was mapped using RTL
Compiler tool from Cadence to 45nm library. Design Compiler from Synopsys was used to 350nm library. In
both, only CMOS cells were considerate. These circuits are inserted to our sizing tool where the area, timing
and power values were calculated. We considerate as load capacitance a value six times greater than the input
capacitance of a gate not scaled, i.e., with scale factor one.

SIM 2011 — 26" South Symposium on Microelectronics 19

5.1. Results for 45Snm Technology

Tab. 1 shows the values and reductions (R) considering the sizes found in a standard cell library (SC) and
the sizes given by our gate sizing using Geometric Programming (GP). The gate sizing in Tab. 1 is a delay
minimization, where the area is restricted to the same area of the circuit using standard cells. The circuit sized
using our methodology (GP) obtained a reduction, on average, of 21% in delay, keeping the same area and

power values of the sizing provided by standard-cells library.

Tab. 1 — Comparison results between standard cells (SC) sizing and sizing using Geometric Programming

(GP) proposed in this work to 45nm minimizing delay subject to area

Power (uW) Timing (ps) Area (pmz)
Gates SC GP R SC GP R SC GP R
sizing | sizing (%) | sizing | sizing (%) | sizing | sizing (%)
C432 184 222 224 -09| 718 666 73| 2104| 2104 0.0
C499 403 583 58.4 -0.2|1 750 651 13.1 536.4| 5364 0.0
C1908 259 33.6 33.7 -03| 472 425 10.0| 304.3| 3043 0.0
C880 232 314 31.1 1.1 451 330 26.8| 281.0(2774 1.3
apexl 1728 239.8| 2395 0.1 673 504 25.2 2304 2296 0.4
apex2 41101 527.1 523.6 0.7] 863 650 24.7 5180 5145 0.7
apex3 1939 2543 2519 09| 687 507 26.3 2441 2413 1.2
apexs 1942 264.6| 2583 2.4 662 431 34.9 2512 2446 2.6
Avg. 1350] 178.9| 177.3 0.5 660 521 21.0 1721 1704 0.8

Tab. 2 shows the values for gate sizing minimizing area/power subject to the delay to the minimum value
found by the delay minimization, shown in Tab. 1. Tab. 2 shows area and power values given by delay
minimization (Min. Delay) and by area minimization (Min. area) and their reductions.

Area minimization allowed a reduction, on average, 28.2% in area and 27.3% in power consumption,

considering the same delay value given by delay minimization, Tab. 1. This improvement is possible when
there are multiple optimal points that minimize the delay, given an area budget. So, the area minimization
problem is able to find the minimum area considering the minimal circuit delay.

Tab. 2 - Results for gate sizing minimizing area subject to delay (min. Area) compared to the values from
delay minimization (min. Delay) for 45nm

Power (uW) Area (um’)
Min. Delay | Min. Area | Reduction (%) | Min. Delay | Min. Area | Reduction (%)
C432 22.4 22.4 0.00 210.4 210.4 0.00
C499 58.4 58.4 0.00 536.4 536.4 0.00
C1908 33.7 33.7 0.00 304.3 304.3 0.00
C880 31.1 20.2 349 277.4 171 38.4
apex1 239.5 137.3 42.7 2296 1293.5 43.7
apex2 523.6 270.3 48.4 5145 2647.3 48.5
apex3 251.9 135.8 46.1 2413 1274.1 472
apex5 258.3 138.5 46.4 2446 1269 48.1
Avg. 177.3 102.1 27.3 1704 963.3 28.2
5.2. Results for 350nm Technology

Considering 350nm technology, the sized circuits using our gate sizing tool showed a reduction, on
average, of 4.5% in delay, and area and power values are similar to the values presented by the circuits mapped
to standard-cells library, as showed at Tab. 3.

Tab. 4 shows the values obtained for gate sizing minimizing area subject to delay found by minimizing
delay, Tab. 3. Tab. 4 presents area and power values by delay minimization (Min. delay) and area minimization
(Min. area) and their reduction (R) values. Area optimization allowed a reduction, on average, of 29.9% in area
and 28.5% in power consumption.

20 SIM 2011 — 26" South Symposium on Microelectronics
Tab. 3 — Comparison results between standard cells (SC) sizing and sizing using Geometric Programming
(GP) proposed in this work to 350nm minimizing delay subject to area
Power (uW) Timing (ps) Area (pmz)
Gates SC GP R SC GP R SC GP R
sizing | sizing (%) | sizing | sizing (%) | sizing | sizing (%)
C432 15 0.56 0.56 00| 1.58 1.52 4.2 444 444 0.00
C499 388 7.99 8.07 -1.0| 7.29 6.68 8.4 8015 8015 0.00
C1908 79 3.00 3.05 -1.5] 3.26 3.09 52| 2407.4| 2407.4 0.00
C880 177 6.03 5.59 7.3 3.8 3.68 32 5609 5303 5.5
apex1 1455 27.9 27.9 0.0] 7.28 7.11 24| 27803 | 27783 0.1
apex2 778 15.2 15.2 0.1 6.59 6.25 52| 15786| 15765 0.1
apex3 1715 34.5 343 04| 6.03 5.89 23| 34965| 34940 0.1
apex5 958 19.6 19.6 0.0 4.73 4.49 5.0 18699 18685 0.1
Avg. 659.6 14.4 14.3 0.6 5.07 4.74 45| 14216| 14168 0.7
Tab. 4 - Results for gate sizing minimizing area subject to delay (min. Area) compared to the values from
delay minimization (min. Delay) for 350nm
Power (uW) Area (pmz)
Min. Delay | Min. Area | Reduction (%) | Min. Delay | Min. Area | Reduction (%)
C432 0.56 0.56 0.00 444 444 0.00
C499 8.07 8.07 0.00 8015 8015 0.00
C1908 3.05 3.05 0.00 2407.4 2407.4 0.00
C880 5.59 3.11 44.4 5303 2710.2 48.9
apex1 27.9 14.79 47.0 27783 14282.4 48.6
apex2 15.2 8.208 46.1 15765 8419.4 46.6
apex3 34.3 16.89 50.8 34940 16659.3 52.3
apexS 19.6 11.82 39.6 18685 10748.3 42.5
Avg. 14.3 8.3 28.5 14168 7960.7 29.9
6. Conclusion

Gate sizing using GP achieves better results compared with a circuit using commercial standard cell sizes
selected by RTL Compiler

In this paper, we solve a gate sizing problem using GP combining the works [3], [2]. To model the gates,
we use a Switch-Level RC Gate Model. In our tool, the gate sizing problem can be formulated in two ways:

1) Aiming to minimize the circuit delay subject to a maximum area, or

2) Minimizing area subject to a delay restriction.

We showed that, for our test cases in 45nm and 350nm, the gate sizing tool produced better results
compared with a circuit using commercial standard cell sizes selected by RTL Compiler. The tests show that
our gate sizing tool using GP reduced the delay in 21%, on average, for 45nm and 4.5% for 350nm, considering
delay minimization. For area minimization, considering 45nm technology, our gate sizing reduced the area in
28.2%, on average, and 27.3% in power consumption. For 350nm, the reduction in area was 29.9% and 28.5%
in power consumption, on average.

Using an automatic cell generation tool, as ASTRAN [12], we can generate cells in the desired size and
take advantage of the better results in timing, area and power, which is critical in recent technologies.

7. Acknowledgment

This work is partially supported by Brazilian National Council for Scientific and Technological
Development (CNPq—Brazil) and Coordination for the Improvement of Higher Education Personnel (CAPES).

8.
(1]

(2]
(3]
(4]
(3]

References

W. Elmore, “The transient analysis of damped linear networks with particular regard to wideband
amplifiers,” J. Applied Physics, vol. 19, 1948.

S. Boyd, S.-J. Kim, L. Vandenberghe, and A. Hassibi, “A tutorial on geometric programming,” Springer
Science+Business Media, LLC 2007, pp. 67-127, 2007..

S. Boyd, S.-J. Kim, D. Patil, and M. Horowitz, “Digital circuit optimiza- tion via geometric
programming,” Operations Research, vol. 53, no. 6, pp. 899-932, Nov.-Dec. 2005.

I. Sutherland, B. Sproull, and D. Harris, Logical Effort: Designing Fast CMOS Circuits.
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1999.

M. Berkelaar and J. Jess, “Gate sizing in mos digital circuits with linear programming,” in EDAC*90:
Conference on European Design Automation, Glasgow, Scotland, 1990, pp. 217-221.

San

SIM 2011 — 26" South Symposium on Microelectronics 21

[6] K. Bhattacharya and N. Ranganathan, “A linear programming for- mulation for security-aware gate
sizing,” in 18th ACM Great Lakes symposium on VLSI, Orlando, Florida - USA, 2008, pp. 273-278.

[71 S. S. Sapatnekar and W. Chuang, “Power-delay optimization in gate sizing,” ACM Transactions on
Design Automation of Electronic Systems (TODAES), vol. 5, no. 1, pp. 98-114, 2000.

[8] V. Mahalingam and N. Ranganathan, “A nonlinear programming based power optimization methodology
for gate sizing and voltage selection,” in ISVLSI, Tampa, Florida - USA, 2005, pp. 180-185.

[9] S. Joshi and S. Boyd, “An efficient method for large-scale gate sizing,” IEEE Transactions on Circuits and
Systems, vol. 55, no. 9, pp. 2760 — 2773, October 2008.

[10] S. Sapatnekar, V. Rao, P. Vaidya, and S.-M. Kang, “An exact solution to the transistor sizing problem for
cmos circuits using convex optimization,” IEEE Transactions on Computer Aided Design of Integrated
circuits and Systems, vol. 12, no. 11, pp. 1621-1634, 1993.

[11] H. Tennakoon and C. Sechen, “Efficient and accurate gate sizing with piecewise convex delay models,”
in 42nd Design Automation Conference, Anaheim, California, USA, 2005, pp. 807-812.

[12] A. Ziesemer, C. Lazzari, and R. Reis, “Transistor level automatic layout generator for non-complementary
cmos cells,” in VLSI-SOC 2007, Atlanta, GA, USA, Oct 2007, pp. 116—-121.

22

SIM 2011 — 26" South Symposium on Microelectronics

SIM 2011 — 26" South Symposium on Microelectronics 23

Evaluating Stimuli Generation Using the VEasy Functional Verification
Tool Suite

Paulo A. Haacke, Samuel N. Pagliarini and Fernanda L. Kastensmidt
{pahaacke, snpagliarini, fglima}@inf.ufrgs.br

Instituto de Informatica - Universidade Federal do Rio Grande do Sul (UFRGS)
Programas de Pés-Graduacdo em Microeletronica e Computacio
Porto Alegre, Brasil - 91501-970

Abstract

This paper describes and evaluates a stimuli generation methodology for testbench automation. The
methodology is part of a tool suite developed specifically for aiding the process of Functional Verification
(FV). A brief description of some features from the tool, referred as VEasy, are presented. Then, the focus goes
to the stimuli generation, where the layering methodology used is described. After that, some simulation results
are presented showing that the VEasy's methodology enables a speed-up on the simulation and, consequently,
enables a faster verification.

1. Introduction

Today, in the era of multi-million gates ASIC and system-on-a-chip (SoC) designs, verification is known
as a major bottleneck in the development of a system, consuming about 70%[1] of the design effort. Indeed, it
is a fundamental step in the development of digital circuits. Hardware complexity keeps growing and that
obviously impacts the verification complexity since it is leading to an even more challenging verification. In
fact, it has been demonstrated that verification complexity theoretically rises exponentially with hardware
complexity [2].

The main goal of FV is to demonstrate that the intent of a design was preserved in its implementation [1].
To achieve that, often it uses a combination of simple logic simulation and test cases generated for asserting
specific features of the design. All the test cases are compiled into testbenches. In order to perform the FV, the
Register Transfer Level (RTL) representation of the design is going to be used in the context of this paper. On
top of the simulation, FV applies specific and specialized constructs, like assertions, constrained randomness
and coverage metrics. Yet, functional/logic flaws are still the main reason for silicon re-spins .

The data generation for a Design Under Test (DUT) is basically the first goal of a testbench and one of the
largest challenges of the FV. At the beginning, FV was done with simple direct or random stimulus. But,
because of the growth in the complexity of digital circuits, it becomes more difficult to cover all the situations
of interest. To solve this, some high level languages that allow the creation of constrained random stimuli were
developed [3].

With the increase of the hardware complexity more challenges have been faced by the verification
engineers. Some of these challenges have been addressed with automation and new verification methodologies
but there is a claim for more innovative tools. In order to achieve this goal this paper describes and compares
VEasy, an Electronic Design Automation (EDA) tool suite developed by the authors. Such tool suite is
described in [4, 5]. VEasy's aim is to be a FV solution, including a simulator and a Testcase Creation Graphical
User Interface (GUI), hence the main domains of improvements presented are the simulator as a simple EDA
tool and the Testcase Creation solution jointly with the GUI as a methodology.

This paper explores the stimuli generation challenge. Regarding such topic, VEasy's features are explained,
focusing on the solution used to perform the stimuli generation. The next sections are organized as follows:
Section 2 explain the generalities of VEasy. Section 3 explains the state-of-the-art stimuli generation and later
shows VEasy's approach to perform this task. Some results comparing VEasy with a Commercial simulator are
presented on Section 4. Finally, conclusions are drawn on Section 5.

2. VEasy

The tool suite comprehends four main modules: Verilog RTL linting, Verilog RTL simulation, the Testcase
Creation methodology and the coverage collection and analysis. Also, the tool suite has two distinct work-
flows: the assisted flow and the simulation flow. The Verilog linting [6] is available only in the assisted flow of
the tool, which starts when the Verilog description of the DUT is parsed and analyzed. The simulation flow is
only enabled when the description complies with the linting rules. Linting guarantees that the input is written
using strictly RTL Verilog constructions.

The input of the simulation flow then is no longer a hardware description, instead it is a verification plan file.
The verification plan file used by VEasy is actually a complete view of the verification. It includes the
traditional lists of features and testcases but it also contains simulation and coverage data. This approach makes
it an unified database of the current verification progress. This approach is sometimes referred as an executable

24 SIM 2011 — 26" South Symposium on Microelectronics

verification plan.

The quality of the verification relies on coverage metrics [7]. VEasy has integrated three different structural
coverage metrics: block, expression and toggle coverage. All these metrics are widely used by verification
teams and are quite simple.

For the purpose of creating stimulus for the DUT, VEasy uses a layered methodology. This methodology
enables testcase creation using a GUI and/or a specialized language, where the user is able to create complex
sequence scenarios by using layers of abstraction. VEasy will automatically extract the design interfaces and
create a basic sequence that contains all the physical inputs of the design. Such sequence belongs to layer(. All
the other sequences (and layers) must be built by the user.

A layer is just a container used in the construction of sequences. All the layers constitute a hierarchy, where
the layerl sequences contains items from layer(0 while a layerN sequence contains items from /ayerN-1 and
below. Each sequence has a name and a list of members. Each member can have a list of rules. All the layers
except the /ayer(one can also have a list of sequences. The ability of combining more and more layers allow
the construction of sophisticated testcases. One example of a verification environment built using the layered
methodology is shown in fig. 1.

\
layerN [—————,| Reference
layerN-1 Model
layerN-2 Error/Status
. Messages
Device
under
layerQ Test
(DUT)

Fig. 1 — Layered methodology.

The layered methodology is the most complex aspect of VEasy and it creates the backbone that supports the
simulation since it will provide the simulation stimuli. On top of the methodology there is also a constraint
solving engine that allows a hierarchical control of the data being generated. More details regarding the
methodology are found in [4]. Our results regarding generating stimuli data are reported in the next sections.

3. Stimuli Generation

The traditional way to verify a circuit is to apply signals to the inputs and check the output response. Such
signals are organized in a list of tests, usually referred as testbenches. Such list is commonly generated and
managed, although some random and automated test generators are described in the literature [8, 9]. Regarding
design complexity, the use of this approach cannot ensure that all the cases referred in the test list were
implemented. So, most of the effort is still manual.

Recently, the industrial practice is turning their thinkings to a constraint based approach [10], where some
constraints limits and manages the input values that are sent to the DUT. This allow the simulation to reach
more distributed cases within a testbench. Note, however, that the employment of constraints usually requires
the use of a constraint solving engine. This raises the complexity level of the FV since it requires the
verification team to have a deeply knowledge of the design, otherwise it may cause the simulation of a non-
desired scenario. There is also the issue of constraint contradiction, i.e., one constraint inhibits the other. Either
way, simulation cycles could be wasted if the constraints were incorrectly defined.

Moreover, there is another approach used for generating stimuli. It is called Coverage Directed Generation
(CDG), which is based on detecting the occurrence of events in the simulation (by means of coverage) and
providing information related to the progress of the same [11]. Then, the coverage results might be analyzed by
the verification engineers, which could modify the directives for the test generators as necessary.

VEasy has its own simulation engine, which manages the stimuli generation with its own approach. In
order to achieve a larger number of cycles simulated per second, VEasy integrates the testcase generation, the
coverage collection and also the circuit description within the same simulation snapshot. This simulation engine
is based on a cycle-accurate approach, which enables the user to focus on generating data instead of controlling
the timing of the testbench.

4. Simulation Results

In order to evaluate the stimuli generation of the tool, some simulations were done using circuits with different
profiles. The circuits were chosen based on the logic construction they contain: seq is a finite state machine
activated by a sequence, 16507Ip is a full microprocessor with 100 opcodes and 10 different addressing modes,
dffnrst is a D-type flip-flop, fsm is a finite state machine with 8 states in which each state performs an 8-bit

SIM 2011 — 26" South Symposium on Microelectronics 25

wide operation, while adder is a 16 bit adder. The circuits are described in Tab. 1, which contains the amount of
functional inputs of each circuit, i.e., excluding reset and clock signals.

Tab.1 — Amount of inputs of each simulated circuit.
DUT seq | t6507Ip | dffurst | fsm | adder

Inputs 10 1 1 2 3

One Commercial simulator from a major vendor was chosen. For each circuit a testbench was created using a
set of configurations: all the input signals are kept completely random except for clock and reset, which is
triggered only once during the first cycle. All testbenches were configured to run up to 10 million clock cycles.
The simulation was performed by first executing the testbench only. Only later the DUT was connected. The
results are presented in fig. 2.

O Testbench @ Testbench

only and DUT

10

9

8

7

E 6
@ 5
E 4
3

2

1

0

seq t8507Ip dffnrst fsm adder
Circuits

Fig. 2 - Simulation on Commercial simulator.

Fig. 2 presents the data of the simulation performed with and without the actual DUT. One might notice that the
time required to simulate the testbenches is meaningful with respect to the time required to simulate the DUT.
The testbench might represent, in the worst case scenario, 80% of the overall simulation time.

Fig. 3 shows the data of the simulation performed on VEasy. From this simulation one might notice that the
testbench simulation time does not have a direct correlation with the complexity of the DUT. On simple circuits
like dffnrst, fsm and adder the time spent on testbench constitutes a major cost on VEasy simulation. However,
regarding t6507Ip, the largest of the circuits, the simulation time of the testbench is not that high. An
explanation for such behavior lies in fig. 4.

O Testbench @ Testbench 045
only and DUT 0.4 o
0.8 0.35
0.7 03
06 ® 025
g 2 g 02
o 04 g °
E 0.15
F 03 o
0.1
0.2 o
g i o
o e 0
dffnrst t6507Ip fsm adder seq 1 2 3 4 5 6 7 8 9 10
Circuits Number of inputs
Fig. 3 - Simulation on VEasy. Fig. 4 — Simulation time in respect to the number of

inputs of the circuits.

First, one should notice by comparing fig. 2 and fig. 3 that VEasy performs, on average, the same simulation
within less than 10% of the time Commercial simulator requires. This gain occurs because the simulation is
performed in a cycle-accurate simulator. The hierarchy and organization of layers enables a simple and faster
stimuli generation which, when linked with the cycle-accurate simulator, enables a high performance
simulation. In other words, the stimuli generation mechanism also benefits from the cycle-accurate simulation.
Regarding fig. 4, the amount of time that is required to simulate a testcase in VEasy is evaluated with
respect to the actual number of inputs of the circuits. One might notice that the simulation time depends almost
only on the amount of inputs that each DUT has, in a linear fashion. The explanation for this behavior lies in the

26 SIM 2011 — 26" South Symposium on Microelectronics

actual methodology used: deciding the next meaningful data to be simulated is fairly simple and has a fixed cost
when the layered methodology is used. So, the major component of the stimuli generation is actually the draw
of random numbers. The actual draw of a random number in VEasy was also addressed in our experiments.
Such task is efficiently handled by the algorithm described in [12]. These two components, the random number
generator and the hierarchical methodology, enable a high-performance stimuli generation.

5. Conclusion

Regarding the verification of a circuit, many solutions have been proposed. However, the technique that
has been actually used in industry is FV. In that context, this paper described VEasy, which contributes with the
growing of this area by providing a layered stimuli generation mechanism.

The goal of this paper is not to describe each detail of the tool, but mainly to explain the stimuli generation. On
this issue, simulation comparisons between VEasy and a Commercial simulator were presented. For every
simulated circuit, VEasy was able to realize the same simulation within a smaller time. Also, on each testbench,
the time spent on simulation is almost directly linked with the amount of inputs, i.e., the inner complexity of the
DUT does not affect the testbench simulation time when the methodology is used. Only the amount of random
numbers to be drawn is affects the simulation time.

6. References

[1] D. Dempster, M. Stuart, and C. Moses, Verification Methodology Manual: Tchniques for
Verifying HDL Designs, 2™ ed. Teamwork International, 2001.

[2] A. Piziali, “Functional Verification Coverage Measurement and Analysis”. Kluwer Academic,
2004.
[3] A. Molina and O. Cadenas, “Functional Verification: Approaches and Challenges”, in Latin

American Applied Research, 2007.

[4] S. N. Pagliarini, “VEasy: a Tool Suite Towards the Functional Verification Challenge”, Master’s
thesis, PGMICRO, UFRGS, Porto Alegre, 2011.

[5] S. N; Pagliarini. (2010) VEasy — a Functional Verification Tool Suite. [Online]. Available:
http://www.inf.ufrgs.br/~snpagliarini/veasy

[6] L. Bening and H. Foster, “Principles of verifiable RTL design: a functional coding style
supporting verification processes in Verilog”. Springer, 2001, ch. 4.

[7] Grinwald, R. et al. User Defined Coverage, “A Tool Supported Methodology for Design
Verification. In: Design Automation Conference, San Francisco, United States, Proceedings...
[S.1.: s.n.], 1998. p.158-163.

[8] R. Emek, 1. Jaeger, Y. Naveh, G. Bergman, G. Aloni, Y. Katz, M. Farkash, I. Dozoretz, and A.
Goldin. “X_Gen: A random test-case generator for systems and SoCs”. In IEEE International
High Level Design Validation and Test Workshop, pages 145-150, October 2002.

[9] J.-T. Yen and Q. R. Yin., “Multiprocessing design verification methodology for Motorola
MPC74XX PowerPC microprocessor”. In Proceedings of the 37™ Design Automation
Conference, June 2000.

[10] “Constrained-random test generation and functional coverage with Vera”, Technical report,
Synopsys, Inc, Feb, 2003.

[11] Fine, S.; Ziv, A., “Coverage directed test generation for functional verification using Bayesian
networks”. In: Design Automation Conference, 2003. Proceedings. 2003. p.286 — 291.

[12] Saito, M.; Matsumoto, M. “SIMD-Oriented Fast Mersenne Twister: a 128-bit pseudorandom
number generator”. In: Monte Carlo and Quasi-Monte Carlo Methods 2006. [S.1.]: Springer,
2008. p.607-622.

SIM 2011 — 26" South Symposium on Microelectronics 27

Using Transistor Networks to
Reduce Static Power in CMOS Circuits

'Gerson Scartezzini, ’Ricardo Reis
{gerson.scartezzini, reis} @inf.ufrgs.br

"PPGC-*PGMicro, Instituto de Informatica
Universidade Federal do Rio Grande do Sul — UFRGS
Porto Alegre, Brazil

Abstract

The optimization of circuits to reduce power consumption is very important. To improve the reduction of
power it is becoming important a physical design methodology where any logic function should be able to have
its layout generate. Considering this physical design methodology, this paper is focused to show that the use of
complex gates gives a better solution in terms of power and delay, than the traditional use of basic gates
available in commercial cell libraries. The comparisons show an average reduction of 74% in leakage power
and 21% in delay.

1. Introduction

With the development of new technologies for integrated circuit manufacturing, it became possible to
create ever smaller components, enabling the integration of an increasing number of transistors on a same
silicon piece. With each new technology generation, the circuits become smaller and faster. But the increasing
number of transistor in a chip brings new design challenges to reduce power consumption and it has become a
major source of concern [1][2]. Many research and methods have been developed in order to reduce power
consumption without denigrating the performance of the device, as in [3]. The power consumption in CMOS
circuits consists mainly of three factors [4]: (i) dynamic power, (ii) short-circuit power and (iii) static power.

For a long time, only dynamic power was a significant source of power consumption in CMOS circuits,
thus, many techniques have been found to reduce the consumption. However, as transistors become smaller and
faster, the consumption related to static power (leakage power) has become more and more significant.

According to the International Technology Roadmap for Semiconductors 2009, static power consumption
is an important factor in the total power consumption of a CMOS circuit, increasing at a rate of 10 % per
generation technology. Figure 1 shows a graph with the prediction of [5] for the overall power consumption of
an integrated circuit, where can be noticed that the static consumption tends to increase over the year as
dynamic power consumption.

600

v
g

I
8

B 5y tching Power, Logic ®Sw tching Pover, Mnory
O Leakage Power ic Oleakage Power, Menor

Power Consunpt i on
g

~
8

g

13

T w
o
&

& 8’

& & o«
Figure 1: Power consumption prediction by the ITRS 2009.

T = o e
= o2 o 5 8§ § 3
& &8 B & & 8 § €

2009
2010
2011
2012

In order to avoid high static power consumption, researchers have tried to search the sources of this
consumption, and looked for new techniques to reduce them. Currently, a large number of designs are
developed using methodologies such as the classic Standard Cell. That is, the layout of the circuit is made from
the assembly of pre-designed cells taken from an existing cell library [6]. One major problem when using a cell
library is that the number of logic functions in commercial cell libraries is limited, reducing the space of
optimization of a circuit and reducing the possibilities do have a strong reduction on power consumption.

2. Use of Complex Gates
According [7], the static power consumption in CMOS circuits can be approximated by:

pleakage =Vpp*N- kDesign *eax

Equation 1: Architectural static power model, described in [7].

This works was partially supported by CNPq, Capes and Fapergs

28 SIM 2011 — 26" South Symposium on Microelectronics

Where Pieyage 1S the static power consumption, N is the number of transistors, Kgesign 15 @ design dependent
parameter, and I, is a technology dependent parameter. I, depends on technology parameters like Vy,, while
Kesign depends on design parameters like the fraction of transistors on any time.

From Equation 1, it is clear that the static power consumption is directly proportional to the number of
components (N), thereby reducing the number of transistors in the system appears to be a very effective
technique to reduce the static power consumption.

One way to reduce the number of transistors in a circuit requests a changing in the design methodology. A
real physical design optimization cannot be obtained using the classical standard cell methodology. A true
physical design optimization needs a methodology to allow the realization of any transistor network generated
by the synthesis tools. To do so, it is necessary a set of tools to do the physical design of any transistor
network. The use of complex cells (with several levels of AOI) can replace well a set of basic cells (NOR2,
NAND?2, for example).

Basic Cells Complex Gate

Same Function

18 Transistors # 12 Transistors

Figure 2: Different options for the design of a same function.

In Figure 2 is showed an example of a logical function described using basic cells and the same function
described as a complex gate. It is clear in this example an important reduction in the number of transistors. The
complex gate has 12 transistors and the equivalent function done using three basic gates (1 NOR2 and 2
NAND?3) has 18 transistors.

3. Development and Results

In order to verify that the use of complex gates in integrated circuits provides reduced power consumption,
we carried out an experiment, comparing complex gates with similar function using basic cells.

The process of comparison was conducted in four steps, namely: (A) Design & Sizing, (B) Layout &
Extraction, (C) Simulation & Characterization and (D) Inspection & Comparison.

A. Design & Sizing

It was used a commercial 0.35um PDK (Process Design Kit) from AMS (Austrla Micro Systems) The first
step of this work was the design of a set of cells. It was defined
a set of 14 complex cells of type AOI (And, Or, Inverter) and
14 of the type OAI (Or, And, Inverter), in a total of 28 logic
functions. For each one of this 28 cells it was described its
transistor network using the SPICE language.

For each cell, pull-up and pull-down networks was sized
with the same pair of “w” (w,=1pm and w,=1.6*w,). In order
to keep the same delay for both, pull-up and pull-down
network, the Logic Effort [8] method was used in each cell.

7
7

i

B. Layout & Extraction

After the definition and sizing of cells, it was automatically
generate the layouts of each one of the complex gates. The
layout synthesis was done using the ASTRAN [9]. This tool
was used to generate the network of transistors, as well to place
and route the transistors of the transistor network described in
SPICE format. In Figure 3 is illustrated the layout of the cell
AOI232 generated using ASTRAN.

With the layout implemented, we used Virtuoso (from
Cadence) to perform the electrical extraction of each cell. This
extraction looks for parasitic elements, such as capacitances and
resistances, generating a transistor level description of the
circuit (including diodes, resistances and capacitors) from its Figure 3: Layout of a complex gate
layout, described by SPECTRE format. (AOI232)

&
\
§
N
N
N
N
N
§
a
a
a
§
N
N
N
N
N
X
§
a
a
§
.
\
\
\
N
-
=
S

7

3

SIM 2011 — 26" South Symposium on Microelectronics

29

C. Simulation & Characterization

Using the SPECTRE description, each one of the cells was simulated using the SPECTRE simulator
considering different input signals, in order to analyze rising time, fallen time, transition time, power

consumption and delay.

It was generated a total of 3038 vectors to characterize the 28 cells. Each cell was characterized for a
temperature of 25° and a voltage of 3.3V.
For each one of the vectors, the cell was simulated using different input slopes and output loads. Totally
the circuit was characterized in all configurations of slopes and loads illustrated in Table 1.

Table 1: Input slope and output load used in characterization

Input Slope (ns)

Output Load (pF)

0,05
0,001 0

0,5 1

,005 0,02

2

0,08

0,16

To automate the characterization and generation of the simulation vectors, it was used a commercial tool
called Encounter Library Characterizer (ELC), thus creating a file in liberty format (.1ib) with the simulation

results.

D. Comparisons

To compare the simulation results, it was calculated the average of the sums of all the results in each
analysis. It was obtained a single value of transition, delay and power for each cell.
The same design process and transistor-level simulation was performed for the circuits composed by basic
cells. Thus generating concrete data for comparison of both methodologies (use of any complex gate and only
using basic cells). The results for all the logic functions are presented in the Table 2.
It can be observed that there is a reduction of more than 40 % on the number of transistors when using
complex cells. Also there is an average reduction of 21 % in delay. The dynamic power has an average a small
reduction of 1% but there is an important reduction of the leakage power by an average of 74%.

Table 2: Comparison of functions using basic cells or complex cells.

Basic Cells Complex Gate . Reduction .
) Reduction Reduction
Reduction of Average
Cell Average | Average Average| Average of Average | of Leakage

. Leakage X Leakage| of#(%) Dynamic
Delay | Dynamic # | Delay | Dynamic Delay (%) (%)

(nW) (nW) Power (%)

(ns) Power (W) (ns) Power (W)

AOI22 10 0,158 0,146 0,102 6 0,126 0,135 0,037 40,0 20,4 7,8 63,8
AOI23 12 0,125 0,118 0,104 8 0,103 0,112 0,041 33,3 17,6 5,2 61,0
AOI232 18 0,108 0,097 0,177 10 0,080 0,085 0,040 44,4 26,4 12,2 77,6
AOI2X22 16 0,128 0,116 0,172 8 0,093 0,105 0,038 50,0 27,7 9,1 77,8
AOI2X23 20 0,108 0,099 0,167 10 0,087 0,096 0,039 50,0 20,0 3,6 76,5
AOI2X233 | 26 0,083 0,074 0,246 14 0,064 0,073 0,042 46,2 22,8 2,2 82,8
AOI2X32 20 0,094 0,084 0,182 12 0,066 0,079 0,042 40,0 29,2 6,1 76,9
AOI2X323 | 28 0,075 0,067 0,251 16 0,060 0,070 0,043 42,9 19,2 -4,3 82,8
AOI2X33 22 0,085 0,077 0,176 14 0,065 0,076 0,040 36,4 24,0 1,6 77,1
AOI32 12 0,131 0,119 0,105 8 0,109 0,113 0,042 33,3 17,0 5,0 60,3
AOI323 20 0,095 0,087 0,171 12 0,074 0,085 0,040 40,0 22,8 1,6 76,8
AOI33 14 0,110 0,102 0,102 10 0,089 0,099 0,040 28,6 19,1 3,6 60,9
AOI3X23 26 0,094 0,085 0,242 12 0,073 0,081 0,039 53,8 22,1 4,3 83,8
AOI3X33 30 0,068 0,061 0,259 18 0,053 0,063 0,044 40,0 22,8 -3,9 83,1
OAI22 10 0,148 0,140 0,100 6 0,124 0,136 0,036 40,0 16,5 2,8 63,6
OAI23 12 0,114 0,108 0,104 8 0,097 0,109 0,040 33,3 15,2 -0,6 61,0
OAI232 18 0,105 0,096 0,178 10 0,080 0,093 0,040 44,4 23,6 3,2 77,4
OAI2X22 16 0,124 0,113 0,173 8 0,094 0,107 0,039 50,0 24,1 5,4 77,6
OAI2X23 20 0,101 0,092 0,168 10 0,081 0,093 0,041 50,0 19,6 -0,8 75,6
OAI2X233 | 26 0,081 0,072 0,247 14 0,064 0,076 0,042 46,2 20,3 -5,5 82,8
OAI2X32 20 0,091 0,083 0,182 12 0,072 0,083 0,042 40,0 20,6 0,2 77,0
OAI2X323 | 28 0,073 0,065 0,252 16 0,057 0,069 0,043 42,9 20,9 -6,9 82,9
OAI2X33 22 0,079 0,072 0,175 14 0,063 0,076 0,042 36,4 20,0 -6,2 76,3
OAI32 12 0,123 0,115 0,105 8 0,099 0,111 0,040 33,3 19,6 3,4 62,1
OAI323 20 0,089 0,081 0,171 12 0,072 0,084 0,041 40,0 19,9 -4,2 75,8
OAI33 14 0,100 0,094 0,103 10 0,081 0,096 0,041 28,6 18,7 -2,0 60,5
OAI3X23 26 0,090 0,080 0,242 12 0,069 0,080 0,042 53,8 23,3 0,2 82,7
OAI3X33 30 0,066 0,059 0,260 18 0,056 0,067 0,044 40,0 14,2 -15,0 83,2
Average Reduction (%) 41,4 21,0 1,0 74,3

30 SIM 2011 — 26" South Symposium on Microelectronics

4. Conclusions

From Table 2, it is possible to realize a significant reduction in the number of transistors used in the
development of complex gates compared to the same circuit function developed in basic cells, as a significant
improvement in static power dissipation in form of leakage, reaching an average of 74% of reduction in leakage
consumption.

The most important is that this reduction did not degrade the results of dynamic power dissipation and
delay. Contrary to expectations, the average reduction of these results turned out positive, that is, on average
there was improvement in the dynamic power dissipation and delay.

5. Future Works

As future work we intend to do an analogous work using technologies from 90 nm to 45nm. We expect
even better results when using state-of-art technologies where static power has an increased significance.

6. References

[1] Kim, N.S.; Austin, T.; Baauw, D.; Mudge, T.; Flautner, K.; Hu, J.S.;; Irwin, M.J.; Kandemir,
M.; Narayanan, V. “Leakage Current: Moore’s Law Meets Static Power”; In [IEEE Computer Society;
P. 68-75; Vol. 36, 2003.

[2] Jeong T. T. and Ambler P. A.; “Design Trade-Offs and Power Reduction Techniques for High
Performance Circuits and System”, In ICCSA 2006, pp. 531-536, vol. 3984.

[3] Borkar, S.; , “Design challenges of technology scaling”, Micro, IEEE , vol.19, no.4, pp.23-29, Jul-Aug
1999.

[4] Henzler, Stephan; “Introduction to Low-Power Digital Integrated Circuit Design - Power Management
of Digital Circuits in Deep Sub-Micron CMOS Technologies”; In: Springer Series in Advanced
Microelectronics, 2007, Volume 25, 1-21, DOI: 10.1007/1-4020-5081-X 1.

[5] International Roadmap for Semiconductors 2009.

[6] Reis, R. e Cols., “Concepcdo de Circuitos Integrados”, 2* Edig¢do. Série Livros Didaticos do
Instituto de Informatica, Editora Bookmann, Porto Alegre, 2009, 258 Paginas. ISBN
9788577803477.

[7]1 J. A. Butts and G. S. Sohi. “A static power model for architects”, In Proc. of the 33rd Annual Intl. Symp.
on Microarchitecture, 2000.

[8] Sutherland, I.; Sproull, B.; Harris, D. “Logical Effort: designing fast Cmos Circuits”, San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 1999.

[9] Zisesemer, A.; Lazzari, C., Reis, R., “Transistor Level Automatic Layout Generator for non-
Complementary CMOS Cells”, In: IFIP/CEDA VLSI-SoC2007, International Conference on Very Large
Scale Integration, Atlanta, USA, October 15-17, 2007. pp. 116-121, ISBN: 978-1-4244-1710-0.

SIM 2011 — 26" South Symposium on Microelectronics 31

Transistor Sizing Analysis of Regular Fabrics

'Felipe Marranghello, 'Vinicius Dal Bem, *Francesc Moll, 'André Reis, 'Renato Ribas
'{fsmarranghello,vdbem,andreis,rpribas } @inf.ufrgs.br
moll@eel.upc.es

'"PGMicro, UFRGS, Porto Alegre, Brazil.
2UPC, Barcelona, Spain

Abstract

This paper presents an extensive transistor sizing analysis for regular transistor fabrics. Several evaluation
methods have been exploited, such as ring oscillators and single-gate open chain structures. Different design
aspects are addressed taking into account stacked transistors and circuit critical paths. The performance
degradation of using regular fabrics in comparison to standard cells is expected, but it is quite important to
evaluate the dimension of such impact. The results were obtained for PTM 45nm CMOS parameters, and the
conclusions can be easily extended to other technology nodes and fabrication processes.

1. Introduction

Systematic process variations have become a major issue for integrated circuits manufacturing due to the
reduced dimensions associated to modern technologies, which are smaller than the wavelength used in
photolithography [1]. These variations result in discrepancies between the designed layout and the
manufactured product, leading to unpredictable behavior [2].

Resolution enhancement techniques (RET), such as phase shift mask and optical proximity correction can
be used to improve the layout quality for lithography processing [3][4]. However, these techniques are too
expensive to be used in huge VLSI design with many distinguished layout patterns. Thus, reducing the number
of allowed patterns is desirable.

Several techniques to improve lithography quality using regular layout have been studied and proposed in
the literature [5]-[7]. One methodology for the utilization of dummy features to improve regularity is presented
in [5]. The work of Smayling et al. [6] shows an approach to reduce variability on gates. None of these
purposes is completely regular. A fully regular layout technique is the via-configurable transistor array (VCTA)
fabric [7]. In this work, a regular transistor fabric (RTF) similar to VCTA is investigated.

Regular transistor fabrics are understood as matrixes of identically sized transistors forming a regular
structure. The main purpose of RTF approaches is to minimize systematic process variations. However, due to
the fixed and identical size of all transistors, it can lead to a significant circuit penalty in terms of performance
and area.

Transistor sizing plays an important role on circuit performance. Since logic gates can not be sized
individually when the RTF pattern is targeted, this task becomes even more critical than when addressing the
conventional standard cell design methodology. If the transistors width in the RTF arrays is too small, some
cells can present poor timing performance. On the other hand, if the transistors width is too large, the power
dissipation can become a critical drawback, while timing improvement can be limited due to the increased gate
capacitances.

This paper presents an extensive electrical analysis of RTF patterns. The focus is the transistor sizing
impact on signal delay propagation and power consumption characteristics. Area overhead is not addressed
herein and performance degradation due to local metal wiring parasites is considered a minor effect being
overlooked.

The paper is organized as follows. Section 2 presents the single gate sizing with special attention to
transistor stacks in NAND and NOR gates. Section 3 analyses the sizing impact on circuit critical paths. Section
4 presents a general analysis for RTF sizing, and Section 5 outlines the conclusions.

2. RTF Pattern Transistor Sizing

RTF is a regular layout style. Unlike usual standard cell design, it is not possible to perform sizing on each
cell individually. All transistors of the same type (PMOS and NMOS) have the same channel length and width.
Another difference is that all transistor gates are equally spaced.

This section discusses the impact of RTF patterns with different transistors widths on individual cells
performance. The electrical simulations were carried out taking into account the PTM 45nm CMOS process
parameters [9], where the minimum transistor channel length and width are 50 nm and 90 nm, respectively. The
power supply voltage applied was 1.1 V, at 25 Celsius degree as operating temperature. The logic gates
addressed in this analysis were the inverter, NAND and NOR gates, with 2- to 4-inputs.

32 SIM 2011 — 26" South Symposium on Microelectronics

2.1. Standard Cell Approach as Reference

Traditional standard cell design uses several layout compaction techniques to enhance performance. As
example, the source/drain areas that have no contact to metal wire can be made narrower (compacted). This
layout style leads to patterns that cannot be well processed during lithography in the most advanced technology
nodes [1]. Indeed, design for manufacturability (DFM) rules have been developed to restrict the layout design
patterns and improve the lithography quality [2]. A few DFM rules are followed in this work. All polysilicon
stripes are vertical only and equally spaced.

In this section, logic gates are individually sized as done in traditional standard cells. Values of delay and
power consumption are used as reference for the RTF sizing analysis.

The first cell taken into account was the inverter. The minimum ring oscillator period with fanout four was
adopted as performance metric. NMOS width (Wn) was arbitrarily kept constant at the minimum allowed
value, while the PMOS width (Wp) of all stages was increased until the maximum oscillation frequency was
achieved. The result yields a PMOS width equal to 1.6 times the NMOS width.

In the case of NAND and NOR gates, the sized inverter is used as reference. The goal is to achieve an
average performance similar to the inverter for both high-to-low (Td_hl) and low-to-high (Td lh) delay
propagations considering the worst case arch. The delays are measured considering the response of each cell
under different input transition times and loads.

To prevent the cells from having huge gate capacitance (Cin), it is limited to four times the one of the
reference inverter. It represents a hard constraint in this task. Table 1 shows the results, which are normalized in
relation to the inverter characteristics Wn, Td_hl and Cin. Certainly, there are other values that could be used
and may fit the established criteria, but it is impractical to consider all of them and often the differences are not
so significant.

Table 1: Normalized transistor sizing, delay propagation and input capacitances.

Cell Wn Wp Td_hl Td_lh Cin
INV 1.0 1.6 1.0 1.72 1.00
NAND2 1.9 1.8 1.0 1.80 1.42
NAND3 3.0 2.0 1.07 1.84 1.92
NAND4 43 2.2 1.10 1.95 2.50
NOR2 1.4 4.0 1.08 1.75 2.08
NOR3 1.8 6.2 1.20 1.98 3.08
NOR4 2.2 8.0 1.28 2.10 3.92

Even though there is no PMOS stack in NAND?2 gate, in such situation the PMOS transistors are larger
than the one in the inverter because the internal cell capacitances (drain/source areas) are increased due to the
larger NMOS present in the transistor network arrangement.

As the stack size increases, it becomes harder to equalize the delays. Furthermore, PMOS transistors are
less sensitive to width increase than NMOS transistors. Thus, the NOR4 gate is the most difficult cell to size
appropriately.

2.2. RTF Sizing for Basic Gates Design

As mentioned before, in the RTF approach all transistors of the same type (PMOS and NMOS) must have
the same channel width. Even though, wider transistors cab be obtained using folding at the cost of area. The
adoption of small sizing values tends to lead to poor timing performance of cells like NAND4 and NOR4. On
the other hand, large transistor width values can result to over sizing the smaller cells, increasing significantly
power consumption due to the increased parasitic capacitances related to the input transistor gate and
drain/source transistor regions.

In order to evaluate the impact of the transistor sizing definition in the RTF pattern, each cell has been
simulated taking into account the seven transistors widths pairs from Table 1, corresponding to the optimal
sizing of each gate evaluated (INV, NAND 2-4, NOR 2-4). Each pair is called here as a RTF configuration,
being RTF1 the one with Wn and Wp sizing of the inverter in Table 1, RTF2 corresponds to the transistors
width of NAND?2 in this table and so on.

Since the results strongly depend on the chosen transistor sizing values, three additional Wn and Wp pairs
were also considered in this analysis. They are:

e the NMOS width of NAND4 and the PMOS width of the NOR4, in Table 1, referred as ‘RTF_WC’

configuration;

e the average width values from Table 1, for each kind of transistor, referred as ‘RTF Avgl’

configuration;

e the average width values from Table 1, but excluding the worst cases NAND4 and NOR4 gates,

referred as ‘RTF_Avg2’ configuration.

SIM 2011 — 26" South Symposium on Microelectronics 33

The values obtained for the RTF_WC, RTF_Avgl and RTF_Avg2 configurations are shown in Table 2.
Values are normalized to Table 1. Widths are normalized to the inverter Wn. Cin is the input capacitance of an
inverter built with those widths, normalized in relation to the minimum one. The RTF_WC configuration is
expected to present the smaller delay propagation but the highest power consumption. RTF_Avgl and
RTF_Avg2 configurations may present a trade-off that compensates the utilization of small transistors on some
cells by over sizing transistors on other ones.

Table 2: Additional RTF templates (Wn and Wp) by considering some specific data from Table 1.

Wn Wp Cin
RTF_WC 43 8.0 4.73
RTF_Avgl 23 3.7 231
RTF_Avg2 1.8 3.1 1.88

Seven ring oscillators, each one designed with one of the cells targeted (INV, NAND 2-4, NOR 2-4) were
evaluated. All the RTF configurations defined before were simulated. Table 3 shows the measured period. The
values are normalized to the period obtained using the configuration of Table 1 for each specific cell under test.

As expected, the use of larger transistors does not guarantee a better result on delay propagation in the ring
structure (i.e., minimum oscillating period) due to the increase in input capacitances observed in each stage. For
instance, in the case that RTF3 or RTF4 templates are used to implement a NAND2 gate, the ring oscillator
period becomes higher than when using RTF2. Even when the period is minimized, the loss on power
consumption can significantly increase. For example, considering the inverter gate, if RTF7 template is adopted
the period is 13% smaller, but the input capacitance is almost four times higher.

Table 3: Normalized ring oscillator period for different logic gates designed in several RTF sizings.

INV NAND2 NAND3 NAND4 NOR2 NOR3 NOR4
RTF1 1.00 1.07 1.18 1.20 1.13 1.22 1.40
RTF2 0.97 1.00 1.03 1.04 1.15 1.30 1.50
RTF3 1.02 1.01 1.00 1.01 1.27 1.43 1.74
RTF4 1.08 1.05 1.01 1.00 1.40 1.63 1.99
RTF5 0.99 1.19 1.33 1.47 1.00 1.03 1.07
RTF6 1.01 1.26 1.41 1.60 0.99 1.00 1.02
RTF7 0.87 1.27 1.43 1.63 0.99 1.01 1.00
RTF_WC 0.87 1.02 1.08 1.18 0.96 1.22 1.07
RTF_AVG1 0.90 1.01 1.07 1.15 0.99 1.38 1.16
RTF_AVG2 0.92 1.03 1.11 1.19 1.00 1.65 1.16

3. Critical Path Analysis

So far, the evaluations were only performed on single logic gates. To have a better idea about the RTF
impact on circuit performance, six benchmark circuits were randomly created. The cell amount ranges from
seven in CKT1 to 50 in CKT6. Table 4 shows delays results normalized to the delay obtained when the cells
are individually sized using the values of Table 1. For simplicity, all cells have only one fanout and the load of
the circuit is four inverters of the given RTL configuration.

Table 4: Delay propagation in critical paths extracted from benchmarks, for different RTF sizings.

CKT1 CKT2 CKT3 CKT4 CKTS CKT6
StdCell 1.00 1.00 1.00 1.00 1.00 1.00
RTF1 1.83 1.72 1.29 1.35 1.28 1.16
RTF2 1.85 1.89 1.27 1.38 1.30 1.14
RTF3 2.05 2.12 1.37 1.52 1.42 1.23
RTF4 2.29 2.36 1.48 1.67 1.56 1.34
RTFS 1.70 1.57 1.20 1.24 1.19 1.11
RTFe6 1.72 1.56 1.22 1.25 1.21 1.13
RTF7 1.72 1.57 1.22 1.25 1.21 1.13
RTF_WC 1.55 1.54 1.10 1.17 1.10 1.00
RTF_AVG1 1.61 1.60 1.14 1.21 1.14 1.03
RTF_AVG2 1.63 1.60 1.15 1.22 1.15 1.05

As previously mentioned, RTF1 has all the gates with unitary capacitance. This leads to both small power
consumption and high delay propagation. Also, larger transistors do not guarantee a smaller delay.

RTF1 may be good if delay is not only the main concern. RTF2, RTF3 and RTF4 have higher delay and
higher capacitance than RTF1. RTFS5 is faster than RTF1, but it has higher capacitance. RTF_WC presented the

34 SIM 2011 — 26" South Symposium on Microelectronics

best delay results but with very high capacitance. RTF_Avgl and RTF_Avg2 show delay around 5% more than
using RTF_WC, but with almost half capacitance.

RTF Avgl and RTF_Avg2 have a good trade-off. RTF_Avg2 presents better results because when the
PMOS and NMOS sizes were chosen it was known that some cells would appear more times than others. Some
configurations demonstrated no advantages. It is also interesting to note that some configurations could reach
delay propagation near the one obtained using standard cell for some circuits.

4. General Analysis

Transistor sizing for regular fabrics is even a harder task than for traditional standard cells, because it is not
possible to consider the cells individually. Previous designs may be used to estimate cell utilization if they are
available. These gates are expected to have a significant impact on design performance. This way, transistor
width can be chosen considering which cells are expected to present a major impact.

Extracting critical paths from circuits and sizing the related gates to meet a given constraint is also an
option. It must be noticed that similar timing and power dissipation characteristics compared to standard cells
are unlikely to be achieved. Using the last approach it may not be needed to evaluate the cells individually.

5. Conclusions

This paper presented an extensive electrical analysis of regular transistor fabrics. The restriction on allowed
patterns in layout leads to better lithography yield, but there is degradation on performance. Adequate transistor
sizing plays an important role in minimizing the gap between RTF and traditional standard cells with DFM
rules. For this reason, several possible options for transistors widths are investigated as RTF sizing
configurations. Their impact on delay propagation and power dissipation was measured comparing with the
results from the standard cells. The analysis present in this work can be easily extrapolated to other technology
nodes and fabrication processes. An important advantage of regular layout in relation to traditional standard cell
design is variability reduction, not evaluated in this work. Integrated circuit designs must have a performance
margin to compensate such an unpredictable behavior. With regularity this margin can be minimized. Thus, the
performance loss due to layout restrictions may be compensated.

6. Acknowledgements

Research partially funded by Nangate Inc. under a Nangate/UFRGS research agreement, by CNPq and
CAPES Brazilian funding agencies, and by the European Community's Seventh Framework Programme under
grant 248538 - Synaptic.

7. References

[1] S. K. Springer, S. Lee, N. Lu, E. J. Nowak, J.-O. Plouchart, J. S. Wattsa, R. O. Williams, and N. Zamdmer,
“Modeling of variation in submicrometer CMOS ULSI technologies,” IEEE Trans. on Electron Devices,
vol. 53, no. 9, pp. 2168-2006, Sep. 2006.

[2] B. H. Calhoun, Y. Cao, X. Li, K. Mai, L. T. Pileggi, R. A. Rutenbar, and K. L. Shepard, “Digital circuit
design challenges and opportunities in the era of nanoscale CMOS,” IEE Proccedings, vol. 96, no. 2, pp.
343-365, Feb. 2008.

[3] M. Lavin, F. L. Heng, and G. Northrop, “Backend CAD flows for restrictive design rules,” Proc. of
ACM/IEEE Int’l Conf. Computer-Aided Design (ICCAD) , pp. 739-746, 2004.

[4]J. Wang, A. K. Wong, and E. Y. Lam, “Performance optimization for gridded layout standard cells,” Proc.
of SPIE 24th Annual BACUS Symp. Photomask Technology., W. Staud and J. T. Weed, Eds., 2004, vol.
5567, pp. 107-118.

[5] P. G. Drennan, M. L. Kniffin, and D. R. Locascio, "Implications of proximity effects for analog design,"
Proc. of IEEE Custom Integrated Circuits Conf. (CICC), pp. 169-176, 2006.

[6] M. C. Smayling, H.-Y. Liu, and Lynn Cai, "Low k; logic design using gridded design rules", Proc. of SPIE
6925, 2008.

[7] M. Pons, F. Moll, A. Rubio, J. Abella, X. Vera, and A. Gonzalez, “VCTA: a via-configurable transistor
array regular fabric,” Proc. of VLSI System on Chip Conference (VLSI-SoC), pp.335-340, 2010.

[8] F. Beeftink, P. Kudva, D. S. Kung, R. Puri, and L. Stock, “Combinatorial cell design for CMOS libraries,”
The VLSI Journal on Integration, vol. 29, no. 1, pp. 67-93, Mar. 2000.

[9] Y. Cao, T. Sato, M. Orshansky, D. Sylvester, and C. Hu, "New paradigm of predictive MOSFET and
interconnect modeling for early circuit simulation," Proc. of IEEE Custom Integrated Circuits Conf.
(CICC), pp. 201-204, 2000.

SIM 2011 — 26" South Symposium on Microelectronics 35

Computing Minimum Decision Chains of Boolean Functions

1Mayler G. A. Martins, ’Vinicius Callegaro, 2Renato P. Ribas, 12 André 1. Reis
{mgamartins,vcallegaro,rpribas,andreis } @inf.ufrgs.br

'PGMicro, UFRGS, Porto Alegre, Brazil
’PPGC, UFRGS, Porto Alegre, Brazil

Abstract

Every Boolean function has a unique property called Minimum Decision Chain (MDC). This paper
proposes an effective way to compute this property for arbitrary functions. The proposed method is very
efficient when compared to a more direct and intuitive approach, that is used as the reference for performance
analysis. Different examples have been evaluated, and the results are discussed. The proposed method is able
to compute the MDC value in order of milliseconds, allowing the use of MDC computation to guide logic
synthesis algorithms.

1. Introduction

Logic synthesis is a well-established research field that has direct impact in the quality of digital circuit
design [1]. Logic synthesis methods may rely on the exploitation of Boolean functions properties that include
positive and negative unateness, binateness and symmetry between variables [1]. One example of this is the
unate recursive paradigm used in Espresso [2] to decompose functions recursively, leading to easy-to-solve
operations on unate sub-functions. Other examples are methods to compute efficiently read-once formulas
(equations where each variable appears at most once [3][4]). Advanced logic synthesis methods use Boolean
function properties to guide the algorithms. As a consequence, fast methods to compute Boolean function
properties are needed to allow the use of these properties in the logic synthesis flow.

There are sum-of-products (SOP) minimizers like Espresso-signature [5] that use the concepts of non-
redundant minimal implicants (introduced by Perkowski et al. [6]) to avoid the explicit computation of all
prime implicants. According to McGeer et al. [5], “the work of Perkowski et al. did not receive due attention,
possibly because the only algorithm given was that of enumerating all minterms, generating the primes for
each, forming the cube of their intersection, and casting out the cubes that are singly contained in any one
other”. This is a clear case where an important Boolean function property had its use avoided in practice due to
the lack of an efficient algorithm to compute it.

This paper discusses the computation of ‘minimum decision chains’ (MDC). The MDC of a logic function
is related to the number of transistors in series in switch networks that implement the logic function. Schneider
et al. [7][8] have presented a method to compute MDCs, based on a modification of the Quine-McCluskey
algorithm [9], referred herein as QMC-MDC. Marques et al. [10] have used QMC-MDC algorithm as a
criterion to evaluate the feasibility of complex gates in a library-free technology mapping approach. However,
the execution time of QMC-MDC algorithm was the main drawback. Hence, the need for a method for fast
MDC computation is a challenge. This paper presents a novel and execution time efficient method to compute
MDC:s. The proposed method is based on functional composition [11].

2. Minimum Decision Chains

A prime implicant of an arbitrary function f can be viewed as a variable assignment such that the output of
the function is true and if any variable is unassigned the value of f is undetermined. The minimum decision
chain (MDC) of a Boolean function expresses the largest (worst case) number of variable assignments (i.e.,
number of literals in a prime implicant) necessary to cover a minterm of the function. As example consider the
function given by Equation (1).

f=abd+abctadetacd+bcde (1)

From this equation, four variables (b=1, c=1, d=0 and e=1) are assigned to cover both minterm 13 (i.e.,
[abcde]=[01101]) and minterm 29 (i.e., [abede]=[11101]). However, minterm 13 can be covered by assigning
just three variables (a=0, d=0 and e=1) as the minterms 1 (i.e., [00001]), 5 (i.e., [00101]) and 9 (i.e., [01001])
also belong to the on-set of f. In the same way, to cover minterm 29 is necessary to assign only three variables
(a=1, b=1 and c=1). As a consequence, f can be rewritten as Equation (2), where prime implicants have at most
3 literals each. This way, the largest (worst case) number of variable assignments (i.e. number of literals in a
prime implicant) necessary to cover a minterm of the function f'is 3, and thus the MDC is also 3, instead of 4.

f=Zz-5-3+a-b-(_:+a-;1-;+a-c-d+a-21-e+a-b-c 2)

36 SIM 2011 — 26" South Symposium on Microelectronics

The MDC of a function f is related to the minimum worst case number of series switches required to
implement a switch network for the function f. If the MDC is K, then the function requires at least K switches
(transistors) in series to be implemented. Additionally, the existence of a solution with at most K series
switches is guaranteed. Notice that there is a MDC value for the on-set (i.e., for the minterms) and another
value for the off-set (i.e., for the maxterms).

3. FC-MDC Procedure

FC-MDC computes MDCs by functional composition. It is based on a top-down implicant generation
paradigm, as used in BOOM [12], in contrast to Quine-McCluskey method, where the implicants are generated
bottom-up. Thus instead of increasing the dimensionality of implicants by omitting literals from their terms, the
dimension of a term is gradually decreased by adding new literals. The FC-MDC method is based on truth
tables that can be represented as integers or BDDs. In this paper, Boolean functions are represented as integers,
while logic operations are performed quite fast by using bitwise operations of the processor ALU.

The Functional Composition for MDC computation is illustrated in Figure 1. It is the association of 1-
literal element in 1-lit bucket with N-1 elements, creating so the N-lit buckets by only using bitwise AND
operation. This process provides the product terms (smaller bucket [11]) that compose the function in SOP
form. Thus, the generation of the N-literal bucket can be expressed by Equation (3).

B,=(B B,)n=2 3)

2} 3

w { } {
EEEEE
Figure 1 — Functional Composition for MDC computation.

The main idea of the proposed algorithm is depicted in Fig. 2, taking as an example the computation of the
on-set MDC for the target function given by f=a-c+b-c+a-b-d . The first step is to check if the target function
is constant. In this case the algorithm returns the result as zero. The algorithm starts by filling the 1-literal
bucket and only the literals with the right polarity are created, reducing the computation time. Then the 1-literal
functions are multiplied (i.e., through bitwise logic AND) to create 2-literal functions, then 3-literal functions,
and so on. When a smaller function is found, it is added (i.e., through bitwise logic OR) to an accumulated
smaller function, which is in fact a sum-of-products. A smaller function can be used in a sum-of-products of the
target function. It is possible to discover if the newly created functions are smaller than the target function by
using bitwise logical operations. The product (bitwise logic AND) of a smaller function sf with the (known)
target function results again in the smaller function sf.

ACC.SMALLER ACC.SMALLER ACC. SMALLER

ac + be + acd + abd

N~
(" LARGER) LARGER) (~ LARGER
s I SR Y S|

a a ac y ab ab acd
d N d
c b ad bd © abd
" SMALLER) ¢ SMALLER) (SMALLER
be abd
ac acd
1-lit 2-lit 3-lit

Figure 2 — Illustration of the on-set MDC computation for the function f=q-c+b-c+a-b-d-

The MDC is found when the accumulated smaller function is equal to the target function. In this case, the
(on-set) MDC is the number of literals of the current bucket being processed. In the example illustrated in Fig.
2, the on-set MDC is three, as the accumulated ‘smaller’ became equal to the target function in the 3-literal
bucket. As an additional feature, the algorithm can be modified to terminate when the MDC value of the
function being computed exceeds a certain threshold limit established by the user. In this case, the exact value
of the MDC does not matter, as it is considered unfeasible. This way, the algorithm can be aborted before

SIM 2011 — 26" South Symposium on Microelectronics 37

finishing the process if the MDC of the function exceeds the largest value considered feasible by the user,
avoiding unnecessary computation of an unfeasible MDC value. Notice that the use of this threshold value is
only possible due to the way implicants are computed in FC-MDC, i.e. instead of increasing the dimensionality
of implicants by omitting literals from their terms [9], the dimension of a term is gradually decreased by adding
new literals [12]. This feature is not possible in the QMC-MDC procedure, due to the bottom up computation of
primes.

3. Experimental Results

Experiments have been carried out to evaluate the efficiency of the proposed FC-MDC method to compute
MDCs (compared to QMC-MDC [7][8]). The algorithms have been developed in C++ programming language,
and test platform used was a Core2Duo 2.4 GHz with 4 GB RAM.

First of all, the QMC-MDC and FC-MDC algorithms were run over different sets of functions. The NPN
(i.e., input Negation — input Permutation — output Negation) representative functions of 4-input and 5-input
variables, which contain 221 and 616,125 distinct functions, respectively [13]. A third target set used in the
analysis is the library 44-6.genlib distributed in the SIS package [14]. It contains 3,503 functions with
maximum four series/parallel transistors in the conventional static CMOS design style.

The average on-set MDC value obtained with these sets of functions and the execution times are shown in
Table 1 for both addressed methods: QMC-MDC and FC-MDC.

Tablel - Total execution time of on-set MDC computation.

Function Set #Functions Average MDC QMC-MDC FC-MDC
4-NPN 221 3.46 34 ms 9 ms
5-NPN 616,125 4.67 92s 104.3 s

44-6.genlib 3,503 3.87 >4 h 59s

The main reason for the best performance of the FC-MDC algorithm is associated to the fact that it does
not need to fill many buckets when the MDC value is small. Notice that the cases where the MDC is small
represent the functions of the most interest in digital design, as they correspond to feasible switch networks
(and logic gates) with a small number of stacked transistors [1]. The QMC-MDC was observed to be too slow
for computing the MDC of functions in the 44-6.genlib set because the set contains functions with up to 16
inputs where it is quite expensive to compute all the prime implicant terms.

It is very interesting to exploit the property of limitation provided by the FC-MDC, stopping the
computation after a certain maximum MDC threshold determined by user. Table 2 shows the number of
functions with a MDC value smaller or equal to a user defined threshold and the execution time necessary to
compute it. FC-MDC considers the pre-defined MDC threshold to stop computation if the MDC of the function
is larger than the limit established by the user.

Table 2 - MDC computation of 5-NPN through FC method, using pre-defined limit value.

MDC (pre-defined) # Functions Time to process all 5-NPN
1 1 8.7s
2 9 21.3s
3 3,444 447 s
4 318,327 90.2s
5 294,344 104.3 s

In the second phase of experiments, the behavior of QMC-MDC and FC-MDC were evaluated for specific
functions, with special attention to the worst cases obtained with the FC-MDC method that are the best cases of
QMC-MDC method. These cases happen when the functions have minterms that cannot be associated to
produce larger cubes. AND and exclusive-OR (XOR) functions are examples of this. AND has single minterm,
while XOR has many minterms that cannot be associated into larger implicant cubes.

Experiments were performed to investigate the corner cases of FC-MDC method against QMC-MDC,
computing the MDC of AND and XOR functions, from 2 to up to 8§ inputs, considering two situations: (a) full
computation, and (b) using the pre-defined threshold limit of MDC equal to 4, that is the industry practical rule
of thumb for the maximum transistor stack in digital CMOS integrated circuits.

Fig. 3a and Fig. 3b provide useful information about the two methods and are shown in log scale to better
visualization. In Figure 3a, for AND function evaluation, the QMC method presents almost constant results,
because all functions have always one prime implicant minterm. The FC method, in turn, presents an
exponential time increasing. However, there is a run time reduction of circa 50% in the ANDS when exploiting
the pre-defined limit parameter. In this case, the method is aborted and a limit overflow result is returned.

In the XOR function analysis, the execution time presented too in Figure 3b, the QMC based method
presents an exponential run time increasing because the number of minterms is doubled for each XOR, by
augmenting the number of input variables. On the other hand, the FC based method presents a more severe
increasing than in the AND experiments.

38 SIM 2011 — 26" South Symposium on Microelectronics

__ 015 __ 100
w w a
é 0’1 I é 10 - I
()]) 1
= | =
0 @ FC(limit) 0,01 - @ FC(limit)
a4 H& H » 1T X o L
Q Q Q Q M Q- Qo NS Q- M
SN Ny mame © O © e maMe
Functions Functions
(@) (b)

Figure 3 — MDC computation of AND (a) and XOR (b) with 2 to 8 inputs.

4. Conclusions

This paper proposed an efficient method to compute minimum decision chains (MDC) of logic functions.
The method is based on functional composition [11] and it is referred as FC-MDC. The FC-MDC method was
compared to QMC-MDC method [7][8], which is a slightly modified version of the well-known Quine-
McCluskey algorithm [9]. The QMC-MDC method presents some limitations related to the number of prime
implicants of the functions, as it has to compute nearly all prime implicants, making it quite computing
expensive in some cases. The FC-MDC method is faster in most cases, especially in the cases of CMOS design
interest, i.e., logic functions with MDC smaller than 5.

5. Acknowledgements

Research partially funded by Nangate Inc. under a Nangate/UFRGS research agreement, by CNPq and
CAPES Brazilian funding agencies, and by the European Community's Seventh Framework Programme under
grant 248538 - Synaptic.

6. References

[1] L. T. Wang, Y. W. Chang, and K. T. Cheng, Electronic Design Automation: Synthesis, Verification and Test.
Morgan Kaufmann, 2009.

[2] R. Brayton, G. Hachtel, C. McMullen, and A. Sangiovanni-Vincentelli, Logic Minimization Algorithms for VLSI
Synthesis, Kluwer Academic Publishers, 1984.

[3] M. C. Golumbic, A. Mintz, and U. Rotics, “Factoring and recognition of read-once functions using cographs and
normality,” Proc. of Design Automation Conference (DAC), pp. 109-114, 2001.

[4] M. C. Golumbic, A. Mintz, and U. Rotics, “An improvement on the complexity of factoring read-once Boolean
functions,” Discrete Applied Mathematics, vol. 156, no. 10, May 2008.

[5] P.C. McGeer, et al. “ESPRESSO-SIGNATURE: a new exact minimizer for logic functions,” IEEE Trans. on VLSI,
vol.1, no.4, pp.432-440, Dec 1993.

[6] L. Nguyen, M. Perkowski, and N. Goldstein, “Palmini - fast Boolean minimizer for personal computers,” Proc. of
Design Automation Conference (DAC), pp. 615-621, 1987.

[7] F. R. Schneider, R. P. Ribas, S. Sapatnekar, and A. 1. Reis, “Exact lower bound for the number of switches in series
to implement a combinational logic cell," Int’l Conf. on Computer Design (ICCD), pp. 357- 362, 2005.

[8] F. R. Schneider, A. 1. Reis, and R. P. Ribas, “CMOS logic gates based on the minimum theoretical number of
transistor in series,” Norchip 2006, pp.85-88.

[9] E. J. McCluskey, “Minimization of Boolean functions,” The Bell System Tech. Journal, vol.35, no.5, Nov.1956.

[10] F.S. Marques, L. S. Rosa Jr., R. P. Ribas, S. S. Sapatnekar, and A. 1. Reis, “DAG based library-free technology
mapping,” Proc. of GLSVLSI, pp. 293-298, 2007.

[11] M. G. A. Martins, L. S. Rosa Jr., A. B. R. Rasmussen, R. P. Ribas, and A. I. Reis, “Boolean factoring with multiple
objective goals,” Int’] Conf. on Computer Design (ICCD), pp. 229-234, 2010.

[12] J. Hlavicka and P. Fiser, “BOOM - a heuristic Boolean minimizer,” Proc. of ACM/IEEE Int’l Conf. Computer-
Aided Design (ICCAD), pp. 439-442, 2001.

[13] V.P.Correia, A. L. Reis, “Classitying n-input Boolean functions,” Iberchip 2001, pp. 58-66.

[14] E. M. Sentovich, et al. “SIS: a system for sequential circuit synthesis,” Technical Report UCB/ERL M92/41, UC
Berkeley, 1992.

SIM 2011 — 26" South Symposium on Microelectronics

39

Video Coding 1

40

SIM 2011 — 26" South Symposium on Microelectronics

SIM 2011 — 26" South Symposium on Microelectronics 41

Multiprocessing Acceleration of H.264/AVC Motion Estimation Full
Search Algorithm under CUDA Architecture

Eduarda R. Monteiro, Bruno B. Vizzotto, Claudio M. Diniz, Bruno Zatt, Sergio
Bampi
{ermonteiro, bbvizzotto, cmdiniz, bzatt, bampi}(@inf.ufrgs.br
Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil

Abstract

This work presents a parallel GPU-based solution for the Motion Estimation (ME) process in a video
encoding system. We propose a way to partition the steps of Full Search block matching algorithm in the
CUDA architecture, and to compare the performance with a theoretical model and two implementations
(sequential and parallel using OpenMP library). We obtained a O(n*/log*n) speed-up which fits the theoretical
model considering different search areas. It represents up to 600x gain compared to the serial implementation,
and 66x compared to the parallel OpenMP implementation.

1. Introduction

In the past decade, the demand for high quality digital video applications has brought the attention of
industry and academy to drive the development of advanced video coding techniques and standards. It results in
the publication of H.264/AVC [1], the state-of-the-art video coding standard, since it provides higher coding
efficiency compared to previous standards (MPEG-2, MPEG-4, H.263). In order to achieve higher coding
efficiency, the standard introduces increased computational complexity to implement the encoder and decoder.

In this scenario, Motion Estimation (ME) [2] is a key issue in order to obtain high compression gains. It
explores the temporal redundancy of a video by searching at reference frames the most similar region in the
current frame. When the best ‘match’ occurs, a motion vector is calculated. It provides the most part of
compression gains for H.264/AVC. ME algorithm and associated similarity criteria to determine the best
‘match’ is an important encoder issue not addressed in H.264/AVC. It requires intensive computation and
memory communication for block matching task representing 80% of the total computational complexity of
current video coders [3].

However, some block matching algorithms for ME have a great potential of parallelism. Full-search (FS)
[1] is one of these algorithms, which performs the search for the best match exhaustively inside a search area.
The best match is achieved by calculating the similarity for each block position inside the search area, using a
similarity criterion, e.g. Sum of Absolute Differences (SAD). One can observe that the calculation of SAD for
one block does not depend on the calculation of the previous block. So these two steps could be calculated
simultaneously, in parallel.

By exploring the inherent parallelism potential of ME FS algorithm and the huge computational capacity of
recent Graphic Processing Units (GPUs), this work presents a parallel GPU-based solution for the FS block
matching algorithm implemented on Compute Unified Device Architecture (CUDA), from NVIDIA [4]. We
present here how we efficiently mapped the FS algorithm to the CUDA programming model. Further, the
obtained results from the execution of FS implementation with real videos were compared with a serial and
parallel OpenMP implementation. We also made a comparison with a theoretical complexity model in terms of
computation and communication.

2. Motion Estimation

The main goal of ME is to find in the previously reconstructed frames (reference frames) a block that more
closely resembles the block of the current frame, thus reducing the temporal redundancy between frames to be
transmitted. The displacements are mapped to motion vectors and associated residue. From one or more
reference frames, a motion vector is generated for each block of the current frame and the corresponding block
position with highest similarity to the reference frame.

The optimum search to “match” the blocks is carried through exhaustively in a search area using a search
algorithm and a similarity criterion. The search area is a region in the reference frame formed around the co-
located position of the block to be coded, in the current frame. By the end of the search, the optimum block, i.e.
the most similar block using the similarity criterion, is located and a motion vector is generated which indicates
the position of this block in the reference picture. This process is better described in Fig. 1.

42 SIM 2011 — 26" South Symposium on Microelectronics

Current Block

Search

Area

O ‘iginal

Reference Frame

Frame

current blcck in the
referenc:: frame

Fig. 1 - Optimum Motion Estimation Algorithm Diagram

3. Proposed Implementation

In this work, we used the FS block matching algorithm for ME. Among the existing search algorithms for
ME this algorithm has the highest computational cost and its main objective is to finds the optimum block of
the current picture by matching all possible positions (sample by sample) of the search area. In such a way, it
can be said that this exhaustive algorithm is capable to generate excellent motion vectors. The similarity
criterion used in this work is SAD. Its equation is shown in (1).

n-1n-1

SAD(R,0) =) Y IRG.j) ~ 0G.)] ()

j=0 i=0

In (1), w is the width and /4 is the height of both the candidate and the current block, R is a candidate block
in the reference frame and O is the current (original) block. The candidate block that presents the lowest SAD
value is the best block to represent the current block in the reference frame. The position (x,y) of the best
candidate block is represented as a motion vector.

Our hardware system target is formed by CPU and GPU. CPU manipulates video to separate the original
and reference frames, and feeds the GPU, as shown in Fig. 2. The FS algorithm is divided into two steps: 1)
SAD of all candidate blocks inside a search area; ii) the comparison to find the best match (lower SAD).

Video: CIF, QCIF, HD720p, HD1080p

Frame Separation: Reference and Original

CPU

GPU

SAD Values Calculation

transferred —|
tovideo |

memory
SAD comparison
step 2

Fig. 2 - Proposed Algorithm Flow

stepl

Our target GPU is from NVIDIA which supports CUDA programming. CUDA architecture was proposed
by NVIDIA in 2007 [4] with the objective to exploit the high degree of inherent parallelism to their graphical
devices. The great computational power offered by this type of technology has made of this architecture a great
prominence in diverse areas, in special in the scientific community. Considering the processing hierarchy of
CUDA architecture for software implementation we partition our algorithm as shown in Fig. 3. A set of threads
(basic processing unit) is organized in blocks, which are elements of a grid. In our work, ME algorithm
mapping for GPU is composed by a kernel (procedure to be executed in GPU) where the grid and the block
sizes are defined by the video resolution and the search area, respectively. Each thread computes a 4x4 video
block.

SIM 2011 — 26" South Symposium on Microelectronics 43

Device (GPU)

Kernel Block (0,0) B Block (0,1) Block (0,2) B Block (0,3) B Block (0,4) M Block (0,5)

e

Video Threads 4x4 Video
Frame Block Search Area

Size (nxn)

Fig. 3 - CUDA Programming Model — Algorithm Allocation

4. Results

Tests were performed for three video resolutions (CIF, HD720p and HD1080p) comparing the CUDA
implementation running on an NVIDIA GTX 480 @ 1.40GHz (480 functional units) to both serial and parallel
OpenMP implementation running on a Core 2 Quad Q9550 @ 2.82GHz. Two frames of each of the following
video sequences were used: (i) CIF: Foreman, Flower and Bus; (i) HD720p: Mobcal; (iii) HD1080p: BlueSky.

Results obtained with CIF resolution video shows that the serial implementation is in accordance with the
theoretical model. The experimental data fitting is approximately 40n? for n ranging from 12 to 128, where n*n
are the number of pixels inside a search area as shown in Fig. 4. Speed-up results were also consistent with the
theoretical model O(n?/log?n) considering different search areas, as shown in Fig. 5. The obtained speed-up
represents up to 600x gain compared to the serial software implementation, and 66x compared to the parallel
OpenMP software implementation (which generates at most 4 threads in parallel in the quadcore processor).
The high speed-up gains achieved were due to the high thread parallelism provided by GPU (compared with
OpenMP and serial implementations) combined with the absence of data dependence between blocks in the FS
algorithm.

80000C
70000C
60D00C
Ef 50000C
P 400000
§ 30000C
20000C
10U00C
a = — = — = —
12 16 20 24 Ep) 36 A3 64 8C | 1:8
—e—0(40%n’) S760 10243 | 16000| 23040 (40960 | 5.840|92160 1638402 56000655360,
—m—MEL FS Scrigl £140 10796 | 1665623828 (42000 | 53093 | 94046 (168453262 2656699384
ML FS OpenMP| 880 | 1300 | 2290 | 2970 | 5C20 | 6180 | 1019017580 (28350|72500
i MF FS CLIDA 597 | 698 | 702 | 710 | 726 | 735 | 7£8 | 798 | 850 | 1114

SearchArea{pixel) [n*n]

Fig. 4 - Theoretical model (in blue) versus obtained results for CIF videos

Moreover, the time of communication between GPU and CPU was also considered. Fig. 6 present the total
time of execution for Full-HD 1080p resolution in relation to the time of communication between the devices
(CPU-GPU). The total execution time was measured using a timer function from cutil.h C/C++ library. The
timer is initialized before the GPU kernel call and finalized after the execution is completed. The
communication time uses a timer function from ctimeh C/C++ library. When data is
transferred between CPU to GPU the counter is initialized, and likewise for GPU to CPU transfer. It can be
noted in Fig. 6 that the time of communication for manipulation of the data between CPU and GPU (and vice-
versa) is worthless compared with total time execution.

44 SIM 2011 — 26" South Symposium on Microelectronics

[l

Time {ms)

(=]
q |‘
i

=
rJ
[
=]
)
Q

24 32 36 48 64 80 1258

Search Area{pixel) [n*n]

Fig. 5 - Theoretical speed-up (in red) versus obtained speed-up with CUDA (in blue) for different search
area

—0
— —

==@=="Total
e=fl=Comm

Time (ms)

{1
Search Area (pixel) [n*n]

Fig. 6 — Total Execution Time x Communication Time for FullHD 1080p resolution

s. Conclusions

In this paper, we demonstrate that the use of GPU is a good alternative for acceleration of video coding,
more specifically the ME. Although we use the FS exhaustive algorithm, the execution in GPU revealed fast
compared to serial and OpenMP implementations, as well as to the behavior of the theoretical model previously
calculated. Future works could focus on better exploration of data sharing from CPU to GPU, memory
hierarchy inside GPU and also the implementation of sub-optimal search algorithms.

6. References

[1] BHASKARAN, V.; KONSTANTINIDES, K. Image and Video Compression Standards: Algorithms and
Architectures. 2nd ed. Boston: Kluwer Academic Publishers, 1999.

[2] ITU-T Recommendation H.264 (03/10): advanced video coding for generic audiovisual services, 2010.

[3] HUANG, Y-W; et. al. Survey on Block Matching Motion Estimation Algorithms and Architectures with
New Results. J. VLSI Signal Process. Syst. 42, 3 (March 2006), pp. 297-320.

[4] CHENG, Y., CHEN, Z. and CHANG, P., “An H.264 Spatio-Temporal Hierarchical Fast Motion
Estimation Algorithm for High-Definition Video”, IEEE International Symposium on Circuits and
Systems, ISCAS, pp. 880-883, 2009.

[5] NVIDIA, Corp. Available at: http://www.nvidia.com

SIM 2011 — 26" South Symposium on Microelectronics 45

Synthesis and Comparison of Low-Power Architectures for
SAD Calculation

Fabio Walter, Sergio Bampi
{flwalter,bampi} @inf.ufrgs.br

PGMICRO - Universidade Federal do Rio Grande do Sul (UFRGS)
Porto Alegre, RS, Brasil

Abstract

This paper presents the standard-cells synthesis and comparison of parallel hardware architectures for the
Sum of Absolute Differences (SAD) datapath, focusing on different design points such as the tradeoff between
high-performance and low-power dissipation (isoperformance target). Multi-VDD, multi-VT and different
combination of parallelism and pipeline architectural techniques were explored in this work. In order to
generate the results, we used the IBM 65nm standard-cells library with typical voltage of 1 V and 1.2 V, and the
back-end Cadence tools, e.g. Power Analysis, for the power measurements. We achieved significant power
reduction for the architectures with low-frequency and high parallelism, with High-VT and mainly with only one
pipeline stage and small power source.

Index Terms — Low-power, isoperformance, Sum of Absolute Differences (SAD), Multi-VDD, Multi-VT.
1. INTRODUCTION

Video coding is essential to support a range of multimedia applications, from mobile video streaming to
high resolution digital television broadcasting. The number of portable, battery-operated devices supporting
video coding is extremely large and this is a constantly growing market. H.264/AVC, the state-of-the-art video
coding standard [1], introduced a significant compression gain compared to older standards, at the cost of a huge
computational complexity. Motion estimation is the most time consuming task on H.264/AVC video encoding
process, due to the search of a region in the reference video frame that better matches the region in the video
frame to be encoded. Matching process is measured in an objective way using a distortion metric. The Sum of
absolute differences (SAD) is the most used distortion metric used in motion estimation, targeting both low to
high resolution applications, e.g. Full-HD 1920x1080 pixels.

To achieve high throughput and also to deal with real-time, low power, and high resolution application
requirements, many application-specific VLSI designs for the motion estimation and, more specifically, for the
SAD calculation were proposed [2]-[7]. Chen et al. [3] presented a H.264/AVC encoder chip for 720p resolution
employing 1024 SAD processing units (PE) which use 305k gates (33% of total encoder gate count). Vanne et
al. [4] proposed a new SAD processing unit and first included a comparison of various SAD processing units in
terms on area and delay. Yufei et al. [5] presented the implementation of SAD architecture with 1- and 2-stage
pipeline using 4-2 adder compressors. However, the works in [3]-[5] presented some alternatives to SAD
architectures in terms of gate count and delay optimization, but the aspects of power and energy consumption
focusing on battery operated devices were not addressed. The work in [6] presents a variable block size full-
search motion estimation architecture which employs a 32-parallel SAD tree with 387.2k gates (79% of the total
gate count) and the power consumption is showed, but no exploration of different design points was performed.
The work in [2] presented some different design points and presented power and energy measurements, but the
architectures were not designed focusing on low-power, already the work in [7] present the same different design
points, but now focus in low-power and a different measurement technique.

In this work, an extensive comparison was conducted to obtain the best architecture in terms of low-power
and isoperformance, i.e. the lowest energy consumption maintaining the throughput of the architecture. It is done
with an IBM standard cell logic library in 65nm [8] . The alternatives were implemented, synthesized and
compared in terms of power, throughput, maximum clock frequency and source power. This comparative
analysis is essential to guide ongoing video encoder hardware designs to meet power and energy requirements, at
given performance, targeting battery operated devices that implement video coding algorithms.

The paper is organized as follows. Section II introduces some basic concepts of SAD algorithm and the
hardware architectures used in this work. Section III presents the synthesis results of SAD architecture
alternatives focusing on low-power. Some comparisons with related works are showed in Section IV followed by
the conclusions in Section V.

46 SIM 2011 — 26" South Symposium on Microelectronics

2. SAD Algorithm and Hardware Architecture

SAD calculation is performed for motion estimation (inter-prediction) and intra-prediction. It is calculated
for each macroblock, i.e. 16x16 partition of a video frame, using the information of the macroblock from the
current (original) frame of raw video and the predicted macroblock in one of the many candidate modes provided
by H.264/AVC. SAD operation is shown in (1).

m—-1n-1

SAD = Z lel,] - Oi,jl

i=0 j=0

In (1), P is one of the candidate predicted macroblocks; O is the original macroblock; m and n are the
dimensions of the macroblock in samples. For inter-prediction, SAD is usually implemented using a deep-
pipeline strategy to improve the throughput. However, another strategy is the exploration of parallelism in the
SAD architecture, designing well balanced pipeline stages and analyzing the requirements of each prediction
(intra/inter) as well as performance and hardware usage goals. Because of that, it is important to explore multiple
design points of SAD architectures. In [2], some different SAD architecture solutions with different parallelism
(4,8 and 16 8- bit input samples) and pipeline stages (1, 3, 5 and 6) were presented, as shown in Figure 1. ,
Figure 2. and Figure 3. In the work [7] this analysis was extended by synthesizing the architectures using low-
power techniques and performed a comparison focusing on power dissipation and the tradeoff between those two
results (which we called isoperformance). In this work we complemented the work in [7] to a new technology
(65 nm). This is presented in the next section.

= = = All versions

— — = 3stage and 5-stage

= == bh.stage
Orig{0)
Pred(0) |
Orig(1) 1
Pred(1) i - abs | |L’—‘I oull
origi) 1! i Tt SAD
1
preaty 1 = [H1% [L]
1 1 +
. 1 18 _ L

Orig{3j i
Pred(3) 0 ab?'l

Fig. 1. Pipelines in a SAD with 4 input samples.

= = = Allvaisions

origy L] = = = 3stage and 6.stage

Prad(s) | I ’ |
Onigf1) —. X

= = = fG.stage

Dlad[l)Tb | | .

Orig@) abs I |

....... \ 1

Predit) = | | |

Orig()) = _ abs Iq_‘ | |

Pred(y) 4> ~ | I d i N 1 SAD
Origl#) 4 _

Orig(0) 1 1 - == All versions
pmm»

orig(t) 1 1 |
Pred(1)

Orig(2) '

Qrig(3)

Pred(3) i

Qrig(4)

Pred(4)

Orig(5)

Pred(5) | |
Orig(6) 1]
orign) 1 |
Pred(7)

Orig(8)

Pred(8)

Qrig(9)

Pred(9)

Orig(10)
pmm
Orig(11)

Pred(11) | |
Orig(12) 1 1

= = = 3stage and 6-stage

= = = b-stage

Onig(3) L :‘_I_rvl_l
Pred(s) —b» ~

mg[p),_. ST orig(13) 1 I |
Pred(s) J-J ﬂ j—‘, P'Bdl”?
Ori mA‘\ I ;I Orig(14)

Pred(T) _._[—"' Pred(14)
°"““’”
Pred(15)

Fig. 2. Pipelines in a SAD with 8 input samples.
Fig. 3. Plpehnes in a SAD with 16 input samples.

I
|
» abs : ! 1
Pred(t) —4»_~ »{—\ \ |
|
|
I

3. Synthesis Results and Analysis

For each SAD architectural option presented in the previous section, some iterations of synthesis flow (from
front-end to back-end Post-Route step) were performed. The synthesis of each solution was generated with some
frequencies to reach the design points to minimum isoperformance. The fast frequency solution, in which mostly
low-VT and large cells were used, achieved a larger power dissipation. In the slow frequency solution, slow cells
were used, which achieved high-VT cells, small area and power dissipation. The synthesis flow used in this work
is composed by a front-end step (logical synthesis, using Cadence RC Compiler), and a back-end step (until
Post-Route step, using Cadence Encounter). After back-end, Design Rule Checking (DRC) and Logical
Equivalence Checking (LEC) were applied to verify geometry and connectivity, respectively. Power dissipation
results were generated using Cadence Power Analysis©.

However, to achieve a low power budget for real-time video encoding applications, it is not required to
design the maximum throughput solution, but the lowest power solution which fits the minimum required
throughput (in macroblocks per second), e.g. to encode a Full-HD 1080p resolution (1920x1080 pixels) in real-
time (at 30 frames per second) it is required to process 244,800 macroblocks per second. Considering that a

SIM 2011 — 26" South Symposium on Microelectronics 47

macroblock in H.264/AVC contains 256 luminance samples (16x16 block), we need to process 62 million
samples per second in average to encode 1080p HD video in real-time. For this reason, we synthesized each
architecture option previously developed in VHDL with a different synthesis goal: the logic synthesis targeted
the lowest frequency which respect the required throughput for 1080p encoding in real-time. Then, we
performed a comparative analysis in terms of energy per operation (Joules per macroblock), which is the ratio
between power and throughput. Table 1 shows the results of frequency and power dissipation for each one of the
architectures developed in this work which achieved minimum performance to process 256 million samples per
second, defined herein as isoperformance.

Tab. 1 — Isoperformance Measurement with Multi-VDD in 65nm

SAD Architecture Source Power Frequency Total Power Energy per
Input Samples | Pipeline Stages V) (MHz) (nWW) Operation
(pJ/MB)
4 1 0.90 66 108.00 103.68
4 3 0.90 66 152.40 146.30
4 5 0.90 66 223.70 214.75
8 1 0.90 33 98.19 94.26
8 3 0.90 33 145.30 139.49
8 6 0.90 33 208.90 200.54
16 1 0.90 16 89.03 85.47
16 3 0.90 16 127.20 122.11
16 6 0.90 16 192.70 184.99
4 1 1.08 66 148.60 142.66
4 3 1.08 66 210.50 202.08
4 5 1.08 66 307.40 295.10
8 1 1.08 33 138.60 133.06
8 3 1.08 33 197.00 189.12
8 6 1.08 33 303.40 291.26
16 1 1.08 16 124.10 119.14
16 3 1.08 16 174.90 167.90
16 6 1.08 16 277.70 266.59

For the synthesis performed targeting minimum isoperformance, with power source smaller reduce
proporcionally in square the total power. Likewise, with less pipeline stages the power consumption is reduced
(for example, in the 16 input samples and 0.90 Volts, passing from 1-stage to 6-stage pipeline adds in 116% the
power consumption). It is because with more pipeline stages is used more flip-flops, that has a big power
consume. In addition to that, using a system with more parallelism and less frequency, the total power is lower,
because with the double parallelism increment, the frequency decrease in a half to maintain the isoperformance,
and this frequency is proporcional with the power consumption. Already, the double parallelism increase power
consumption, but less than the power saved for a half frequency.

4. Comparisons to Related Works

Considering our minimum required isoperformance solutions, this work has sufficient information to
compare to the works in [2], [6] and [7], as shown in Table 2. The work in [6] consume 36256 times more
energy per operation than our design for minimum required performance. With the paper [2], our work is 81 %
smaller in energy per operation and compare with the paper [7], it is 91% smaller. This reduction in the energy
per operation in compare with the papers [2] and [7] is because our work use a smaller power source, what
reduce in almost 70% the power consume and the other points to power consume reduction is because of the new
technology (65nm), being responsible for the reduction in 71% in compare with the paper [7], that use the same
measurement techniques.

48 SIM 2011 — 26" South Symposium on Microelectronics

Tab.2 - Comparison Of Our Minimum Isoperformance Solution With Related Works

CMOS Input Pipeline Power Throughput | Energy per
Technology Samples Stages Source (MB/s) Operation (
(Volts) Joule/MB)
[2] TSMC 8 1 n. a. 3.12E+ 06 46E-10
0.18um
[6] TSMC 16 n. a. n. a. 14 E+05 3.1 E-06
0.18um
[7] TSMC 0.18 16 1 1.62 1.25E+07 9.82E-10
um
This work IBM 65nm 16 1 0.90 1.25E+07 8.55E-11

5. Conclusions

This work presents many vantages in energy per operation having the same functionality of the work in [7],
but consuming 91% less power. It is because the technology (65 nm) that consumes much less power and accept
to use smaller voltages. Also the use of Multi-VT reduces the leakage current, which have a higher contribution
related with older technologies. Besides that, the use of parallelism and pipeline stages could reduce the power
consumption. Therefore, new technologies help to reduce the power consumption in a much more significant
percentage, being used in future development join with others techniques to reduce the power consumption.

6. References

[1] ITU-T Recommendation H.264/AVC (03/10): advanced video coding for generic audiovisual services,
2010.

[2] C. Diniz, G. Corréa, A. Susin and S. Bampi. “Comparative Analysis of Parallel SAD Calculation
Hardware Architectures for H.264/AVC Video Coding”, IEEE LASCAS, 2010. pp. 132-135

[3] T. C. Chen, et al., “Analysis and Architecture Design of an HDTV720p 30 Frames/s H.264/AVC
Encoder”, IEEE TCSVT, v. 16, n. 6, Jun. 2006, pp. 673-688.

[4] J. Vanne, et al., “A High-Performance Sum of Absolute Difference Implementation for Motion
Estimation”, IEEE TCSVT, v. 16, n. 7, Jul. 2006, pp. 876-883.

[5] L. Yufei, et al., “A High-Performance Low Cost SAD Architecture for Video Coding”. IEEE TCE, v. 53,
n. 2, May 2007. pp. 535-541.

[6] Z. Liu, et al., “32-Parallel SAD Tree Hardwired Engine for Variable Block Size Motion Estimation in
HDTYV 1080P Real-Time Encoding Application”, IEEE SiPS, 2007, pp. 675-680.

[71 F. Walter, C. Diniz and S. Bampi. “Synthesis and Comparison of Low-Power High-Throughput
Architectures for SAD Calculation “, IEEE LASCAS, 2011.

[8] SiWare™ High-Density Tapless Standard Cell Logic Library for Common Platform 65nm LPe LowK
Standard VT Process, Release A1, march 2009.

SIM 2011 — 26" South Symposium on Microelectronics 49

A Real Time HDTYV Motion Estimation Architecture for the New
MPDS Algorithm

!Gustavo Sanchez, 1Diego Noble, 2Marcelo Porto, 2Sergio Bampi, "L uciano
Agostini
{gfsanchez,dvnoble,agostini} @inf.ufpel.edu.br, {msporto,bampi}@inf.ufrgs.br

'Federal University of Pelotas — UFPEL
?Federal University of Rio Grande do Sul - UFRGS

Abstract

This paper presents the architectural design for Motion Estimation (ME) based on the new Multi-Point
Diamond Search (MPDS) block matching algorithm. This algorithm reduces the local minima falls in the ME
search process, increasing the quality of the ME prediction results. This paper presents a software evaluation
about the MPDS which presented an average PSNR gain of 3.57dB and a maximum PSNR gain of 7.86dB when
compared with the well known Diamond Search algorithm. The designed architecture was synthesized to an
Altera Stratix 4 FPGA and, in the worst case scenario, this architecture is able to process HD 1080p videos in
real time at 30 frames per second.

1. Introduction

Motion Estimation (ME) presents the highest computational complexity among all steps of the current
standards for video coding, contributing with more than 80% of the encoder complexity [1]. The ME searches,
in the previously processed frames, for the best similarity with the current frame region that is being encoded
and generates a motion vector indicating this position. The Full Search (FS) algorithm reaches the optimal
results, since it explores all possibilities for a given search window. This implies in a very high computational
cost, especially for high resolution videos. Based on this fact, it is important to explore new solutions which
bring a good tradeoff between objective quality (PSNR) and complexity.

There are many fast algorithms and techniques which handle this complexity at different levels of
impact in objective quality (PSNR). Generally these algorithms exploit the characteristic of locality among
temporal correlated blocks and achieve good results in terms of numbers of calculations. However, the majority
of these algorithms have a weak point which is the increase in local minima falls with the increase of the video
resolutions. This causes the generation of motion vectors with perceivable quality losses when compared to FS.

In the H.264/AVC standard [2], the current most efficient video coding standard, there is no restriction
about how the block matching is done in the ME process, so there is a lot of space to explore new ideas.

In this paper, we propose a new fast ME algorithm targeting high resolution videos. This algorithm is
able to reduce the local minima falls, increasing the quality of the processed ME named Multi-Point Diamond
Search (MPDS) and its hardware design targeting real time HDTV (HD 1080p) encoding.

The MPDS algorithm was evaluated in software using ten HD 1080p video sequences. The results
showed an average gain of 3.57 dB in PSNR in comparison with the original Diamond Search (DS) algorithm.
The MPDS also reaches a very lower number of calculations than that required for FS when the same quality is
considered. The designed MPDS architecture is able to process HD 1080p videos at 30 frames per second when
synthesized for an Altera Stratix 4 FPGA.

The rest of this paper is organized as follow: section 2 introduces the MDPS algorithm; section 3 shows
the MPDS architecture; section 4 presents a comparison with related works; section 5 renders the conclusions
and the future works.

2. MPDS Algorithm

The MPDS algorithm uses the search engine of the well known Diamond Search (DS) algorithm [3]. For
higher video resolution, higher is the probability of the DS chooses local minima. Then, as higher is the video
resolution as higher is the losses of DS when compared to FS. The MPDS algorithm was meant to be resilient
to local minima because it starts the search for the best matching in five different and independent positions of
the same search area. The search is done at the center of the search window (as the original DS) and at four
more positions. Each position, except the central one, is inside of a sector (1, 2, 3 and 4), as presented in Fig.
1(a).

As MPDS algorithm uses the search engine of the DS algorithm, it starts doing the Large Diamond Search
Pattern (LDSP) until the best match be found in the center of the LDSP diamond, so the Small Diamond Search
Pattern (SDSP) is applied to obtain the final refinement [3]. However, the MPDS is not restricted to the central
start point, exactly to avoid the same local minimum which the DS would reach.

50 SIM 2011 — 26" South Symposium on Microelectronics

The distance parameter d defines the sector (1, 2, 3 and 4) where each instance (A, B, C and D) of the other
four DS will start the search. The d parameter is determined by the number of pixels in X and Y axis from the
central point (0,0). The sectors A, B, C and D start searching at positions (d,d), (-d,d), (-d,-d) and (d,-d)
respectively. When the search ends for all evaluated regions, the MPDS algorithm selects the best result from
the five applied diamonds. Fig. 1(b) shows the curves of PSNR for the MPDS algorithm with 4x4 blocks in the
ten HD 1080p tested video sequences [4], considering the variation of the d parameter. The error was computed
as the difference between the reference frame and the motion compensated frame.

- i

PSNR
43 Spae s> = =
Sector 2 Sector 1 w2 L - e

(-d,d)@l B -o‘(d'd) g
1

— o ‘
, :
gL

N

w
@

~e-blue_sky ~=—man_in_car
pedestrian <riverbed

—+=rush_hour station2
sunflower tomatoes

traffic tractor

Sector 3 Sector 4 01 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 z‘a

d distance
(a)

(b)
Figure 1. (a) MPDS Sectors (b) PSNR curves for the MPDS algorithm with variation of d parameter, d = 0 means original DS

The curves in Fig. 1(b) show an important quality gain, in comparison with original DS (d=0). The
software evaluation that generated these results used blocks with 4x4 samples, because a higher number of
vectors would be generated and, consequently, the effect of the multi-point search would be more precise and
concise.

Through the analyses of the d parameter variation, presented in Fig. 1(b), it was possible to define the
optimal distance for the average case. Considering the results for the ten HD 1080p video sequences, the best
distance for d parameter is 15, in the average case. It means that the MPDS presents an average gain of 3.57dB
in comparison with the original DS, using d=15 for this set of video samples.

This algorithm was developed focusing on the quality of the results generated by the ME process. The
inherent parallelism of the MPDS algorithm is a very important characteristic that can be explored in hardware
implementations to achieve real-time when processing HD videos.

3. Designed Architecture

The designed architecture for MPDS algorithm was described in VHDL and synthesized to an Altera Stratix
4 FPGA [4]. This architecture works with 16x16 blocks, and uses 4:1 pixels sub-sampling. In this
configuration, the average PSNR gain in comparison with DS algorithm, is about 1,5dB. As the MPDS needs to
process the DS in five different sectors, an architecture was developed to perform the usual DS algorithm and it
was used to implement the MPDS algorithm.

The ME core architecture performs a normal DS with block size of 16x16 sub sampled 4:1 and its block
diagram is presented in Fig. 2. In the beginning, the core is idle, and waits until the input data is ready (when
the flag start is set). The architecture must fill the Reference Memory and Current Memory in advance to start
the search process. These memories are fed by data from an external memory, which contains the original
frame (without compression) and the reference area. The reference data is divided in 13 local memories, and
each local memory contains the information that is necessary for each processing unit (PU). The processing
units are responsible for the calculation of the Sum of Absolute Differences (SAD) between the current block
and each reference block.

The local memories are numbered from 1 to 9 (MEM 1 to MEM 9, respectively in Fig. 2) and they contain
the data used for SAD calculation for the LDSP. Memories from A to D (MEM A to MEM D, respectively in
Fig. 2) contain the data that will be used for the refinement, i.e., for the SDSP. This hierarchical structure of
internal memories were designed intending to increase the architecture performance, since all PUs can process
their LDSP or SDSP calculations in parallel, receiving the necessary data from the Current Memory and the
data of each reference region stored in Local Memories. During the time that the PUs are being used to
calculate one LDSP, the Reference Memory will communicate with external memory to get the new samples
which will be necessary in the next LDSP calculation. In this case, the Reference Memory will store the
reference areas for the eight possible options of the new DS step: four LDSP starting from a vertex and four
LDSP starting from an edge. The decision of which area will be used depends on where the current LDSP will
find the lowest SAD. If the current LDSP finds the lowest SAD in the center, then the SDSP is calculated, since
the data necessary was previously stored in memories.

When all local memories are filled, the data is dispatched to the PUs where the SAD calculation is
performed. The proposed architecture uses nine PUs (as illustrated in Fig. 2), one for each position of the

SIM 2011 — 26" South Symposium on Microelectronics 51

LDSP. Then, one LDSP can be completely processed in parallel. To reduce the hardware consumption, four of
these nine PUs are also used to calculate the SDSP.

External Memory 1

Current ‘

‘ Reference Memory ‘ ‘ Memory

2 2 2 v v v 2

[[T T e [e T s T e [o [e [o [e [e [|

P 1 Yo Y——s
U

[& | & |

[[pu1] [[pe2] [e] [[pus] [pus | [pus | [Pz] [pus] [P]

[Comoa\brator]

A (2
Position Controller.] [Position Controller SDSP
T Motion Vector SAD

Figure 2. Block diagram of the designed architecture.

Each PU is able to calculate the SAD of a complete 16x16 sub sampled 4:1 block in parallel. The PU was
designed in a pipeline of five stages and it is basically an adder tree to calculate the SAD.

The comparator sends the best block to the Position Controller in Fig. 2 which is responsible to update the
new position of this block, since this is necessary to generate the motion vector. This process is repeated until
the best SAD is found in the center of the LDSP (PU 5). In this moment, the SDSP is triggered and the Position
Controller SDSP in Fig. 2 will generate the final integer motion vector for this block in this DS core.

Fig. 3 presents the block diagram of the MPDS architecture. At the beginning the MPDS starts to fill the
CORE C with lines from reference frame and lines from current frame, as soon as CORE C is completely filled,
the architecture continue to fill the next core while the CORE C receives the signal to start the search. This
process is repeated until the CORE 4 is filled. The architecture starts this process again but this time it is
necessary to check if each core is in an idle state. If the first case occurs, that core is filled with new data to
perform next iteration. Otherwise, the control jumps to the next core. This process stops when every core have
ended the ME (the end flag is set), or when the iteration limit is reached.

E
X
T
E c
R W
2 P SAD
L A
R
A
M N
E o
M R MV
o
R
Y

Figure 3. Block diagram of the MPDS architecture.

The total iterations of LDSP is limited up to 25 iterations (an average of 5 iterations per DS core). When all
cores of the MPDS conclude the DS (including the SDSP), the best match of each core must be compared. This
means that the block with the lowest SAD among the five cores must be selected as the best matching of
MPDS. The comparator in Fig. 3 is responsible for this.

4. Results and Discussions

The MPDS architecture was described in VHDL and synthesized for the EP4S40G2F4012 Altera Stratix 4
device [4]. The synthesis results of the MPDS and the core DS architecture are presented in the Table 1. The
high number of registers and memory bits in the complete architecture and the frequency degradation compared
to the core were already expected since the MPDS architecture uses 5 cores and also has a control system.

The processing rates achieved by the MPDS architecture considering the worst case are also presented in
Table 1. The MPDS designed architecture is able to process HD 1080p videos in real time. In fact, the MPDS
architecture can reach real time for HD with a lower operational frequency, it can be an excellent option for
power saving for an ASIC synthesis.

52 SIM 2011 — 26" South Symposium on Microelectronics

TABLE 1. SYNTHESIS RESULTS AND PROCESSING RATES OF THE MDPS ARCHITECTURE

Maximum ALUTs Registers Memory Bits HD 1080p FPS
Frequency
DS Core 237,7 MHz 6472 (3%) 9024 (5%) 3200 (<1%) 166
MPDS 222,52 MHz 32453 (15%) | 44648 (25%) 16000 (<1%) 44

5. Related Works and Comparisons

The ME is a very active research area inside video coding community. However, most of the works that
present new algorithms usually does not present a technological study on the viability of their solution. So,
there are not many works that could be fairly compared with our work.

The work [5] performs the Quarter Sub-Sampled Diamond Search with Dynamic Iteration Control (QSDS-
DIC) as the search algorithm. That architecture is a DS with a dynamic iteration control and a 4:1 pixel sub-
sampling rate. The block size and the similarity criteria are the same of that used in our work and the average
number of iterations is 20 per motion vector with a dynamic iteration control to better explore the available
iterations. However, our work presents best quality results when compared to [5], since our work uses a more
sophisticated block matching algorithm. On the other hand, our solution consumes more hardware resources.
The work [6] performs the Large Diamond Parallel Search (LDPS), which is another sub-optimal algorithm,
with 16x16 blocks. This algorithm is very simple, and its quality results tend to be lower than the DS algorithm,
due it implements only a part of the whole DS algorithm. The quality results are not presents in [6], so the fair
comparison is not possible.

Table 2 presents a comparison among this work and the works [5] and [6]. Even using different FPGA
families, it was possible to conclude that our solution uses much more hardware resources. However, our
architecture has a better compression quality when compared to both works [5] and [6]. Comparing to both
works ([5] and [6]), this work is better in terms of quality because the MDPS algorithm was developed with the
goal to reduce the probability of the search falls in local minima, which is normally a weak point of sub-
optimal algorithms. Our solution has similar performance of the architecture presented in [S]. The architecture
presented in [6] has higher performance. However a fair comparison must be done with the DS core of our
architecture. In this case, our DS architecture has also higher performance than [6].

TABLE 2. COMPARISON WITH RELATED WORKS

Criteria MDPS Porto, 2009 [5] Kthiri, 2009 [6]
Algorithm MPDS QSDS-DIC LDSP
FPGA Family Stratix IV Virtex-4 Stratix II
Memory bits 16,000 2,048 10,976
Frequency (MHz) 230,26 213.3 100
Performance (HD 1080pFPS) 44 (worst case) 45(worst case) 143(average case)

6. Conclusions and Future Works

This paper presented a ME architecture with the new MPDS search algorithm. The MPDS was proposed to
be resilient to local minima, an effect more evident on high definition videos. The designed architecture was
described in VHDL and synthesized to a Stratix IV FPGA. The synthesis result shows that the designed
architecture is able to process HD 1080p videos in real time.

As future works, we intend to optimize the memory organization to increase the performance and to reduce
the hardware cost.

7. References

[1] Cheng, Y., Chen, Z. and Chang, P., “An H.264 Spatio- Temporal Hierarchical Fast Motion Estimation
Algorithm for High-Definition Video”, IEEE ISCAS 2009, pp. 880-883, 2009.

[2] JVT Editors (T. Wiegand, et al), Draft ITU-T Recommentadion and final draft international standard of
joint video specification (ITU-T Rec.H.264 [ISO/IEC 14496-10 AVC), JVT-G050r1, Geneva, May 2003.

[3] J. Tham, et al, “A Novel Unrestricted Center-Biased Diamond Search Algorithm for Block Motion
Estimation”, IEEE Transactions on Circuits and Systems for Video Technology, 1998.

[4] Altera Corporation. “Altera: The Programmable Solutions Company”. Available at: www.altera.com.

[5] M. Porto, et al. “Motion Estimation Architecture Using Efficient Adder-Compressors for HDTV Video
Coding”, JICS, 2009

[6] M. Kthiri, et al. “Hardware Implementation of fast block matchin(% algorithm in FGPA for H.264/AVC”,
International Multi-Conference on Systems, Signals & Devices, 2009.

SIM 2011 — 26" South Symposium on Microelectronics 53

Multilevel Data Reuse Scheme for Off-Chip Memory Accesses
Reduction Applied to a Motion Estimation Architecture

"Mateus Grellert, “Felipe Sampaio, 'Julio C. B. Mattos, 'Luciano Agostini
{mgdsilva,fmsampaio,julius,agostini } @inf.ufpel.br

'Federal University of Pelotas — UFPel
’Federal University of Rio Grande do Sul - UFRGS

Abstract

Motion Estimation (ME) in video coding is a vital component that excels not only in computational
complexity, but on-chip memory bandwidth as well. These two issues are considered critical constraints in
terms of High Definition (HD) video coding, since a large number of data must be processed. The multilevel
data reuse scheme proposed in this paper is able to reduce the off-chip memory bandwidth, with direct impact
in throughput and energy consumption. This scheme explores the concept of overlapped Search Windows (SW)
in more than one level and poses no harm to video quality. Comparisons with related works show that this
solution provides the best tradeoff between the use of on-chip memory and reduction of the off-chip memory
bandwidth. The data reuse scheme was applied in a ME architecture and the synthesis results show that this
solution presented the lowest use of hardware resources and the highest operation frequency among related
works. The proposed architecture is able to process 1080p videos at 25 fps, and the reduction ratio of off-chip
memory access achieved by the architecture is greater than 95% when compared to the traditional method.

1. Introduction

Motion estimation is an important component of video coding systems, representing a significant factor in
the overall performance of an encoder, as well as in image quality and bit rate. The performance of ME is
dictated by many varying factors, including block matching algorithm, search window (SW) size and number of
supported reference frames. When the Full Search Block Matching Algorithm (FSBMA) is considered,
computational complexity and off-chip memory bandwidth cause hard restrictions, especially if a large SW is
scanned. Though computational complexity can be diminished by exploiting the inherent parallelism of
FSBMA, memory bandwidth remains an issue that affects not only throughput, but also energy consumption.

Traditionally, the process of video coding involves two memory units: one to store a current frame and
another one to keep reference frames, i.c., frames that were previously processed and reconstructed to be used
as references for the next coding steps. The latter memory, particularly, is accessed many times during this
process, making solutions that aim to reduce accesses to this memory imperative to achieve real time
processing and to reduce the encoder energy consumption. The reference frame memory bandwidth is so
limited that the latest standardization effort for video coding, called HEVC (High Efficiency Video Coding) [1],
is considering to define an additional compression path dedicated only to compress the reconstructed frames
before storing them in the memory.

This paper presents a scheme for multilevel data reuse for the ME process. A VLSI design for the ME with
this data reuse scheme is also presented. The ME architecture processes multiple reference frames (MRF-ME)
and it is compliant with the H.264/AVC standard [6]. The MRF-ME supports four reference frames, a SW of
19x19 samples and a block size of 4x4 samples. The architecture presents a memory bandwidth reduction ratio
of 95.73% when compared to the traditional method, i.e., accessing every single sample from the off-chip
memory. This work considers a comparison in two aspects: (1) the designed architecture with related works;
and (2) the proposed multilevel scheme with other reuse schemes.

This paper is organized as follows: section II explains the proposed data reuse scheme; section I1I describes
the designed architecture; section IV presents synthesis results and comparisons with related works; finally,
section V closes this paper with conclusions and future works.

2. Multilevel Data Reuse

The enormous amount of memory accesses required to process ME for high resolution videos is a critical
constraint in an encoder performance, since memory bandwidth is a limited resource. Furthermore, memory
access increases the energy consumed by an architecture, aggravating the scenario for embedded devices.
Therefore, solutions that aim to reduce the number of memory accesses are essential to increase the efficiency
of video coding systems. Therefore, this work proposes a scheme that applies reuse strategies in two levels of
memory hierarchy: local cache and local buffer. On local buffer level, data redundancy involving the SW
among four neighboring current blocks is exploited. By doing so, the bandwidth between local cache and the
local buffer is reduced. On local cache level, the same strategy is used with a higher granularity, considering
groups of four current blocks as a single unit. This last solution drastically decreases the bandwidth between the

54 SIM 2011 — 26" South Symposium on Microelectronics

off-chip memory and the local cache. Therefore, this multilevel solution is able to reduce the bandwidth of oft-
chip and on-chip memories, with positive impact in throughput and in energy consumption.

2.3. Local Cache Level Data Reuse

In order to achieve a high level of data reuse, a local memory that works as a cache is required. This cache
stores the entire SW area for sixteen blocks, which brings an impact on hardware consumption, but, at the same
time, greatly reduces off-chip memory bandwidth. Furthermore, this local cache may work as a pre-fetch unit,
anticipating samples that will be accessed while the ME core works with the samples already available.

The replacement strategy for this cache is illustrated on fig. 1(a). Initially the cache must be filled with an
entire SW area from off-chip memory to process the first group of blocks (GoB(0)). One GoB is a group of data
from the reference frame that is necessary to process a number (in this case, four) of candidate blocks. While
GoB(0) is processed by the ME the additional information for GoB(1) to GoB(3) is loaded from the off-chip
memory. When GoB(0) was processed, then the values that will not be used anymore are replaced by the new
data that will be necessary to process the GoB(4). In this case, only % of the data necessary for GoB(4) must be
loaded from off-chip memory, since the other % are already stored in the cache and they will be reused. The
data that will be discarded is that data from GoB(0) that will not be used anymore for any other GoB. This
process is repeated for all GoBs.

T] |
! SWorN_ _ _ _ _ SWon_ ____ 1sw()
: : SW(0,1,2,3) -:
1 1 1
GoB(0) | GoB(1) : o1 :
1 SW 1 SW
1 0,2) 1 2] 3 1(1.3)
1 1 1
————————————— b ———— - 1 1
1 1 1
GoB(2) I GoB(3) T a--
1 SWE2)I SW(2,3) 1SW(3)

(a) (b)
Fig. 1 - Different levels of data reuse: local cache (a) and local buffer (b).

2.4. Local Buffer Level Data Reuse

The scheme proposed in this paper also uses the concept of overlapped SW among neighboring blocks, but
it is used on a lower level, to reduce the bandwidth of the local cache. This requires local buffer that stores all
samples required to process a number of blocks of size NxN in parallel, and this number has direct impact on
both, buffer size and reduction ratio. It is also important to emphasize that the architecture of this buffer, as well
as access reduction, depends on which block matching algorithm is applied.

A considerable amount of data is accessed more than once from the cache during ME, on account of
common SW among processed blocks. With that in mind, the local buffer stores the SW samples related to four
current blocks instead of one. The reuse implemented in this level is very important to reduce bandwidth with
the local cache, since accesses to this cache also represent unwanted power consumption. Fig. 1(b) illustrates
the overlapped SW area among four neighboring blocks (0-3).

2.5. Bandwidth and Size calculation

Given the specifications of both, local cache and local buffer, it is possible to define equations to model the
size and bandwidth (BW) of both memory levels. Tab. 1 displays these equations, considering a parallelism of
four blocks, where SR,, and SR, are the search ranges vertically and horizontally; N is the horizontal or vertical
dimension of the block and W and H are the width and the height of the frame.

To exemplify, if a SW with 64x64 samples and blocks with 8§x8 samples are considered, 5.4 Mbytes are
accessed from the external memory to the local cache to process a single 1080p frame. On the other hand, the
bandwidth between the cache and the buffer to process this frame is 40 Mbytes. The traditional method of
accessing every sample from the off-chip memory demands a bandwidth of 126.56 Mbytes. Therefore, the
proposed local cache causes a reduction of 95.73% on the accesses to the off-chip memory. Additionally, the
data reuse explored by the local buffer can reduce in 68.4% the number of accesses to the local cache memory.

Tab. 1 - Bandwidth and Size Calculations

Reuse Level Size (Bytes) BWitame(Bytes)
W+ H
Cache (SR, + 3N) = (SR, + 3N) 4*N « (SRy + 3N)
W+ H
Buffer (SR, + 2N — 1) = (2N) 4_;‘[2* (SRv + N)?

SIM 2011 — 26" South Symposium on Microelectronics 55

3. MRF-ME Architecture with Multilevel Data Reuse

The multilevel data reuse scheme was coupled to a MRF-ME architecture proposed in [7]. The MRF-ME
architecture was described in VHDL, and its specifications are: four 4x4 current blocks processed in parallel
and FSBMA with a SW of /9x19 samples and four reference frames, each one sequentially processed.
Regarding block matching algorithms, FSBMA offers two useful features: it is highly parallelizable and the SW
of neighboring blocks have large overlapped areas, which is useful to implement data reuse methods.

The high level memory hierarchy that implements the data reuse consists basically of three modules: (1) a
Local Buffer, which stores all samples needed to process four neighboring current blocks in parallel; (2) a Local
Cache, which communicates with the off-chip memory and stores the SW of sixteen neighboring current
blocks; and (3) a Control Unit, which generates memory addresses that must be accessed and triggers the MRF-
ME core. An overall view of the complete architecture is shown on fig. 2.

The local buffer works as a circular register file and it stores all samples required to process four current
blocks in parallel. Since the architecture processes 4x4 blocks, the buffer contains eight register lines.
Additionally, given that a SW with 7/9x/9 samples is adopted, each line is formed by 23 8-bit registers. This
component is controlled respecting three steps: (1) initial charge, where the buffer is completely filled; (2)
rolling, where all columns are cyclic-left-shifted; and (3) new charge, where a new line from the local cache is
loaded. Each line takes one cycle to be filled, requiring a large bus with the local cache, but memory bandwidth
is greatly reduced, since local buffer level data reuse is applied.

The local cache stores all SW data for sixteen current blocks. According to definition, the memory design
must store the amount of 31x31 samples. In order to permit the access and the writing of more than one word
size, the local cache was designed as a set of smaller memories (called partitions).

Each partition represents a memory with 32 lines (5 bit-addressed) with a word size of 8*8 bits, storing 8
samples of the SW. This memory structure is useful to replace the unnecessary information of the previous data
by the next SW offset in the local cache. Since RAM memory bits costs less than registers, using a larger
memory to apply data reuse may represent an efficient and low cost approach.

SWRef.0 Control Unit start_ME
Off- SW Ref. 1
chip
SW Ref. 2
Mem. °
SWRef. 3
Local Local MRE-ME
Cache Buffer Core

Fig. 2 - Overall view of the developed architechture.

The local cache works with the local buffer, so it must be designed accordingly. Thus, the input/output of
this memory have a bit width of 23 bytes. Data reuse and replacement are managed via address calculation. As
consequence, the output must be eventually reordered. To do that, a multiplexer was added between the output
and the local buffer. Since the MRF-ME supports four reference frames, the local cache consists of four
identical memories, each one for one reference frame. Therefore, it is natural to conclude that the overload in
area consumption is defined by how many reference frames are targeted.

4. Results and Discussions

There are two comparative approaches possible on this topic: architectural results and reuse scheme
efficiency. Both approaches are explored in this section, starting with a reuse scheme evaluation.

Tab. 2 - Bandwidth and Size Calculations

. . SRv = SRh = 256, 2 Ref. SRv = SRh = 256, 2 Ref. SRv = SRh = 256, 4 Ref.
Specifications
Frames Frames Frames
Work Scheme C+[2] This Work Scheme D [2] This Work | Scheme C [3] This work
On-Chip
Memory(Kbytes) 198.76 185.42 812.48 185.42 20.99 121.25
Bandwidth(Mbytes/sec) 332 250.49 74.4 250.49 364.28 290.04
Additional Processor NO NO NO NO YES NO
and Memory

In [2], a data reuse scheme entitled Level C+ is applied. This scheme was used as a model for that adopted
in our work, but our multilevel data reuse solution is able to reach better results than that work, as is possible to
notice in tab. 2. The authors also present a solution called Level D scheme. In this case, our work presents a
larger bandwidth, but with a very smaller on-chip memory. Chen [3] proposes a frame-level rescheduling
method, which consists of calculating every possible match within a reference frame to a number of current
macroblocks. This strategy can greatly reduce on-chip memory size, but to achieve frame-level rescheduling,

56 SIM 2011 — 26" South Symposium on Microelectronics

partial results must be processed in an additional RISC processor and stored in an additional external memory.
This will consume not only chip area, but bandwidth as well, so those results are unclear and the comparison
unfair. An important conclusion about the results presented in tab. 2 is that our solution presents the best trade-
off among off-chip memory bandwidth reduction, on-chip memory utilization and use of extra hardware
components. This is a good metric to evaluate the performance of different works and, accordingly with this
metric, our work presents the best results.

In addition to reuse schemes evaluation, architectures that employ these schemes can be compared. Tab. 3
displays this comparison, where gate count and frequency were obtained with Leonardo Spectrum, using TSMC
0.18 technology [8]. When HD resolution is targeted, on-chip memory can consume a large amount of
hardware, so Level D reuse scheme may not be worth the bandwidth reduction it achieves. For this reason, this
work is based on Level C+ scheme, which is a balanced solution between efficiency and hardware
consumption. As tab. 3 shows, this work presents an on-chip memory that is six times smaller than [5] and
eleven times smaller than [4]. The solution also presented the highest operation frequency and the lowest gate
count among them. Though our memory bandwidth is higher, it is import to emphasize that [4] and [5] support
a lower number of reference frames (1 and 2 respectively), and [5] has a low throughput. These characteristics
decrease the amount of data processed and the required bandwidth. In other words, if [4] and [5] were adapted
to follow our specifications, our work would present the best results also in terms of bandwidth reduction.

Tab. 3 — Architectural Comparison

Work Search Reuse Ref. Off-Chip Freq. Through #Gates On-Chip
Range Scheme Frames | BW (Mb/sec) | (MHz) put (KGates) | Mem. (Kb)
[4] 16x16 D 1 110.6 55.6 léi%xgso 176 41.6
[5] 65x33 D 2 24.9 168 7@223542 168 23.75
This Multilevel 1280x720
Work 19x19 C+ 4 204.35 265.2 @56 fs 127.83 3.96

5. Conclusions

This paper presented a multilevel data reuse scheme based on overlapped search windows among
neighboring blocks. The proposed scheme can greatly reduce the number of off-chip and on-chip memory
accesses with no penalty on video quality. The data reuse scheme was designed using VHDL and coupled to a
MRF-ME architecture without any impact on performance. This architecture presented a high throughput with
low off-chip memory bandwidth, being able to process 720p videos at 56 fps and 1080p videos at 25 fps. The
use of the presented multilevel data reuse scheme reduced more than 90% the number of off-chip memory
accesses and more than 60% the number of on-chip memory accesses (cache). These results improve the
architecture throughput, reducing significantly the energy consumption. When compared to other reuse schemes
found on the literature, this work presents better trade-off among bandwidth reduction, use of on-chip memory
and use of extra hardware resources. The architectural results are also competitive, since our solution used the
low amount of on-chip memory, reached the highest operation frequency and used the lowest number of gates
among related works, even processing more reference frames.

6. References

[1] Sullivan, G.; Ohm, J. Meeting report of the first meeting of the Joint Collaborative Team on Video
Coding (JCT-VC), Joint Collaborative Team on Video Coding of ITU-T SG16 WP3 and ISO/IEC

[2] C.-H. Chen, et al, “Level C+ Data Reuse Scheme for Motion Estimation With Corresponding Coding
Orders”, IEEE TCSVT, vol.16, n. 4, Apr. 2006, pp. 553 — 558.

[3] T.-C. Chen, et al. “Single Reference Frame Multiple Current Macroblocks Scheme for Multi-Frame
Motion Estimation in H.264/AVC”, ISCAS, May 2005, pp. 1790 — 1793.

[4] Z. Zhaoqing, et al, “High Data Reuse VLSI Architecture for H.264 Motion Estimation”, ICCT, Nov.
2006, pp. 1-4.

[5] D.-X. Li, W. Zheng, M. Zhang, “Architecture Design for H.264/AVC Integer Motion Estimation with
Minimum Memory Bandwidth”, IEEE TCE, vol. 53, n. 3, Aug. 2007, pp. 1053 — 1060.

[6] J. V. Team, Draft ITU-T Rec. and Final Draft Int. Standard of Joint Video Spec. ITU-T Rec. H.264 and
ISO/IEC 14496-10 AVC, May 2003.

[71 M. Grellert, et al, “Memory-Aware Multiple Reference Frame Motion Estimation for the H.264/AVC
Standard”, ICECS, Dec. 2010 (accepted for publication.).

[8] TSMC, “TSMC 0.18 and 0.15-micron Technology Platform.”, Available at www.tsmc.com/download.

SIM 2011 — 26" South Symposium on Microelectronics 57

Fast Distortion-Based Heuristic and Hardware Design for the H.264/AVC
Intra-Frame Decision

"Daniel Palomino, *Guilherme Corréa, *Luciano Agostini, 'Altamiro Susin
{dmvpalomino,altamiro.susin} @inf.ufrgs.br, guilherme.correa@co.it.pt,
agostini@inf.ufpel.edu.br

"Microeletronics Group - Federal University of Rio Grande do Sul
Group of Architecture and Integrated Circuits - Federal University of Pelotas
Institute for Telecommunications - University of Coimbra

Abstract

In the Rate-Distortion Optimization (RDO) technique for H.264/AVC, the process of choosing the best
intra-prediction mode is performed through exhaustive executions of the whole encoding process, which
increases significantly the encoder complexity, sometimes even forbidding its use in real time video
applications. In order to reduce the number of calculations necessary to determine the best intra-frame mode,
this work proposes a fast distortion-based heuristic and its hardware design for the H.264/AVC intra-frame
decision. The application of the proposed heuristic reduces in 13 times the number of encoding iterations for
choosing the best intra-frame mode when compared with RDO-based decision, at cost of relatively small bit-
rate increase and image quality loss. The proposed heuristic was designed in hardware targeting two
technologies: (1) FPGA and (2) Standard Cell. This architecture achieved an operation frequency of 129.1
MHz when synthesized to Standard Cell, being able to process until 465 HD1080p frames per second.

1. Introduction

H.264/AVC, the state-of-art video coding standard proposed by Join Video Team (JVT) [1], provides up
50% of compression gain when compared with previous standards, like MPEG-2. In order to achieve this goal,
a huge amount of coding options have been included in the prediction modules (Inter and Intra). Considering
the intra prediction, there are two possible block sizes to encode one macroblock (MB): (1) [16MB, with four
possible prediction modes applied to 16x16 luminance blocks and (2) I14MB, with nine possible prediction
modes applied to 4x4 blocks. All these possibilities must be evaluated to select the best one for each MB inside
a frame, in a way to achieve high compression rates preserving the video visual quality.

Rate-Distortion Optimization (RDO) [2] is a well known technique used to achieve the best coding
efficiency for an MB considering the relation bit-rate and video quality. However, the computational
complexity of evaluate all H.264/AVC coding modes is extremely high, since the RDO technique performs a
complete encoding process to choose the best prediction mode for each MB. Considering an HD1080p video
sequence with a group of pictures (GOP) IPPPPP (an I frame every six frames), more than 8 million iterations
of prediction, transform, quantization, inverse quantization, inverse transform and entropy coding (called in this
work as encoding loop) are needed for each frame. This way, it is hard to use RDO technique when high
resolution and real-time applications are considered. Fig. 1 shows the diagram of RDO based decision. Gray
blocks are performed once for each prediction mode, while the mode decision block (in white) receives all
candidate mode bit-rates and distortions (dashed lines) and selects the mode with the lowest RD cost to be used
in the encoding process.

Intra/Inter Residue N Entropy | BitRate(R)
Prediction Generation e) Coding v Best

Mode Mode
I—¢ de LY
Decision

Distortion || Addthe *
Calculation Prediction

j— IT/NQ

Distortion (D) :

Fig. 1 — Diagram of RDO based encoding process.

Due to this complexity, some works as [3], [4], [5] and [6] have proposed fast intra-frame mode decisions
to decrease the time of encoding one MB. The work [3] uses the SATD calculation to decide whether or not the
rate-distortion cost over one mode will be performed. In the work [4], it is performed an analysis over the
transformed coefficients and according its arrangement a calculation using some equations is performed to
determine the probability of each mode. The modes with low probability are not evaluated by the RDO-based
decision. The work [5] proposes a fast intra-frame decision based on the low frequency coefficients generated
after the transformation. These coefficients are used to determine the homogeneity level of one MB. However,
this work only performs the decision among different block sizes (I4MB or I16MB). The decision among same
block sizes is performed using the RDO technique. Finally, the work [6] performs the intra-frame decision

58 SIM 2011 — 26" South Symposium on Microelectronics

using directional gradients. These gradients are calculated using equations presented in the paper. The gradients
are compared with previous thresholds generated by simulations and then the two lowers are chosen to be
performed by the RDO-based decision. Even though these works present computational cost reduction in the
intra-frame decision process, all of them still use the RDO technique.

The main goal of this work is to develop a fast heuristic based only on distortion for the intra-frame mode
decision module, in order to completely eliminate the use of RDO based decision, decreasing the time needed
to encode one MB. The hardware design for this solution is also presented in the next sections. The paper is
organized as follows: Section 2 presents the fast intra-frame mode decision proposed in this work. Section 3
shows the hardware architecture for this solution. Section 4 shows some results generated through simulations
using the proposed method and compares with related works. Finally, section 5 concludes this work.

2. Fast Intra-Frame Mode Decision

In this work, the proposed fast intra-frame decision is performed in a hierarchical way in two steps: (1)
decision among same block sizes and (2) decision among different block sizes. The first decision step is based
on distortion to choose the best 116MB partition considering the four possible modes and the best [4MB
partition among the nine possible modes. Several simulations considering three distortion metrics were
performed: Sum of Absolute Differences (SAD), Sum of Squared Differences (SSD) and Sum of Absolute
Transformed Differences (SATD). The results (for bit-rate and video quality) generated using these three
metrics were compared among each other. Besides, a comparison among the three metrics was performed
considering computational complexity measured by number of sums. Tab. 1 shows these results. The
simulations were performed using CIF (352x288 pixels) videos.

Tab. 1 — Comparison between SAD, SSD and SATD.

SSD vs. SAD SATD vs. SAD
PSNR Bit-rate # Sums PSNR Bit-rate # Sums
(dB) (%) (%) (dB) (%) (%)
+0.008 -0.63 +361.29 +0.079 -1.13 +348.39

SATD and SSD metrics show better results when bit-rate and video quality are considered. However, the
computational complexity of these two metrics is very much bigger than SAD (about 361% bigger when the
SSD metric is considered). As the main goal of this work is to perform the intra-frame decision as fast as
possible, the SAD metric is used in the first decision step.

The second step of the intra-frame decision is to choose which partition (I4MB or [16MB) will be used to
encode the MB. This decision is made using the information generated by the first step: the distortion of the
best [4MB partition and the distortion of the best [16MB partition measured in SAD. A simple comparison
between these two metrics would cause in most cases the choice for [4MB partitions. However, analyzing the
difference between these two metrics it is possible to make a good choice of what partition will be used for each
MB. Several simulations were performed to classify the difference of distortions (DD) with the intra-prediction
mode selected by the RDO technique. Fig. 2 shows a graph where the amount of chosen modes (I4MB and
116MB) for each MB selected by the RDO technique is compared with the difference of distortion generated by
the first step.

09 97%

116MB
—l14MB

Macroblocks (%)

Difference of Distortion

Fig. 2 — Amount of chosen modes for each MB selected by the RDO technique and difference of distortion.

With the difference of distortion set to 600, for example, it is possible to see that in most cases when the
[16MB partition is chosen (97%) the difference of distortion is very small (lesser than 600), while when the
I14MB partition is chosen the difference of distortion is very large (84% are bigger than 600). This way, it is
possible to use this information in comparison with a threshold value to choose the partition size for intra-frame
MBs.

The threshold value that presents the best results in terms of PSNR and bit-rate was obtained as follows:
(1) all videos used in the simulations were first encoded using the RDO technique for the decision among
different block sizes. Meanwhile, the distortion values and the chosen partition were saved. Then, the
differences of distortion were compared with the chosen partition to define the threshold value. Several

SIM 2011 — 26" South Symposium on Microelectronics 59

simulations were performed with a threshold ranging from 0 to 1000, being 600 the threshold value which
generated the best results considering the bit-rate and video quality relation.

3. Designed Architecture

The designed architecture for the proposed intra-frame decision is presented in Fig. 3. The decision is
divided in chrominance decision (8x8 modes) and luminance decision (I4MB and 116MB modes). The
chrominance decision is performed considering only the distortion (SAD) between the predicted chroma block
(PCB) and the original chroma block (OCB). The luminance decision is divided exactly like the proposed
heuristic (in two steps): (1) decision among same block sizes, considering the distortion (SAD) between the 4x4
and 16x16 predicted luma blocks (PLB) with the original luma block (OLB), and (2) decision among different
block sizes, considering the difference of the best distortions generated in the step 1.

L
PCB_ | 8x8 Intra Frame Decision i
ocB | chrominance :
= — L
decision

I Best 8x8
I Chrominance

1
1
1 ! Intra-mode
— ¥ 14MB
1
OLB | d i 1]
1 1
16x16 i Block-size 15
> 116MB N decision I Best

] .
—> decision 1 Lu
I 1 Intra-mode

Fig. 3 — Architecture of the proposed intra-frame decision.

The architecture to perform the SAD calculations between the original block and the predicted block was
designed with a parallelism of eight samples and two pipeline stages. It means that only eight samples of the
original block and the predicted blocks generated by all intra-frame modes can be available per cycle. This way,
34 clock cycles are needed to perform the decision over one MB. The architecture was synthesized targeting
two different technologies: (1) Altera EP2S130F1508C3 Stratix I FPGA [7] and (2) TSMC 0.18um Standard
Cell [8], in order to allow its use in several applications. Considering hardware resources, the FPGA synthesis
used 3,267 ALUTs (Look-up Table) and 2,312 DLR (Dedicated Logic Register) while the standard cell
synthesis used 28,518 gates. The maximum operation frequency was achieved by the standard cell synthesis:
129.3MHz. Considering this frequency and the number of clock cycles needed to perform one MB (34), the
architecture is able to process until 465 HD1080p frames per second.

4. Results and Comparison

The results obtained by using the proposed heuristic are presented in Tab. 2. The first columns present the
results using RDO-based decision. The central columns present the results obtained by the proposed decision.
Finally, the last columns show a comparison between the two approaches in terms of bit-rate increasing and
image quality (PSNR) difference. These results were obtained through simulations performed with HD1080p
video sequences.

Tab. 2 — Results and Comparison with RDO-based decision.

L RDO vs. Proposed
RDO Proposed Heuristic o
) Heuristic (Threshold 600)
Video -
PSNR . PSNR . PSNR + Bit-Rate
Bit-Rate Bit-Rate
(dB) (dB) loss (%)

STATION 2 39.643 34022k 39.338 35729k 0.305 5.02
SUNFLOWER 42.766 33030k 42.413 35391k 0.353 7.15
TRACTOR 39.400 58208k 39.035 60939k 0.365 4.69
TRAFFIC 39.643 50884k 39.308 53070k 0.335 4.30
MANINCAR 42.609 8818k 42.518 9018k 0.091 2.27
PEDISTRIAN AREA 40.878 24949k 40.699 26875k 0.179 7.72
RIBERBED 38.652 56735k 38.280 58962k 0.372 3.93
ROLLING TOMATOES 40.475 12170k 40.387 12537k 0.088 3.02
RUSHHOUR 41.694 20013k 41.484 21306k 0.210 6.46
AVERAGE 40.640 33203k 40.385 34870k 0.255 5.02

The application of the proposed heuristic resulted in an average increase of 5.02% in the bit-rate and an
average decrease of 0.255dB in the image quality (PSNR). The increase of bit-rate and the decrease of image
quality are very small when compared to the enormous computational complexity reduction in the decision
process. As presented in Fig. 1, the RDO-based encoding process is finished only after the execution of all

60 SIM 2011 — 26" South Symposium on Microelectronics

possible intra-frame prediction modes. The decision proposed in this work is performed after the generation of
the predicted blocks by the intra-prediction followed by the SAD-based distortion calculation and then the
difference of distortion operation. This way, the encoding loop presented in Fig. 1 is completely eliminated,
simplifying the intra-frame decision process. When RDO-base decision is performed, four 16x16 and nine 4x4
intra-frame modes must be evaluated, totalizing 13 encoding iterations per MB. Considering the proposed
decision method, the encoding process is performed only once for each MB. Tab. 3 presents a comparison with
related works in terms of bit-rate, image quality (PSNR) and reduction in RDO calculations.
Tab. 3 — Comparison with related works.

Works PSNR Bit-rate # of Iterations
loss (dB) Increase (%) Reduction (times)
SUN (2008) [3] 0.136 0.69 4.7
FENGQIN (2008) [4] 0.020 3.00 5.9
LEE (2009) [5] 0.088 0.09
JEON (2009) [6] 0.148 4.00
This Work 0.255 5.02 13

While other works have shown a reduction of coding iterations from 4 to 6 times in comparison with RDO-
based decision, the proposed decision allows a reduction of 13 times. The cost of this gain resides, however, in
the bit-rate increase of 5.02% and image quality loss 0.255dB which do not represent a large loss when the gain
in terms of computational complexity reduction is considered.

5. Conclusions

This work has presented a fast distortion-based heuristic and hardware design for the H.264/AVC intra-
frame decision. The main goal is to perform the intra-frame decision process without using the RDO technique,
strongly decreasing the time needed to encode one MB. When the proposed intra-frame decision is applied, an
increase of 5.02% in bit-rate and a decrease of 0.255dB in image quality were noticed in average. On the other
hand, the number of encoding iterations is 13 times smaller than that used by RDO. Besides, none of the works
found in the literature reduce computational complexity more than 6 times in comparison with RDO technique.
The designed architecture achieved an operation frequency of 129.3MHz when synthesized by standard cell,
being able to process until 465 HD1080p frames per second, enough for encoding high resolution videos in real
time.

As future works, it is planned to integrate the designed architecture with an intra-predictor, transforms and
quantization loop and an entropy coder, in order to design a full intra coder.

6. References

[1] ITU-T Recommendation H.264/AVC (05/03): advanced video coding for generic audiovisual services.
2003.

[2] G. Sullivan and T. Wiegand, “Rate-Distortion Optimization for Video Compression”, IEEE Signal
Processing Magazine, v. 15, Nov. 1998, pp. 74-90.

[3] Sun, Y. T.; Yinyi, L. SATD-Based Intra Mode Decision For H.264/AVC Video Coding. IEEE
International Conference on Multimedia and Expo, Hannover, 2008. 61-64.

[4] Fengqin, W.; Yangyu, F. Fast Intra Mode Decision Algorithm in H.264/AVC Using Characteristics of
Transformed Coefficients. Sth International Conference on Visual Information Engineering. [S.1.]: [s.n.].
2008. p. 245-249.

[5] Lee, Y.-M. An Improved SATD-Based Intra Mode Decision Algorithm for H.264/AVC. International
Conference on Acoustics, Speech, and Signal Pocessing, ICASSP. Taipei: [s.n.]. 2009. p. 1029-1032.

[6] Jeon, Y.-I. Fast Intra Mode Decision Algorithm Using Directional Gradients for H.264/AVC.
International Congress On Image and Signal Processing, CISP. Tianjin: [s.n.]. 2009.

[7] Altera Corporation. “Altera: The Programmable Solutions Company”. Available at: www.altera.com.

[8] Artisan Components. TSMC 0.18 um 1.8-Volt SAGE-X™ Standard Cell Library Databook. 2001.

SIM 2011 — 26" South Symposium on Microelectronics 61

Data Reuse Scheme for an OQut-of-Order Motion and Disparity Estimation
Targeting the Multiview Video Coding

'Felipe Sampaio, 'Bruno Zatt, 'Sergio Bampi, “Luciano Agostini
{felipe.sampaio, bzatt, bampi} @inf.ufrgs.br, agostini@inf.ufpel.edu.br

"Universidade Federal do Rio Grande do Sul - UFRGS
Programa de Pos-Graduacio em Computacgio - PPGC

Universidade Federal de Pelotas - UFPel
Grupo de Arquiteturas e Circuitos Integrados - GACI

Abstract

This paper presents a data reuse scheme for memory-aware Motion and Disparity Estimation (ME and
DE) targeting the Multiview Video Coding. The strategy, called Search Window Centric Strategy (SWCS-
MVC), ally several techniques to exploit the data locality: (a) reuse of overlapped regions between neighbor
search windows, (b) GDV adoption to determine the DE start point and (c) out-of-order processing to increase
the cache efficiency. In the best case, the data reuse scheme causes a reduction of 42,8% in the required off-
chip memory bandwidth when compared with the use of the traditional in-order frame level encoding (called
Current Block Centric Scheduling). In the other hand, the penalty of using the out-of-order frame level
processing impacts in the on-chip memory required to store the encoding partial results. However, with the
search window size growth the penalty is amortized.

1. Introduction

In the last years, the improvements in the multimedia technologies have caused the development of high
realism applications. These applications aim to explore the characteristics of the human vision in order to
increase the user experience [1]. As results of this effort, the 3D TV applications are even more popular and
available for the final costumer.

The basis for these applications is not the usual digital videos taken by only one camera viewpoint. The 3D
applications, for example, combine two or more different viewpoints of the same scene in order to allow the
depth perception. These videos generated by more than one camera are called multiview videos and each
individual video is referred as view.

However, the transmission and storage of multiview videos are practically unfeasible without a
compression process, since the large amount of data that are needed to be treated. The simplest way to
compress a multiview video is to simply apply a mono-view encoder for each one of the views. However, this
approach does not explore the data redundancies between frames at different views. As said in the work [2],
almost 30% of the dependencies in a multiview video were detected between frames of different views.

In order to eliminate this redundancy, called disparity redundancy, the MVC Standard (Multiview Video
Coding) was defined as the most recent video compression standard that deals with multiview videos [3]. It is
an extension of the H.264/AVC standard [4] and it inherits all of the high complexity tools that are used in the
H.264/AVC codecs.

The MVC encoder with all its complex coding tools requires high throughput rates and large bandwidth
with the main memory. This work focuses on reducing the bandwidth rates proposing a data reuse scheme for
the two modules that represent the memory access bottleneck in the MVC encoders: the Motion and Disparity
Estimation (ME and DE). These modules perform searches in a delimited search area in order to determine the
best way to encode a block of pixels in the target video. The ME takes as reference for its search past or future
frames in the same view. This way, the ME is trying to find the motion given a current and a reference frame.
The DE is the ME extrapolation but using frames of different views as reference. In this case, the goal is to
determine the disparity given by the different cameras position. These modules are responsible for more than
70% of the memory access during the encoding process.

The goal of this work is to reduce the required bandwidth during the ME and DE steps. Then, a frame order
processing scheduling is proposed to increase the data reuse when the off-chip memory is accessed, called
SWCS-MVC (Search Window Centric Scheduling). Besides, the data locality between two adjacent search
windows is also explored. Such works in the literature already explore this level, like [5] and [6]. They are used
in a combination with the SWCS strategy. The penalties involved with the use of the proposed strategy are also
evaluated and an extra on-chip memory was designed solve it.

This paper is organized as follows: Section 2 presents the proposed data reuse scheme and the out-of-order
processing for the ME/DE modules; Section 3 discusses the results in terms of on-chip memory and off-chip
memory bandwidth requirements and performs a comparison with related works; finally, the Section 4
concludes this work and points some future works.

62 SIM 2011 — 26" South Symposium on Microelectronics

2. Data Reuse Scheme

This work proposes a data reuse scheme for the multiview video coding to reduce the off-chip memory
bandwidth impact during the references fetching. As already mentioned, the strategy is focused in the ME/DE
since they are the modules that most access the off-chip memory among all encoding parts.

The main contributions of this work are: (1) off-chip memory bandwidth reduction in the encoding
references access; (2) out-of-order frame processing to increase the data locality and, consequently, the cache
efficiency; (3) local storage of the encoding partial results; (4) GDV usage to determine the DE start point.

In the first level, the overlapped area between adjacent search windows is explored. In the literature there
are several works that proposes search window data reuse between neighbor blocks. The works [5] and [6]
presented several reuse schemes, named Level A-D and Level C+. For further information, detailed
descriptions are encountered in the original work.

Changing for a frame level reuse, which is the focus of this work, basically there are two frame-scheduling
for a MVC processing. The traditional one, named as Current Block Centric Scheduling (CBCS), considers the
current block as the central point of scheduling. In this approach, given a block that needs to be processed by
the ME or DE, all its corresponding search windows in all reference frames must be accessed in the reference
frame memory. The alternative scheduling, called in this work as Search Window Centric Scheduling (SWCS-
MVC), is a memory-aware approach that performs the frame processing under other central point: the search
window. In this case, a reference frame is scanned and all the ME/DE operations that use the given frame as
reference are performed immediately. The Fig. 1 demonstrates these two different approaches.

B B B B OB B

View 0 View 1 View 2 View 0 View 1 View 2
Time (m]
CB, CBp
CBy2
CBv\¢;\\ (m] GDVz,1) GDVg,1) Search
GDVio.1) currentblock \CB Aice GDV(3,1)
V2 CByo
SR;- Frame f Search Range (m]
CBe CB;- Frame f Current Block CBf
GDVy,,)~ Disparity from view,

toview view,

(a) (b)
Fig. 1 - (a) CBCS and (b) SWCS-MVC.

Considering a prediction structure which specifies that a frame is used as reference twice (once by ME and
once by DE), the SWCS can save 44,7% bandwidth when compared with the CBCS approach. When more
reference frames are used, better are the gains of the SWCS. However, since the use of the SWCS implies in an
out-of-order processing, partial results are generated during the encoder process and they cannot be decided
instantly. Then, they need to be stored to be compared with the final results. At this moment, they can be
discarded and replaced for new partial results. To deal with this penalty, this work proposes the use of a Partial
Results Memory (PRM). The PRM sizing is expressed by the Equation (X), where DIST,;; is the distortion bit-
width, VET,;,is the motion vector bit-width, /Dx,;, is the reference index bit-width, W and H are the horizontal
and vertical frame dimensions, N is the block size and O, is the number of frames which its information
needs to be stored.

W xH
PRMS:‘ZQ = CD‘:STEJEIS + VETEJ:‘IS + ‘:Dxb:'ts) x T x Q?‘ﬂ?lge (1)

3. Results

Tab. 1 presents a comparison between the required bandwidth for real time processing (30 frames per
second) considering the two scheduling strategies: (a) the traditional CBCS and (b) the memory-aware SWCS
adopted in this work. The overlapped regions of adjacent search windows are reused in according with three
schemes proposed in [6]: Level C, Level D and Level C+ with four different block processing order. These
processing orders in Tab. 1 are better explained in the corresponding work.

SIM 2011 — 26" South Symposium on Microelectronics 63

Tab. 1 - Bandwidth Results

Block Size 16x16 (ii)%ﬁ%ozgeog) SWHi;lV;t}i 128 \G%?{!fs
CBCS SWCS-MVC
Scheme Bandwidth Bandwidth Ratio
(Mbytes/s) (Mbytes/s)
Level C 1582,24 904,14 - 42,86%
Level D 213,69 122,11 - 42,86%
Level C+ HF2V2 879,64 502,65 - 42,86%
Level C+ HF3V2 879,64 502,65 - 42,86%
Level C+ HF2V3 645,44 368,82 - 42,86%
Level C+ HF2V4 528,33 301,91 - 42,86%

For all cases, the use of the SWCS scheme provides reduction of around 42% in the off-chip memory
bandwidth when compared to the CBCS. This gain can be even better if more reference frames are used.

Considering a solution without any cache hierarchy, the gain provided by the SWCS employment can save,
in the best case, more than 350 times the required bandwidth for a XGA video and more than 320 times for a
VGA video considering the same scenario of the comparison presented in Tab. 1.

The Tab. 2 performs a comparison in terms of on-chip memory requirements for both strategies (CBCS and
SWCS).

Tab. 2 - On-chip Memory Size Results

Block Size 16x16 (%Gzix];g%:ﬁ) SWHi;lV;VVVi 128 \G@oig@s
CBCS SWCS-MVC
Scheme On-chip Mem. Size On-chip Mem. Size Ratio
(Kbytes) (Kbytes)
Level C 39,94 70,97 (19,97 +51,0) + 77,6%
Level D 285,50 193,75 (142,75 +51,0) | -32,1%
Level C+ HF2V2 49,38 75,69 (24,69 +51,0) +53,3%
Level C+ HF3V2 54,35 78,17 (27,17 +51,0) +43,8%
Level C+ HF2V3 59,81 80,91 (29,91 +51,0) +35,3%
Level C+ HF2V4 71,25 84,63 (35,63 +51,0) +21,6%

Besides the high memory access reduction, the SWCS scheduling presents another advantage: the number
of used reference frames in the target prediction structure does not affect in the on-chip memory required to
store the search window samples. In the other hand, the CBCS require an instance of a search window on-chip
memory for each reference frame scanned by both ME and DE. For all cases in the Tab. X, the on-chip memory
used to store the reference samples is 50% smaller in the SWCS strategy.

As already explained, the SWCS strategy causes a penalty in the on-chip memory because of the necessity
of storing the encoding partial results (the PRM). Considering the analysis scenario and the expression defined
in the Equation (1), the PRM needs to have 51Kbytes. This way, in almost all cases in Tab. X the SWCS
strategy presents worst results, excepting when Level D is used (gain of around 32%).

However, if a projection is performed by increasing the search window dimension it is possible to notice
that the PRM represent a smaller part into the total on-chip memory required. This analysis is presented in the
graphics of the Fig. 2.

Level C @XGA (1024x768 pixels)
—4— CBCS —#i— SWCS-MVC

Level D @XGA (1024x768 pixels)
—&— CBCS ——SWCS-MVC

Level C+@XGA (1024x768 pixels)
—&—CBCS —— SWCS-MVC »

/_

N
o
S

®
o
S

=}
S}

-
%
o

N

\f

N
o
o
\l\
) >
On-chip Memory (Kbytes)
=)
o o
[
i
i
i
i
l

o
4

o

On-chip Memory (Kbytes)
RO
o v
o o
‘u\o
On-chip Memory (Kbytes)
B D
o o
o o
|

16 32 64 96 128 256 16 32 64 96 128 256 16 32 64 96 128 256
Search Window (SWy = SWy) Search Window (SWy = SWy) Search Window (SWy = SW,))

(2) (b) (c)

Fig. 2 - On-chip memory size growing analysis.

For all cases in Fig. 2 (Level C, Level D and Level C+), the SWCS on-chip memory growth curve present
worst results for smaller search windows. It is explained by the high impact of the PRM. When considering the
bigger search windows, the CBCS growth curve is sharper and present worst results from a certain search
window size, depending on the adopted data reuse scheme.

64 SIM 2011 — 26" South Symposium on Microelectronics

4. Conclusions

This work presented a data reuse scheme to reduce the required bandwidth for the Motion and Disparity
Estimation processing for the Multiview Video Coding. The strategy considers some scenarios: (1) reuse of
overlapped regions between search windows of neighbor blocks (current block reuse level), (2) frame
scheduling to increase the data locality and, consequently, the cache efficiency (reference frame level reuse
level) and (3) the use of GDV to determine the DE start point. The scheme, called SWCS-MVC, brings some
important gains in the off-chip memory reduction. In the best case, for the considered scenario, the use of the
SWCS-MVC reduced by around 42% the number of memory access when compared with the traditional in-
order strategy (called CBCS). Due the penalties of the SWCS-MVC, the required on-chip memory increases
since encoding partial results must be stored until they are decided (called Partial Results Memory). However,
with the search window increasing (essential for high resolution videos), the PRM size is amortized and from a
certain point does not represent additional cost.

5. References
[1] N. Dodgson. A. “Autostercoscopic 3D Displays”. Computer, v. 38, n. 8, p. 31-36, aug. 2005.

[2] P. Merkle, et al. “Efficient Prediction Structures for Multiview Video Coding”. IEEE Transactions on
Circuits and Systems for Video technology, v. 17, n. 11, p. 1461-1473, nov. 2007.

[3] JVT Team. “Editors' draft revision to ITU-T Rec. H.264 | ISO/IEC 14496-10 Advanced Video Coding —
in preparation for ITU-T SG 16 AAP Consent (in integrated form)”. Doc. JVT-AAO7. [S.L]: [s.n.]. 2009.

[4] ITU-T. “ITU-T Recommendation H.264/AVC (05/03): Advanced video coding for generic audiovisual
services”. 2003.

[S] J.-C. Tuan, et al. “On the Data Reuse and Memory Bandwidth Analysis for Full-Search Block-Matching
VLSI Architecture”. IEEE Transactions on Circuits and Systems for Video Technology, v. 12, n. 1, p.
61-72, jan. 2002.

[6] C.-Y . Chen, et al. “Level C+ Data Reuse Scheme for Motion Estimation With Corresponding Coding
Orders”. IEEE Transactions on Circuits and Systems for Video Technology, v. 16, n. 4, p. 553-558, april
2006.

SIM 2011 — 26" South Symposium on Microelectronics 65

Design Automation Tools 2

66

SIM 2011 — 26" South Symposium on Microelectronics

SIM 2011 — 26" South Symposium on Microelectronics 67

Area Overhead and Performance Impact of Regular Transistor Layout
Design in Digital Integrated Circuit

'V. Dal Bem, "*P. F. Butzen, 'F. S. Marranghello, 'A. L Reis, 'R. P. Ribas
{vdbem,pbutzen,fsmarranghello,andreis,rpribas} @inf.ufrgs.br

'PGMicro, UFRGS, Porto Alegre, Brazil
*Center of Computational Science, FURG, Rio Grande, Brazil

Abstract

Regular transistor layout (RTL) is expected to reduce the process variation, increase the fabrication yield
and improve the device reliability in nanometer CMOS technologies. Although the penalty in design flexibility
seems to be obvious, in terms of area optimization and circuit performance, deep and extensive investigations
must be done in order to evaluate the actual design cost and trade-off in using such a more lithography-aware
strategy. This paper presents a detailed comparison between RTL and standard cell methodologies.
Experimental results have shown that the impact of RTL technique in digital circuit design is quite manageable,
presenting acceptable area overhead and even power consumption reduction for certain circuit timing
constraints.

1. Introduction

CMOS processes have been continuously scaled down in order to improve the integrated circuit (IC)
timing and power consumption characteristics, as well as to increase the integration density of semiconductor
devices in a single die. In nanometer technologies, the critical feature sizes printed on a chip is significantly
smaller than the light wavelength used in photolithography steps [1]. As a consequence, the resolution between
the drawing layout and the printed pattern is affected..

New design methodologies based on regular transistor layout (RTL) have received special attention in the
last years [2]-[S]. The main goal of those methodologies is the reduction of layout patterns, resulting the
improvement in the lithography resolution efficiency. The most common RTL approach consists basically of
pre-defined logic block arrays [4][5]. Such design strategy exploits the use of via masks in the programmability
of different logic functions over RTL patterns and wiring arrangements. By doing so, mask writing efforts are
significantly reduced during the circuit fabrication.

As occur in old mask-programmable gate-arrays, the area overhead and circuit performance penalty are the
most important drawbacks of regular layout design. It represents a compromise between the lithography yield
improvement and a more restrictive design space.

This paper presents an extensive analysis and helpful discussion about the RTL circuit design in
comparison to the most applied standard cell approach. Experimental results have shown that the evaluated
RTL templates can achieve good timing performance and acceptable power dissipation levels with non-
prohibitive area penalty.

2. Regular Transistor Layout

Several RTL approaches for lithography-aware integrated circuit design have been recently proposed in the
literature [2]-[5].

In [2], Pileggi et al. present a structure named VPGA (via patterned gate-array) that represents a
compromise between FPGA and standard cell design flexibility and performance. The proposed VPGA unit is
composed by a pre-defined set of basic cells, where the customization of interconnections and logic functions is
performed by via mask patterns.

In another work, Jhaveri et al. propose the construction of cell library containing just a few regular cells,
called ‘logic-bricks’ [3]. The bricks are design-specific and the information about good candidates is obtained
through a regularity extraction step over the target circuit. Some usual brick requirements are to be able of
reproducing complex functions and to present some configurable vias.

In [4], Ran ef al. propose the use of VCCs (via-configurable cells). This approach seems to be less flexible
than the one previously discussed [2], since some attributes like cell dimensions, number of transistors and
metal lines available at each cell are fixed. In this design strategy, the only difference between distinct logic
gates is the vias positioning over their layouts.

A similar purpose to VCC has been presented by Pons et al. in [S]. Such approach, called VCTA (via-
configurable transistors array), presents also the fixed number of physical resources (transistors and metal
lines), and the logic gates are configured by via insertion. The major difference to [4] relies on the layout
topology. In VCTA, considering polysilicon stripes (transistor gate) drawn vertically, the P and N active areas
are drawn in the same horizontal line. It is a particular strategy that presents some advantages like unnecessary

68 SIM 2011 — 26" South Symposium on Microelectronics

polysilicon alignment between PMOS and NMOS transistors of pull-up and pull-down logic planes,
respectively, as observed in standard cells.

All these related works intend to provide efficient lithography-aware regular layout patterns by restricting
the layout construction flexibility and providing enough resources for minimal circuit design impact. However,
none of them actually present a fair comparison to the most adopted standard cells IC design methodology.

The analysis presented in this work aims to address this lack. It is based on general RTL templates, like the
VCC and VCTA ones [5].

3. RTL Evaluation Flow

The comparison between RTL and standard cell approaches has been performed on the technology
mapping step in the IC design flow. This task requires as input data the circuit description (usually in HDL
format) and the target cell library. Thus, each benchmark circuit has been mapped using both a standard cell
library and one (or more) RTL-based library. Then, the mapping results of area, timing and power dissipation
have been compared. The evaluation flow is depicted in Fig. 1. The generation of the RTL-based library implies
a series of choices including the unit template, the transistors sizing and the eventual transistor layout folding.

STANDARD FLOW RTLFLOW

LIBRARY
BUILDING

LIST OF FUNCTIONS
(EQUATIONS) AND
THEIR NETLISTS

STD. CELL
LIBRARY

RTL-BASED
LIBRARY

RTL TEMPLATE FIT

TESTS

TECHNOLOGY CIRCUIT TECHNOLOGY FUNCTIONAL RTL

MAPPING I MAPPING
TS LIBRARY 7
I | CONSTRAINT _
: TRANSISTORS
TIMING RESULT SIZING

TIMING RESULT

[[
POWER RESULT POWER RESULT
CELLS DIVERSITY
AREA RESULT AREA RESULT WITH FOLDING

COMBINATORIAL CHARACTERIZATION
OPTIMIZATION

-
1
]
AREA RESULT /I

S ”

I

1
| I
| I
| I
| I
| I
| I
| I
| I
1 I
1 I
1 I
1 I
' |

Figure 1 — RTL evaluation procedure.

3.1. Array unit template

Each RTL unit has a fixed number of metal lines (interconnection wiring) and transistors (PMOS and
NMOS). The chosen amount of available resources in an RTL unit defines the ‘template’. Each circuit must use
only one template. Thus, the cells implemented over a certain template differ exclusively by their vias
positioning while the high level of layout regularity is kept.

Since the circuit design is directly dependent on the RTL template, the characteristics of the candidate
templates must be carefully analyzed. For instance, the largest ones are usually able to implement more
complex CMOS gates. Thus, the mapped circuit tends to present less cell instances, but at same time each
instance consumes more area. In order to provide a fair evaluation of this trade-off, different RTL templates
have been investigated. The templates are labelled according to their resources: 2M6T’, ‘4M4T’, etc. The
‘2M6T’ template, for instance, means that every built cell in this respective library has 2 lines of metal 1
available for gate input connection and 6 transistors in each plan (a total of 12 transistors).

Hence, each template acts as a filter for building an RTL-based cell library, containing only the functions
whose implementation fits on the template resources.

It must also be pointed out that an efficient use of the available RTL unit resources suggests the building of
more than one (independent) logic gate. For example, an inverter and a 2-input NAND gate can usually be
implemented in the same unit. In this case, the RTL unit can be understood as a multiple-output cell, where
each output is a function of an exclusive subset of inputs. The conventional mapping engines are not able to
deal with such kind of cells. Thus, a post-processing step of combinatorial optimization has been applied. This
step provides the best set of combinations between cell instantiations resulting from mapping that could share
the same RTL unit.

3.2. Transistors sizing

All transistors of an RTL unit and, therefore, all transistors in a circuit using such a kind of design
approach have the same width. It means that if the electric current capacity, or drive strength (i.e., the transistor
channel width), is increased for benefiting the critical path propagation delay, it naturally penalizes the area of
all cell instantiations in the circuit. Two possibilities have been taken into account: (a) using the minimum

SIM 2011 — 26" South Symposium on Microelectronics 69

transistor width associated to the technology node, and (b) using transistor widths which present good
compromise between area and delay, obtained from inverter ring oscillators and from samples of circuit critical
paths. Once all the cell netlists selected for a specific template were sized, this RTL-based library was
electrically characterized in order to be used as input data in the mapping procedure.

3.3. Transistor layout folding

Besides the transistors width sizing, another way to deal with the electrical current capacity of cells is using
the layout folding technique. It is attained by sharing the four terminals of a transistor with other one(s). It
means, connect transistors in parallel to perform as a larger one. It is noteworthy that, as occur in mask-
programmable gate-arrays, in the RLT approach only folding can be used for tuning the PMOS and NMOS
sizing ratio (PN ratio) and for sizing compensation of stacked transistors, as well as for creating any other
relationship between the pull-up PMOS and pull-down NMOS planes. Moreover, due to the area penalty,
usually only inverters are provided in different drive strength options to act as buffers in critical paths.

4. Experimental Results

The results come from the application of the flow described in Section 3 (see Fig. 1), over specific choices
of list of functions, target technology, the standard cell library as reference, and the set of benchmark circuits.

4.1. Cell libraries

The RTL-based cell libraries represent the libraries building through the flow described in Section 3, by
considering a list of 4058 Boolean functions. This list encompasses all possible functions from 1 to 4 inputs,
excluding the ones equivalent by inputs permutation (p-class [6]), plus the 76 functions of 5 and 6 inputs from
the reference library known as ‘genlib_44-6" [7].

A set of 21 different RTL templates has been tested. It is composed by all possible combinations between
2,4 or 6 ‘metal 1’ lines used for input connection, and 2 to § transistors at each plan, i.e., the pull-up PMOS
and pull-down NMOS ones.

In Table 1 is shown how many functions, among the 4058 ones mentioned above, are able to be inserted in
a single RTL template unit when considering their transistors netlists.

Table 1 — Number of logic gates which fit each RTL template.

Transistors at each plan
M1 lines 2 3 4 5 6 7 8
6 4 9 19 | 53 126 | 151 | 189
4 4 9 19 | 33 55 | 69 | 81
2 4 6 6 6 8 8 8

4.2. Benchmark circuits mapping

For the technology mapping task, some ISCAS’85 benchmarks were applied [8]. The target technology
was the PTM 45nm CMOS process [9], and the chosen standard cell library as reference for comparisons was
the Nangate FreePDK45 Open Cell Library [9].

From the previous section, only three templates were considered appropriate for the execution of the whole
RTL evaluation flow: 2M6T, which represents the smallest one able to implement an XOR gate, 4M4T and
4M6T, which were found to be the best compromise between unit area and number of possible functions.

In the following results, all transistors in the RTL units were sized to the minimum width allowed by the
addressed CMOS process. Using this sizing choice, the timing performance of RTL templates are not as
efficient as standard cell, as expected. However, the average increment in the minimum required period was
only 10.26%.

Table 2 shows some area and power results of benchmarks mapped using the standard cell and RTL
libraries. This table presents the results related to the tightest timing constraints, respected simultaneously by all
libraries, considering steps of 50 ps.

According to Table 2, it is possible to obtain two different area comparisons. The first one is following the
simplest flow, where each RTL unit presents a single transistors netlist and logic function, and the benchmarks
area is directly resulted from the mapping. In this comparison the average area increment, when considering
always the best RTL against the standard cells, is of approximately 110%. The second one is after the
combinatorial optimization, representing a flow where different transistors netlists could be combined in the
same RTL unit, as explained in Section 3. In this comparison the average area increment is reduced to around
65%. It is also evident that this optimization makes larger templates to become better choices, since they are
more prone of using the functions combinations in order to reduce their average amount of unused transistors.

In this same Table 2, it is shown an average power decrement of 69.4%. It can be explained by the
minimum transistor sizing applied in the RTL patterns.

70 SIM 2011 — 26" South Symposium on Microelectronics

Table 2 — Results of ISCAS’85 benchmarks mapped in standard cell (Nangate Lib.[9]) and RTL
libraries.

Nangate Lib 2M6T RTL 4M4T RTL 4M6T RTL

TC* | Area | Power | Area Area® | Power | Area Area® | Power | Area | Area” | Power
@) | @m) | @W) | @m) | @m) | @W) | @m) | @m) | @W) | @m) | @m) | @W)
cl7 50 6 128 17 15 39 14 9 31 17 12 31
c432 450 161 5225 483 418 2314 488 388 2053 533 357 2027
c880a 300 316 9445 792 707 3557 791 581 2834 930 588 2933
¢1908a | 450 331 19428 414 367 5157 625 495 5111 625 438 5258
c499 400 364 24180 536 469 8542 830 657 8004 720 530 9308
c1355 400 372 24155 555 488 9368 832 657 7917 726 530 9099
c1908 500 380 19393 730 625 7194 983 764 7745 999 683 6506
¢2670a | 300 550 20734 1235 1096 7085 1411 1083 6181 1526 976 6119
2670 350 574 21373 1197 1066 7153 1252 976 5891 1403 916 5962
¢3540a | 600 682 28226 1695 1503 9898 1623 1284 8240 2004 1308 9040
3540 650 849 30636 2208 1999 12925 2214 1733 10714 | 2313 1578 10073
¢5315a | 500 | 1136 | 50509 2599 2341 17995 2601 2027 15661 | 2670 1852 15297
c¢5315 550 | 1171 | 48292 2531 2310 16908 2752 2123 15069 | 2765 1915 14342

*TC = The smallest timing constraint respected simultaneously by all libraries.
"The second ‘Area’ column represents the circuit area after the combinatorial optimization step.

Circuit

5. Conclusions

A comparison analysis between the regular transistors layout (RTL) design strategy and standard cell
methodology was presented. Experimental results were obtained using different RTL templates, and the
templates efficiency varied from one benchmark circuit to another. The mapping results of benchmarks shown
that RTL designs are able to reach a good power performance and an acceptable timing performance at a
reasonable cost of area penalty. However, the area overhead can be significantly minimized if the design
exploits efficiently the resources available in RTL patterns, for instance, by sharing of the same unit by more
than one netlist.

6. Acknowledgements

Research partially funded by Nangate Inc. under a Nangate/UFRGS research agreement, by CNPq and
CAPES Brazilian funding agencies, and by the European Community's Seventh Framework Programme under
grant 248538 - Synaptic.

7. References

[1] A. K.-K. Wong, Resolution Enhancement Techniques in Optical Lithography (SPIE Tutorial Texts in
Optical Engineering Vol. TT47). SPIE Publications, 2001.

[2] L. Pileggi, H. Schmit, A. J. Strojwas, P. Gopalakrishnan, V. Kheterpal, A. Koorapaty, C. Patel, V.
Rovner, and K. Y. Tong, “Exploring regular fabrics to optimize the performance-cost trade-off,” Proc.
of Design Automation Conference (DAC), pp. 782- 787, 2003.

[3] T. Jhaveri, V. Rovner, L. Liebmann, L. Pileggi, A. J. Strojwas, and J. D. Hibbeler, “Co-Optimization of
Circuits, Layout and Lithography for Predictive Technology Scaling Beyond Gratings,” IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems, ,vo0l.29, no.4, pp.509-527, Apr. 2010.

[4] Y. Ranand M. Marek-Sadowska, “On designing via-configurable cell blocks for regular fabrics,” Proc.
of Design Automation Conference (DAC), pp. 198- 203, 2004.

[5] M. Pons, F. Moll, A. Rubio, J. Abella, X. Vera, A. Gonzalez, “VCTA: a via-configurable transistor
array regular fabric,” Proc. of VLSI System on Chip Conference (VLSI-SoC), pp.335-340, 2010.

[6] T. Sasao, Equivalence Classes of Logic Functions. Switching Theory for Logic Synthesis. Kluwer
Academic Publishers. 1999.

[7] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha, H. Savoj, P. R. Stephan, R.
K. Brayton, and A. L. Sangiovanni-Vincentelli, “SIS: a system for sequential circuit synthesis,”
Technical Report UCB/ERL M92/41, UC Berkeley, 1992.

[8] F. Brglez and H. Fujiwara, “A neutral netlist of 10 combinational benchmark design and a special
translator in Fortran,” Proc. of IEEE Int’l Symp. on Circuits and Systems (ISCAS), 1985.

[9] Nangate Open Cell Library FreePDK 45nm. Avaliable at http://www.nangate.com/. Version 1.3
07/2009.

SIM 2011 — 26" South Symposium on Microelectronics 71

SET and SEU Simulation Toolkit for LabVIEW

Walter Calienes Bartra, Fernanda G. de Lima Kastensmidt, Ricardo Reis
{wecbartra, fglima, reis} @inf.ufrgs.br

PGMICRO, Instituto de Informatica
UFRGS

Abstract

Nowadays, the fault simulation process is an important step for any project. Predicting the behavior faults
of any process step is essential to ensure that the project is well designed. During the simulation various
problems can be detected and corrected. A tool capable of simulate the effects that occur when a source of fault
is inserted in a digital circuit, in specific SEU faults, is presented. In addition to modeling a fault, is
implemented a TMR method capable of verifying the existence of a fault and not let it spread through the whole
circuit. Also is implemented a Voltage Controled Oscilator (VCO) for view fault effects in this analog circuit.
LabVIEW tool is used to create a set of virtual instruments to simulate SEUs, it is efficient for modeling the
characteristics of its, SETs and others. It is possible with this library to replicate the effects of SEUs and SETs
described in the literature.

1. Introduction

With the advancement of technology and the shrinking of device size makes integrated circuits more
susceptible to errors due to radiation effects. The radiation sources may come from the space (solar flares, Van
Allen belts, solar wind or cosmic rays)[1], or from radioactivity or electromagnetic sources generated on Earth.
Once the circuit is exposed to a radiation source, it can have its logical value changed altering the
characteristics of the circuit or even permanently disabling the device, depending on the amount of radiation to
which the circuit is exposed.

In the literature, these faults are represented by the designation of Single Event Upset (SEU) and Single
Event Transient (SET). SEU is a fault that changes a bit from a register, for example, a register with a logical
value 1 is replaced by a logical value 0 after being affected and vice versa. SET affects the functionality of the
transistor, creating an anomaly that can affect the output of a logic gate. The fault occurrence probability
changes with the increase of simultaneous faults in both sequential or combinational circuits [2].

Programs such as AMATISTA [3] are used in the industrial area to develop fault-tolerant circuits. Another
software, FPGA-based fault simulator [4] using partial reconfiguration to simulate SEU faults by changing the
interconnections in FPGAs. Programs like Fsimac [5] simulate faults on combinational asynchronous circuits.
LIFTING [6] use Stuck-at fault models for fault simulation in circuit interconections. All these simulation
programs require prior knowledge of hardware description languages such HDL or C code to develop their
functions. LabVIEW, a graphical and parallel language, is easy to learn and fast to debug, which makes it ideal
for engineers and scientists, even those with limited programming skills [7].

This work consists in the development of a toolkit for LabVIEW. LabVIEW allows the prototyping of tools
and accessories in an agile and efficient way [7]. One of the features that this tool has is its ability to run the
program inserted concurrently, in addition, its programming is entirely visual. The programs written with
LabVIEW are called virtual instruments (VIs). In the literature a fault simulation toolkit of integrated circuits,
for this graphical programming environment was not found.

The rest of the paper is organized as follows: secton 2 describes the toolkit developed, section 3 shows the
results obtained in the experiments, section 4 shows the conclusion and the future works are in the section 5.

2. Toolkit Development

VIs are based on the use of arrays and are clasified in of three groups: Logic Gate Simulation Tools,
Boolean Logic Simulation Tools and Analogic Simulation Tools. The toolkit was developed on NI LabVIEW
8.20 Professional Development System platform (it is possible to adapt these tools to later versions by using the
Mass Compile option of LabVIEW).

2.1. Logic Gate Simulation

This part of the package contains several tools to simulate logic gates under certain faults (like SET). This
toolkit contain components like logic gates, registers and clock generators. These components have variable
range of voltage, that's is the reason why they have defined forbidden gaps. The input and output formats are
Arrays of Double Precision Floats.

72 SIM 2011 — 26" South Symposium on Microelectronics

2.2. Boolean Logic Simulation

Is a part of the toolkit that contains tools to simulate effects on systems of bivalent logic (logic “1” or logic
“0”). It is based on the use of logic functions of LabVIEW and their data is the Boolean type. Some of these VIs
require structures with Shift Registers (FOR or WHILE loops) to operate properly.

2.3. Analog Simulation

The tootkit also has some analog circuits (such as switched capacitors, current mirrors, transistors, etc..) in
order to simulate more complex circuits and to study the effect of failures on them. This part is based on using
Point-by-Point functions (very useful for real-time simulations). This part of the package is still in testing stage.

3. Experiment Results

The purpose of using LabVIEW to do the simulations is trying to build a VI that is most similar to the
required circuitry using VIs developed for the toolkit. The faults are inyected using special VIs created for this
purpose. The colected data are shown with the LabVIEW Front Panel tools.

3.1. Inverter with Capacitive Load and SET

Figure 1 shows a circuit that has only an inverter and a capacitive load that is affected by the SET, which
can be misinterpreted as a “1” when it should be a logical “0”. The inverter input signal source is a square
signal of f=IMHz and has a supply voltage in 2.4V. The load of this circuit is a capacitance of 100fF that
simulates the fan-out of an inverter. This figure also shows the Block Diagram simulation of the circuit. The
input signal is generated by the function Square Waveform provided by LabVIEW; for this case to use a
sampling rate of F.=60G samples per second to generate the signal #s=1M samples for simulation #s/F;= 16.7us
(must remember the Nyquist criterion: f <F¢/2). The output voltage is linearly affected by the resulting voltage
between SET current and resistance in the inverter output. These effects can be seen on the Front Panel of the
simulation. The SET pulse can be interpreted as an wrong logic “1” if a capacitive load is replaced with a logic
gate or register.

Figure 2. Inverter Circuit with SET, Block Diagram and Front Panel of the simulation.

3.2. Bit-Flip Simulation in TMR Time Redundancy Memory Cell.

Bit-Flip can happen in different parts of a circuit, commonly found in registers and data input circuit. Its
nature is totally random and it may happen at any time. Figure 2 shows a circuit that uses the TMR technique
with redundancy in time to make the circuit tolerant to faults. We tripled the D registers and added a Voter in
the output of triplicated circuits. Each of the three registers use the same clock frequency, but each has a clock
time offset to a certain amount of degrees (this shift is represented by At). To represent the randomness and
change the data value due to a Bit-Flip using a Poisson Noise Generator with a Buffer with hysteresis to prevent
the noise to be very aggressive. With this, it is possible to observe better the effects of Bit-Flip.

In the Block Diagram, it is possible to see the VIs responsible for the production of Poisson Noise, the Data
Generator and the Clock Generator in Triplicated Delay Wave. Moreover, one can see the Bit-Flip Generator
that is inside on a FOR structure along with the three D Registers and a Voter. Figure 3 shows the Front Panel
of this VI, that have a Clock Frequency, Data and Clock Shift controls. The outputs is a graph with four signals:
an Input Data, the Random Fault Signal, the output of the TMR circuit and the Clock Signal.

After running this simulation with different values of clock offset At and frequency, making a comparison
between this circuit and a circuit without Bit-Flip, we draw a trend in the number of average errors vs. the
frequency for different values of delay clock. It can be concluded that this technique is good for relatively low
frequencies (between 20 and 90kHz) and with a displacement At of 120 degrees. If the frequency is too low or
too high, you can see the increase of errors in an alarming rate. A very low At shift implies a amount of large
errors in the data output circuit.

SIM 2011 — 26" South Symposium on Microelectronics 73

e ICEEL,
W —_— _
ok - L= [T
/p }“_‘ »
—r nT - i Clk, 5hi7: idegrezs]] [}

CLK+AL

Clka i —————1

Figure 2. TMR Time Redundancy Circuit and LabVIEW Block Diagram.

Data Clk. Shift (degress)
Clk. Freq. (Hz) 40000 150 200
200,00k Ay S 100 250
! J =0 J S
> L,
L 65535 o 360
1B5335 2120
Digital
Graph
Data
Data Fault -
" Out
R Clock [l
&
Out

0.0015 0.001667

Time (s)

Figure 3. Front Panel of the simulation of TMR Memory Cell Circuit with Bit-Flip.

3.3. VCO Simulation with LASER Pulse

For this simulation, functions Point-By-Point are used to simulate a voltage controlled oscillator (VCO)
affected for a short time LASER exposition or LASER pulse. For this simulation, a FOR structure is needed
because your shift registers are used for feedback a data [7]. A VCO is based primarily on two tank circuits,
which consist in an inductance in parallel with a capacitor or varicap diode. These tank circuits generates a sine
wave along with two NMOS transistors crossed to generate a negative resistance that makes the VCO oscillate.
Figure 4 shows this basic circuit. All particle impact lasts a short time. The effects are almost undetectable in
analog circuits because the particles contribute little (around 50fC), the effect is very similar to pink noise of
short duration. To see effects of faults in these circuits, must be simulated a pulse with high duration and high
current equivalent to more than 30pC on the cross-pair transistors that form the negative resistance using an
asynchronous LASER pulses [8].

jl

G

[i
J

v
280n

I 250n
SE91) TSoon
2 2500

SE-9
0

Figure 4. VCO Circuit and its correspondent Block Diagram.

For this simulation, an inductance of 1nH and a control voltage (V) of about 1.77V is used, this produce
a sine wave of 1.25GHz in the VCO output. Figure 5 shows the simulation when a SET fault with 25mA of
maximum current and charge equivalent to just over 37pC is inyected. The behavior shown is similar to the

74 SIM 2011 — 26" South Symposium on Microelectronics

SPICE simulation results in [8]. The lack of modeling parasitic capacitances in transistors add inaccuracy to the
simulation done with this toolkit.

Simulation L(H)
175-
T —
e E 1in
Wiune (W}
125-
e 14
E 12 16
3 0.75-)
s 199 1 g
0.25-
) ERETETE]
-Dlr) _I L L e L L e L e e
0 250 Sn 75n 10n 1250 15n 1750 20n| 1enkFreq.(H2)
Time (s) 1.25285G

Figure 5. Front Panel of the VCO simulation

4. Conclutions

Several methods of insertion and mitigation of faults in digital and analog circuits were tested in accordance
with previous work on these issues.

After developing VIs for the simulation, generation of faults and test of fault tolerance technics, it is
demonstrated that LabVIEW is a good platform for prototyping, programming and simulation. Moreover, the
methods implemented in this work have served to understand these topics that are so important for modern
technology.

5. Future Works

As future works, the model of logic gates should be improved. Also fault models need to be ajusted
according to current technologies. It is also thought to add more functions, such as Hamming code generators,
EDAC and functions for failure analysis in ICs and RAM memories. The plan contemplate to use some VIs that
simulate BIST circuits based in LFSR circuits type Fibonacci and Galois.

The modeling of transistors Point-By-Point will be improved, to include an efficient model of parasitic
capacitances. In addition, the use of a more sophisticated transistor model, such as ACM model [9] is needed,
because transistor models affect both analog and digital fault modeling.

6. References

[1] R. Velazco, P. Fouillat, R. Reis, “Radiation Effects on Embedded Systems”. Dordracht, The Netherlands: Springer,
April 2007.

[2] N. Miskov-Zivanov, D. Marculescu, “Multiple Trasient Faults in Combinational and Sequential Circuits: A
Systematic Approach”. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, October
2010.

[3] I. Gonzales, L. Berrojo, “Supporting Fault tolerance in a industrial environment: tha AMATISTA approach’.
Seventh International On-Line Testing Workshop, 2001. Proceedings, pg. 178-183.

[4] L. Kaftka, O. Novak, “FPGA- based fault simulator”. 2006 IEEE Design and Diagnostics of Electronic Circuits and
Systems. Proceedings, pg. 272-276.

[5] S. Sur-Kolay, M. Roncken, K. Stevens, P. P. Chaudhuri, R. Roy, “Fsimac: A Fault Simulator for Asynchronous
Sequential Circuits”. 9th Asian Test Symposium, 2000. Proceedings, pg. 114-119.

[6]. A. Bosio, G. Di Natale, “LIFTING: a Flexible Open-Source Fault Simulator”. 17" Asian Test Symposium.
Proceegings, pg. 35-40.

[7] G. W. Johnson, R. Jennings, “LabVIEW Graphical Programming”, 4th ed. New York, USA: McGraw-Hill, 2006.
[8] W. Chen, V. Pouget, H. J. Barnaby, J. D. Cressler, G. Niu, Pascal Fouillat, Y. Deval, D. Lewis, “Investigation of
Single-Event Transients in Voltage-Controled Oscillators”. IEEE Transactions on nuclear Science, Vol. 50, Num 6.

December 2003.

[9]. 0. da Costa Gouveia Filho, A. 1. Araujo Cinha, M. Cherem Schneider, C. Galup Montoro, “The ACM Model for
Circuit Simulation and Equations for Smash”. Floriandpolis, Sep. 1997.

SIM 2011 — 26" South Symposium on Microelectronics 75

Prematurely Aborting Linear System Solver in Quadratic Placement

Guilherme Flach, Marcelo Johann, Ricardo Reis
{gaflach, johann, reis}@inf.ufrgs.br

Universidade Federal do Rio Grande do Sul (UFRGS)

Abstract

In this work we develop a new quadratic placement technique where we prematurely abort the linear
system solver to save runtime. This has low impact in the placement flow due to the expand-contract
phenomena intrinsic to the ICCG solver outlined in this paper. A coloring scheme for placement useful for
comparing visually placement results is described. The coloring scheme then is used to create a partitioning
strategy to insert more global view in our placement technique. Our placer based on the ideas developed in this
paper is 25% faster for largest ISPD 2002 benchmarks than FastPlace 3 with no significant penalty in
wirelength.

1. Introduction

By definition, the placement problem is easy to be stated, although solving it efficiently is commonly a
challenging task. Simply put, its goal is to place circuit components evenly on the circuit area so that wirelength
and other parameters are targeted.

Among several placement techniques, quadratic placement [1] has taken most of academic efforts today
since it is in general faster and achieves comparable results to other state-of-the-art strategies. In this paper, we
present a new standard cell placement tool inspired by quadratic placement technique.

Our main contributions are:

e anew fast placement technique able to deal with 100K cells in few seconds;

e anew coloring placement scheme to aid placement result comparisons;

e aplacement result improvement through partitioning;

e an easy to parallelize placement tool.

2. The Anatomy of a Quadratic Placer

A quadratic placement tool is built around a linear system which describes the cell connectivity as well as
the forces that are used to remove overlap between cells as depicted in Figure 1. The solution of the linear
system provides the equilibrium cell positions where the total force acting on any cell is zero. When no force is
applied besides the connectivity, the system solution is equivalent to the one which minimizes the sum of
quadratic distance between connected cells, hence the name quadratic placement.

Since the linear system without overlap removal forces provides invalid solution with large amount of
overlap, spreading forces must be added in order to spread cells evenly over circuit area so that overlaps are
reduced. The spreading forces are added based on the current placement solution. This creates an iterative
process where one interleaves the system resolution and the system modification until the cells are evenly
spread over circuit area.

The differences between quadratic placers come from the way the cell connectivity is modeled and mainly
from the the way the spreading forces are introduced in the linear system.

Solver

Netlist Solution

Linear
System

Fig. 1 — The Anatomy of a Quadratic Placer.

3. A New Quadratic Placement Technique

As mentioned previously, quadratic placers differs from each other mainly in the way spreading forces are
added to the system. Our tool, on the other hand, also adapts the quadratic placement flow by modifying the

76 SIM 2011 — 26" South Symposium on Microelectronics

way the linear system is solved. In fact, in our tool, the linear system is not entirely solved as the solver is
interrupted in its very first iteration. At first glance, this may seem a little disruptive, but it is grounded by our
experimental observation that one iteration of the solver suffices to provide a good approximation to where
cells should be moving. When interrupting the solver at first iteration, the placer is able to save runtime since in
general many iterations are required to converge to the solution.

To come to this idea, we set the following experiment. Using the Incomplete Cholesky Conjugate Gradient
(ICCG) method [2] for solving the linear system, we have plot cells at every solver iteration instead of just
plotting after the solver converges. This shown a very interesting phenomena: cell positions initially expand and
then contract back to their final position. Figure 2 illustrates this phenomena.

The expansion is caused by the spreading forces added to the system whereas the contraction is due to cell
connectivity. At initial solver iterations spreading forces cause cell positions to overestimate their final
positions. As the system converges, the cells are contracted back until they reach their final position. Although,
cell position overestimate final position, the overestimation is bounded by cell connectivity.

Initial Position

— - 1% lteration Position

~ _ — it / «ccee. Final Position

Fig. 2 — Expansion-Contraction ICCG Phenomena.

Looking at flow in Figure 1, after cell have contracted back we apply techniques to spread them. This
indicates that we are repeating a process that is intrinsic to the ICCG in its initial iterations. Based on such
observation, we develop our placer executing only the first iteration of the solver and then applying the
spreading force techniques to reflect the new circuit utilization.

3.1. Spreading Forces

Spreading forces are added to the system to reduce overlap between cells. To compute spreading
forces in our tool, first the placement area is divided hierarchically in rectangular regions. At first level, the
placement area is divided in four same-sized regions. At next level, each region of the previous level is divided
in four same-sized regions. The number of levels is chose such that the region area of the last level meet
approximately the cell average area.

After placement area is divided, gradient forces are computed at corner of each region in each level.
Gradient forces point to high density regions to low density ones. Finally, to compute the spreading force acting
on a cell, we interpolates the gradient forces of the four corners at the center of the cell as shown in Figure 3a.
This process is done in each level and the final gradient force acting on the cell is the average gradient force for
all levels.

(a) (b)
Fig. 3 — Linear system modification: (a) spreading forces; (b) HPWL forces.

3.2. HPWL Forces

A common reported drawback of quadratic placement technique is that it only indirectly accounts for
half-perimeter wirelength (HPWL) since the system tends to reduce quadratic wirelength. Our placer applies
HPWL forces to aim more accurately the HPWL.

SIM 2011 — 26" South Symposium on Microelectronics 77

HPWL forces affects only cells on the boundary of the bounding-box. For such cells, a force is added
in order to push it to the opposite border. This force is fixed, i.e., does not vary on the net cardinality neither the
bounding-box area. The computation of HPWL forces is exemplified in Figure 3b.

4. Improving Placement Results Using Partitioning

During the development of our placer, we noticed that our approach is faster, but was not capable to
meet wirelengh results from other state-of-the-art placer. To try to discover why our placer could not beat other
placer in wirelength, we developed a technique for placement coloring to compare visually different placement
results. It is known that placement and partitioning are in some extent correlated [3]. In fact, many placers use
partitioning as their main algorithm or as a heuristic to improve placement results. Supported by this
correlation, our coloring technique use partitioning to color each cell. Basically cells are partitioned into n
groups and to each group a color is set. Due to the correlation between placement and partitioning, it is
expected that same-colored cells will be clustered together.

Finally, we compared our placement results with the FastPlace 3 [5] results visually. The comparison
for the ibm 18 benchmark [4] is shown in Figure 4 where we can notice that our placer (a), in fact, cluster same-
colored cells, but clusters are more messy spread than the result from FastPlace (b). This fact indicates that our
placer was not able to deal with the global view of the problem, although it was doing a good job in the local
view.

(b) (c)
Fig. 4 — Placement coloring. (a) Our prior placer result; (b) FastPlace 3 result; (c) Our final placer result using
partitioning for initial placement.

Using the results of this coloring techniques, we used partitioning to impose a initial relative order between
cells of different color. We partitioned cells in four groups and placed each group in the center of the four
placement area quadrants instead of putting all cells in the middle of the circuit. This increased the total run-
time of the placement, but allowed our placer to provide state-of-the-art results. The result after partitioning is
presented in Figure 4c.

5. Results

To check our placer performance we run it over the ISPD 02 benchmark set [4] and compare it to the state-
of-the-art placer FastPlace 3 [5]. FastPlace 3 is currently one of the faster academic placers providing
comparable results with other state-of-the-art placers. Our placer receive as input the 4-way partitioning result
provide by the hMetis [6]. The run-time of the hMetis is not accounted in the results, however, we point out that
for the largest benchmark, ibm 18, it took only 9s to run the partitioning.

Run Time
350

300
250

200
== PlaceDL

w
g Time (s)
3 1% — FastPlace 3
[} Time (s)
100
50
o
ibm02 ibm04 bm0& ibm08 ibml10 ibmi12 ibmi14 ibm16 bm18
ibm01 ibm03 ibm05 bm07 bm09 bmi1 ibm13 ibm15 bm17

ISPD04 Benchmark

Fig. 5 — Results on the ISPD 02 benchmark set.

In the Table 1 we see that our placer is in average 13% faster while providing the same average wirelength.
It is important to highlight that as the benchmark size increases, our placer achieve larger runtime gains,
although a little increase in the wirelength is noticed. If we average only the nine largest benchmark w.r.t the
number of nodes, the average runtime reach up 25%. This effect can be seen in the Figure 5.

78 SIM 2011 — 26" South Symposium on Microelectronics

Tab.1 - Our placer results on ISPD 2002 benchmark set.

Qur Placer FastPlace 3 Qur Placer / FastPlace3
Benchmarks —pwL Time (s) HPWL Time (s) HPWL Time
ibmo1 1.69E+006 18.8] _1.72E+008) 10.05 0.98 1.87]
lbm02 3.59E+006 24.32] _3.60E+009) 26.39 1.00) 0.92
lbmo3 4.96E+006) 27.34] _4.66E+006) 22.71 1.07] 1.20)
lbmod 5.64E+006 20.64] _5.73E+009) 36.5 0.08) 0.81
ibmos 9.45E+006 26.72] 9.8BE+006) 32.76 0.96) 0.8
lomos 4.94E+006) 31.49] 4.94E%006 37.16 1.00) 0.39)
Ibm07 B.37E+006 40.28] _B.23E+006) 46.66 1.02 1.09)
lbmos 8.99E+006 55.96] 9.05E*006 79.18 0.99) 0.71
Ibm03 9.4BE+006 57.77] _9.67E+00 63.13 0.99) 0.92
ilbm10 1.73E+007 69.33] 1.73E+007] 96.21 1.00) 0.7
lbm11 1.41E+007 §0.80] _1.46E+007] 90.71 0.09) 0.70)
ibm12 219E+007] B0.46] 2.28E+007 103.49 0.96) 0.78
lbm13 1.69E+007 87.91] 1.69E*007 143.33 1.00) 0.61
ibm14 3.32E+007 148.82] _3.19E+007] 176.38 1.04) 0.4
ilbm15 3.90E+007 195.00] _ 3.85E+007] 305.52 1.01 0.64)
lbm16 4.49E+007] 238]_ 4.42E+007] 251.51 1.01 0.95
lbm17 6.20E+007] 214.62] 5.99E+007 333.18 1.04) 0.64)
ibm18 4.18E+007) 182.27] _ 4.07E+007] 267.58) 1.03 0.68
AVG 1.00 0.67

6. Conclusions and Future Work

In this work, we presented a new quadratic placement technique where we prematurely abort the linear
system solver at the very first iteration. This has low impact in the placement flow due to the expand-contract
phenomena intrinsic to the ICCG solver outlined in this paper. Prematurely aborting the solver save runtime
allowing our placement tool run faster than state-of-the-art placers.

We also presented the use of partitioning to insert global view in quadratic placement. The lack of global
view in our prior placer was detected thanks to a new scheme for placement coloring developed in this work.
The coloring scheme set the cell color based on the partition that cell belongs to and can be used for researches
to visually compare their results.

Besides being fast, most of the pieces of our placer are easily to parallelize as the linear algebra operations
and gradient computation. This allows our placer to scale well as the circuit size increases.

7. References

[1] C. J. Alpert , T. Chan , D. J.-H. Huang , I. Markov , K. Yan, “Quadratic placement revisited”,
Proceedings of the 34th annual conference on Design automation, p.752-757, June 09-13, 1997,
Anaheim, California, United States.

[2] R. Beaumens. “Iterative solution methods”, Applied Numerical Mathemetics. vol.51, No 5, 2004.

[3] M. A. Brever,“Min-Cut Placement”, Journal of Design Automation and Fault Tolerant Computing, Oct.,
1977, pp. 343-362.

[4] N. Viswanathan , C. C. Chu, “FastPlace: efficient analytical placement using cell shifting, iterative local
refinement and a hybrid net model”, Proceedings of the 2004 international symposium on Physical
design, April 18-21, 2004, Phoenix, Arizona, USA.

[5] N. Viswanathan , M. Pan , C. Chu, “FastPlace 3.0: A Fast Multilevel Quadratic Placement Algorithm

with Placement Congestion Control”, Proceedings of the 2007 Asia and South Pacific Design
Automation Conference, p.135-140, January 23-26, 2007.

[6] G. Karypis and V. Kumar. “hMETIS 1.5: A hypergraph partitioning package”. Technical report,
Department of Computer Science, University of Minnesota, 1998. Available on the Web at URL
http://www.cs.umn.edu/~metis.

SIM 2011 — 26" South Symposium on Microelectronics 79

Decreasing Transistor Count Using an
Edges Sharing Technique in a Graph Structure

Vinicius N. Possani, Luciano V. Agostini, Felipe S. Marques, Leomar S. da Rosa Jr.
{vnpossani, agostini, felipem, leomarjr}@inf.ufpel.edu.br

Group of Architectures and Integrated Circuits - GACI
Federal University of Pelotas — UFPel
Pelotas — Brazil

Abstract

Increasingly, in VLSI designs, the integrated circuits have higher density of transistors on the small
physical area, power consumption reduced and greater performance. An important factor that has contributed
for this is the representation of logic functions with a reduced number of transistors. Thus, we sought an
alternative solution to common methods, such as factorization, to generate optimized networks. This paper
presents a graph-based structure to represent a transistor network and a technique to reduce the number of
transistors by edges sharing. Our method can achieve non-series-parallel arrangements while methods based
in factorization can only derive series-parallel arrangements, which may not be the best solution. Thus, when
applied to the set of 4 input p-class logic functions, our method has advantages if compared to the good-factor
algorithm implemented in SIS Software. Also, in other logical functions our algorithm can achieve results as
good as those generated by techniques based in BDD.

1. Introduction

The micro electronics industry has brought great advances in last years, no doubt, designing digital circuits
VLSI becomes an increasingly task of extreme complexity and high cost of resources and time. In this context,
aid tools are applied to support these projects, contributing to the designers manipulate more transistors and
decreasing the development cycle. Therefore, the automatically generation of transistor networks makes simple
some arduous tasks. Moreover, it also reduces the aggregate cost to the final product.

This paper proposes an edge sharing method, on a graph structure, to generate optimized transistor
networks. In our approach, the input Boolean expression is translated into a graph that is later optimized
through edges sharing. Nowadays, alternative methods which are available in the literature has been study and
applied in this context. They are based on graph optimizations, were each edge in the graph keeps an
association with a transistor in the network. The main idea is try to minimize the edges in an existent graph [1]
or to compose a new graph with a reduced number of edges [2]. These alternative methods are used because the
common technique to optimize a transistor network is based on factorization [3-4] and this may not be an
optimum solution [5]. In factorization method an input Boolean expression is manipulated in order to reduce
the number of literals that compose the expression. Subsequently, this optimized expression is translated in a
transistor network composed by a reduced number of switches. In this sense, our sharing method intent derives
non-series-parallel arrangements in order to deliver better results than the common technique.

2. Edges Sharing Method

The edges sharing method considers as input a sum-of-products (SOP) expression. In order to translate the
expression to a graph, a parser is needed. The parser will deliver one vector of literals for each product storing
these vectors in a list. Afterward, it is started the assembly of the graph by removing vectors one at a time from
this list and creating an edge in the graph for each literal found in the vector. As an example we will use the
Exp. (1) which represents a ‘XOR’ with 4 inputs. Fig. 1.a shows the graph obtained of this expression.

IA*IB*IC*D + |A*IB*C*ID + |A*B*IC*ID + |A*B*C*D +
A*IB*IC*ID + A*IB*C*D + A*B*!C*D + A*B*C*!D (Exp.1)

In the sequence, all paths in the graph are traversed in order to recognize identical edges (edges that
represent same literals and have at least one vertex in common). If this condition is verified in the graph, then
the identical edges are shared. This procedure consists in keeping only one of these identical edges, eliminating
the remaining edges and merge the vertices that connect them. The vertices that will be merged are detached
with the circumferences without fill in the figures below. This is exemplified in Fig. 1.b where the edge “!A’
was shared and the vertices 1, 5, 8 and 11 were merged. Now the edge ‘A’ will be shared generating the graph
shown in Fig. 1.c. So, in this moment the vertices 8 and 17, one at a time, are considered the new starting point
of the optimization process, where the algorithm sought identical edges between these two vertices and the

80 SIM 2011 — 26" South Symposium on Microelectronics

vertex 4. This way the edge ‘!B’ connected to the vertex 8 will be shared and in sequence this occurs with edge
'B’. Afterward that, the same process is applied to the edges ‘!B’ and ‘B’ attached to the vertex 17. This is
demonstrated in Fig. 1.d.

1 | 2 | 3 2 [Fl
I 5 d =« i K ¢ L
g -
1 - C
6 ®* & < & . T *
8 E 0w "B 3 - 12
G B a 4 = o . a L4 Y
i 12 3 T 13
B C - D - - c -
3 ™ ; Ie s 0 I 15 c i3
» e Ry ¢ .
1 . 18 19D B] c oo
. B P 4 o L [] ¢
10 21 ' 1z B [T 22
Y E P £ P, &
(a) (I
i
_ 0
B
BT R B 8 < ‘ o
I e 10 n
o T, “ . B e
a 3 15 i 156 B .
T R B A Lo S T s 2
¢ ® B L SR 0
e H Kk e« ;
¥ 2 B
o=
(c) (d}
B 5 13 ®
= - €
I - LU
5 10 D @ [l
[L |
1A et R " CooB 1A B 2 i o
0 2 ¢ mp & s é
-5 - - 1
A e . @€ A B0 et n.
[E O 17 - SO 1
L S N e
(e} ()
&
- o -0 5 B 15 \C 13
. L 2 L g 2
o g . 1o
o i - E ! g oo 3
:) » o .
L A wo “a " s C L o
' e 17 a1 | 18
® 6 3 - B 2 L e
() (h}

Fig. 1 — Steps of the sharing method to a ‘XOR’ with four inputs.

Considering the Fig. 1.d, departing from the vertices 6, 12, 15 and 21, one at a time, and traversing the
graph toward the vertex 4, it is not possible to perform new optimizations because identical edges are not found
between these vertices and the vertex 4. To perform new optimizations the sharing algorithm is applied from
the end to the beginning of the graph. Thus, departing from the vertex 4 the edges ‘D’ are identified and were
shared as the Fig. 1.e. demonstrates. In the next step the edges ‘!D’ will be shared resulting in the graph of the
Fig. 1.f.

Now, consider the vertices 10 and 19 as new start points of the sharing algorithm. There are two edges ‘!C’
connected on the vertex 10, as Fig. 1.f shows. Then it is possible to remove the edge ‘!C’ attached to the
vertices 10 and 12 merging the vertices 12 and 15. In this case, the merging of the vertices 12 and 15 will derive
two edges ‘C’ between the vertices 19 and 15. When this is detected, just one of these edges remains in the
graph. Fig. 1.g shows this state of the graph. This process is applied again, but this time to the edges ‘C’ that are
connected to the vertex 10, merging the vertices 6 and 21. This will derives two edges ‘!C’ between the vertices
19 and 21, one of this edges will be removed resulting in the final graph illustrated by Fig. 1.h. Afterward,
starting from the vertex 19, it is not possible to perform other optimizations. Thus, the optimization process
ends. If any of these processes generates an invalid path, a recovery routine is invoked and the process is
reversed. In the next session this procedure will be explained.

SIM 2011 — 26" South Symposium on Microelectronics 81

3. Validation Procedure

To guarantee that the optimized transistor network will be the faithful representation of the original
expression, making sure that all products described in SOP are present in the resultant graph and sure that
sneak-paths (forbidden paths) are not introduced on the network, a validation procedure is applied. Thus, it is
necessary to validate all paths of the graph each time an edge is shared. The paths of the graph are generated
through a recursive algorithm applied on the adjacency matrix that represents the graph. The algorithm uses a
list structure to store the indexes of the matrix that make up a path of the graph.

Consider as example the simple graph illustrated by Fig. 2.a. The first step is to insert in the list the index
‘0’ that indicates the row of matrix that represents the initial vertex of the graph. Then this row is traversed in
searching of the literals. When the literal ‘A’ is found in the row ‘0’ and column ‘1°, as shown in Fig. 2.b, the
index of this column is inserted into the list, if this index has not yet been inserted. Then, the algorithm
immediately switches to the line ‘1’ indicated by the column of the element found. Each row changing is a
recursive call of the algorithm as Fig. 2.b demonstrates. This process is repeated recursively until the index ’2’
of the final vertex is reached, meaning that a path was formed. This procedure can be seen through the arrows
in Fig. 2.b. Notice that literals in a column whose index has already been inserted in the list are ignored.
Afterward, through the contents stored in the list it is possible to compose the path by indexing the matrix. All
paths formed are stored in a list in order to compare with the original expression.

Once a path is formed, the last index ‘2°, inserted into the list, is removed and the algorithm returns to the
last cell of the matrix that was visited. Then, it continues traversing this row until finding another element, in
this case the literal ‘C’, and it switches to the row ‘3’ indicated by the column of this element.. If the row ends
and any other element is found the algorithm returns to the last row visited and continues searching elements.
After forming the two paths that start with literal ‘A’ the algorithm returns to the cell with row ‘0’ and column
‘1’, keeping in the list just the index ‘0’. Of course the algorithm travels this row finds the element ‘B’ in row
'0” and column ‘3°. So, all procedure explained above is applied again as shown the Fig. 2.d and Fig. 2.e. The
process ends when it returns to the initial row ‘0’ and all cells this row were visited.

. . . L End R L end
0| 1] 24 3 e 0 1] 24]3
1 = o N N '
A) . . aa o) E
3 T = 1
B : 2 2 e 2
3 =1 - = =i
| 3 | . [] | . . =] ¥ | I—=| . I p=J | = |
{a) () (<) () (€)

Fig. 2 — Matrices for explaining the algorithm able to generate all paths of a graph.

The next step consists in comparing each path with the products that compose the original expression. If a
path that does not belong to SOP has been introduced, a routine checks if this path is sensitized or not
sensitized. When thinking in a transistor network, a path cannot be sensitized if it contains both polarities, for
example ‘A’ and ‘!A’. In order words, this path is not a valid path. If the new path introduced is not sensitized
he is accepted, because it does not change the logical behavior of the circuit. Otherwise, the graph needs to be
restored to step before the optimization that generated the new path, and this optimization is discarded. For this,
a restore routine is invoked, this is responsible for recovering the edges and vertices that were eliminated from
the graph and reconnect them.

To perform the recovery process it is necessary to store some information as the literal represented by
removed edges and what vertices were merged. Finally, if necessary, with this information the graph can be
recovered without compromising the functionality of the circuit which it represents. Notice that all original
products of the Expression (1) are present in the graph of the Fig. 1.h. However, by sharing edges, some new
paths were also introduced. All these paths are allowed because are paths that cannot be sensitized. Another
interesting fact is that the proposed approach may derive Wheatstone bridge networks like methods proposed
by [1] and [2]. The example illustrated in Fig. 1.h presents some bridge configuration. It is a benefit over
optimization approaches based on factorization that can only derive series-parallel networks.

4. Experimental Results

Our algorithms were implemented in Java language. As output, the technique shows the optimized
networks using the Prefuse graphics library [7] and generates a Spice netlist of the optimized circuit. To
describe our edges sharing method we used the Exp. (1), referring to a ‘XOR’ with four inputs. The achieved
network was compared to the result obtained by others techniques described in [5], as BDD, OpBDD, LBBDD,
CSP and to the good-factor algorithm from SIS Software [8]. Our method reaches the same result like the BDD,
OpBDD and LBBDD methods, with 12 transistors, overcoming the SIS with 16 transistors and CSP, NCSP
with 22 transistors.

Finally, the set of 4 input p-class logic functions was used as benchmark to evaluate our proposed
algorithm. This set is composed by 3982 logic functions. Each logic function was applied to SIS software as

82 SIM 2011 — 26" South Symposium on Microelectronics

well as to our solution. When running in SIS, the two available algorithms were used, the quick-factor and the
good-factor. However, our proposed method was able to deliver better solutions, reducing the total number of
switches in the networks as Tab. 1 illustrates. This is due to the ability of generating networks with Wheatstone
bridge arrangements. Our approach was capable to reduce up to 4 transistors in some generated networks if
compared to the SIS. On the other hand, the good-factor achieves some smaller transistor networks. On these
130 cases our algorithm was not able to generate bridge configuration, generating networks that are purely
series-parallel arrangements.

Tab. 1 — Results for the set of 4 input p-class logic functions.
Total transistor count

Our solution 35598
Good-factory 37723
Quick-factory 38341

Our solution compared to SIS

of logic functions

decreasing transistor count 1644
exact same transistor count 2208
increasing transistor count 130

5. Conclusions and Future Works

This paper presented an edges sharing method to derive optimized transistor networks. The algorithm was
implemented in Java language and a graph interface using Prefuse library is available. To describe our
algorithm step by step, we use an 'XOR' with 4 inputs. The optimized network presents the same result of the
methods in [5] for a ‘XOR’ with 4 inputs, surpassing the SIS solution. Nevertheless, when using the set of 4
input p-class logic functions, our solution is able to perform a considerable reduction of the total transistor
count. Moreover, it is capable to deliver 1644 networks with less transistor count, if comparing to the good-
factor solution, reduce up to 4 transistors in some networks. The optimized transistor networks generate by our
approach are validated ensuring the logical behavioral of the network. As future work we intend to evaluate the
complexity of the algorithm. Also, we intend to compare the proposed solution with the method described in

[4].

6. References
[1] J. Zhu et al. On the Optimization of MOS Circuits. IEEE Transactions on Circuits and Systems:
Fundamental Theory and Applications. (1993), 412-422.

[2] D. Kagaris et al. A Methodology for Transistor-Efficient Supergate Design. IEEE Transactions On
Very Large Scale Integration (VLSI) Systems. (2007), 488-492.

[3] Brayton, R. K. Factoring logic functions. IBM J. Res. Dev. 31, 2 (1987), 187-198.

[4] Mintz, A. and Golumbic, M. C. Factoring boolean functions using graph partitioning. Discrete Appl.
Math. 149, 1-3 (2005), 131-153.

[5] Da Rosa Jr, L. S. Automatic Generation and Evaluation of Transistor Networks in Different Logic
Styles. PhD Thesis PGMicro/UFRGS, Porto Alegre, Brazil. (2008), 147 p.

[6] Da Rosa Jr., L. S.; Marques, F. S.; Schneider, F.; Ribas, R.P.; Reis, A. I. A Comparative Study of
CMOS Gates with Minimum Transistor Stacks. Symposium on Integrated Circuits and Systems
Design. (2007), 93-98

[7] Prefuse.org. The Prefuse Visualization Toolkit. [Online] Avaliable: http://prefuse.org/ [Acessed: Mar.
25,2010].

[8] Sentovich, E.; Singh, K., Lavagno; L., Moon; C., Murgai, R.; Saldanha, A., Savoj; H., Stephan, P_;
Brayton, R.; and Sangiovanni-Vincentelli, A. SIS: A system for sequential circuit synthesis. Tech.
Rep. UCB/ERL M92/41. UC Berkeley, Berkeley. (1992).

SIM 2011 — 26" South Symposium on Microelectronics 83

Sroute: A Router Tool for Structured ASICs

1 - . . 1 . r
Erico de Morais Nunes, Reginaldo da Nobrega Tavares
{nunes.erico,regi.ntavares } @gmail.com

"Universidade Federal do Pampa — UNIPAMPA
Bagé - Brazil

Abstract

This paper presents a routing tool and its integration on a synthesis flow for automatic generation of
structured ASICs. The most important contribution of this tool is that it can be used to generate
interconnections with less vias. The router implementation is described and some results from the physical
synthesis are shown.

1. Introduction

The design of integrated circuits (IC) is becoming increasingly complex. The design complexity has
increased due to the continuous scale reduction of the circuit components. Although IC components scale
reduction brings the advantage of allowing more functionality in a single chip, it usually demands higher design
cost to achieve higher performance [1].

Design complexity has progressively increased because of higher impact of process variability and
parasitic electric effects. In deep submicron design, fabrication is more sensible to process variability that
causes defects or circuit malfunction after fabrication [2].

Several techniques have been employed to increase the circuit performance when the circuit design is
exploring new IC process technologies. Such techniques are called design for manufacturability (DFM). One
DFM techinique is based on structured or regular layouts called structured ASICs. Structured ASICs uses few
logic cells placed in a regular and structured form to improve layout predictability. This strategy may help to
improve the fabrication process because the same cell layouts are employed to construct the circuit.

In this regular scenario the wires would be implemented with more attention because the interconnection
implementation is more unpredictable. A number of factors contributes to affect the wire layout scenario. For
example, the cell placement can generate long wires or even congested areas and it may create a disordered
layout scenario. Therefore, routing also is an important design task to DFM.

This paper presents a new router called Sroute. Sroute is a grid router which uses A* algorithm plus some
improvements. This new router is able to reduce the number of vias. Reduction on number of vias may help to
improve the layout scenario complexity. To check this capacity, Sroute was inserted in a regular layout design
flow called Martelo [3][4]. Martelo is a physical design tool that provides an automated synthesis flow able to
generate structured and regular layouts. The layout regularity is achieved because Martelo uses only 2-input
nand gates. The 2-input nand gates are placed in a regular matrix. Fig. 1(a) shows the Martelo design flow.

Circuit
description

Placement Router call

RotDL format input

Y

Martelo |«— Convert to
Sroute input
Y
A Unrouted
Router no Wire information Information
Sroute
A\ \

All routed? Convert to RotDL Convert to RotDL
Equivalent format Equivalent format

yes

CIF Layout

(a) Martelo synthesis flow

| |
v

Return to Martelo

(b) Sroute implementation with Martelo

Fig. 1 — Synthesis flow overview

84 SIM 2011 — 26" South Symposium on Microelectronics

Martelo synthesis originally uses the RotDL [5] router that implements all interconnections of the circuit.
RotDL is a maze router based on A* path search algorithm. Because of Martelo matrices rely on full over the
cell (FOTC) routing, the routing step is an important work on the Martelo flow.

This paper is organized as follows: section 2 describes the Martelo flow synthesis and interaction with
Sroute. Section 3 is about the Sroute implementation and features. Section 4 describes a set of experiments
performed to compare Sroute and RotDL in terms of the total wirelength and the number of vias. Then section 5
is about some conclusions.

2. Integration with Martelo

Martelo [3][4] is a layout generator based on regular matrices of 2-input nand cells. Only 2-input nands are
allowed in this matrix. Martelo uses the synthesis flow described in Fig. 1(a). The synthesis receives two inputs
through files: the netlist and the placement. In order to enable transparent exchange of data between Martelo
and Sroute, it was necessary to implement programs that convert the input and output descriptions. Martelo
calls the router with a RotDL input file format as argument. If the enabled router is Sroute, this input must be
converted to a Sroute format. The router result is also expected to be in RotDL format. So, it was also necessary
to implement programs that convert Sroute to RotDL format. This flow is presented in Fig. 1(b). The few
converters were implemented using Python script language and they are inserted in the automatic process.

3. Sroute

Sroute is a grid router tool based on a maze router approach.

Sroute uses an A* heuristic for path search in the grid. Sroute makes use of some features that improve the
quality of the results. For example, Sroute tries to reduce the number of corners and vias which are inserted.
The Sroute input is a file describing the grid and the nets. Nets are described by only an ID string and a list with
3 coordinate points. The 3 coordinate points describe respectively the x, y and z coordinate of a pin. The axis
consider x grows to the right, y grows to up and z is the layer. After reading the input file, Sroute places the
pins at their grid positions.

Sroute makes a breadth-first search (BFS) using the A* heuristic. A* is a well established heuristic used to
reduce the number of grid positions visited before finding the target on a BFS. This heuristic makes use of a
cost in each grid position to determine if using that position is a good choice towards a good result. For routing,
the higher the cost of a position, the worse it is to include that point in the wire path. The cost of a position for a
routing instance on Sroute is basically the number of expansion steps necessary to reach that position plus the
rectilinear distance between a source position and the target. A* makes finding a path significantly faster than
using the standard maze routing. This happens because positions in the direction opposite to the target will have
a higher cost and are quickly discarded. As a result, A* wastes much less time expanding non used positions.

This routing style only solves routing between two pins (a source and a target), but nets often have more
than two pins. Nets with more than two pins are called multi pin or multi terminal nets. Multi pin nets must first
be decomposed into a set of two pin connections. By solving all the two pin connections of a net, it is
guaranteed that the net is correctly routed.

However, routing the two pin nets blindly does not usually yield good results. Fig. 2(a) shows what can
happen if that approach is taken. Fig. 2(a) and Fig. 2(b) are routing results from Sroute.The circular geometries
are only demonstrative for the positions of the pins involved.

(a) Blind (b) Better
Fig. 2 — Routing Multi pin nets

The case in Fig. 2(a) happens because each two pin connection is solved individually. In this case, each
previously placed wire segment is treated as an obstacle, and a new two pin connection cannot cross it, even
from the same net.

Sroute makes use of a strategy called net linking to try to improve this solution. When using net linking,
the first two pin connection is routed normally. Then, the following two pin connections of the same net have
two ways to be marked as solved:

e reach the specified target pin position, or
e reach a position containing a wire segment from the same net.

SIM 2011 — 26" South Symposium on Microelectronics 85

To accomplish this, whenever a two pin connection is routed, all of its positions must be marked as
belonging to the net. When another two pin connection of the same net is being routed, each visited position is
checked for both solutions. By using this strategy, at most of the times it is possible to accomplish the routing
result as in Fig. 2(b).

It is important to note that the way multi pin nets are decomposed in two pin connections and the order on
which these two pin connections are routed is a key factor for this technique. Also, because of net linking, the
same two pin connection can produce different results if the source and target pins are swapped. For example,
considering a net with three pins: P1, P2 and P3. Considering P1 and P2 are routed first and a wire route is
constructed and finished between them. When P3 is to be routed to be included on the net, net linking will only
be able to produce improvements if P3 is the source and either P1 or P2 is the target. There is no room for
improvement is P3 is the target. This happens because for an improvement to be achieved through net linking,
P3 must not reach P1 or P2 but rather a position with a wire segment of the same net before actually reaching
the target pin. If either P1 or P2 is the source, this means the position of P1 or P2 is already part of the
connection solution and the wire must be routed until it reaches P3.

Sroute tries to maximize the advantage of this by using a decomposition algorithm which favors net
linking. The decomposition algorithm, which is discussed below, is based on a Minimum Spanning Tree (MST)
algorithm. A MST algorithm builds a spanning tree inside a graph on which the sum of edges is minimum [6].
A spanning tree is a tree which connects all the vertices of the graph.

First, a weighted complete graph is built on which each pin of the connection is a vertex. By being a
complete graph, it means that for each vertex, there is an edge connecting to each other vertex of the graph. The
weight of the edges of the graph are the rectilinear distance between the positions of the pins. Then, Prim’s
MST algorithm is run on this graph. Prim’s algorithm works by maintaining a set of visited vertices (V). A
vertex in this set already belongs to the tree. This set is initially empty and a first vertice must be provided or
selected. At each iteration, the algorithm picks the edge with the smallest cost containing at least one vertex in
the V. If this edge includes a new vertex to V, the edge is included in the solution and the vertex is added to V.
When all vertices belong to the V, the algorithm finishes. In Sroute, the initial vertex is selected as one of the
vetices containing the lowest weighted edge of the graph.

oo g

(a) Multi pin net (b) Graph and MST (c) Result

Fig. 3 — Routing Multi pin nets

Sroute runs the decomposition algorithm for each net and, at each edge selection, it reports a new two pin
connection. In order to favor net linking, a new two pin connection swaps the order of which vertices were
added to the set. That is, the connection always has the last visited vertex as the source, and the vertex which
was sent first to the visited vertex set as the target. As connections are routed in the same order of which edges
are selected by this process, a new vertex is always the source and this helps avoiding problems as in Fig. 2(a).

An example multi pin net, containing pins A, B, C and D, is shown in Fig. 3(a). The graph built based on it
is shown in Fig. 3(b). A MST is built on the graph, consisting of the highlighed edges. Considering the initial
vertex for the MST algorithm was taken as B, the output two pin connections and order would be (considering
the notation source—target) C—B, D—C and then A—D. Fig 3(c) shows the result after routing.

4. Experiment

An experiment with different circuits was done in order to compare the performance between Martelo-
RotDL and Martelo-Sroute combinations. Simple circuits were used in this set of experiment. CLA1 and CLA2
are 4-bits carry lookahead adders. The RPC is a ripple carry adder of 6 bits. The last circuit is able to compare
numbers of 4 bits.

The following tables show the wirelength (WL) and the number of vias for some logic circuits generated
with Martelo-RotDL and Martelo-Sroute. The same input set of constraints were used to start the synthesis with
both routers. The number of vias was measured considering the DFM purpose of the Martelo flow. The ratios in
the tables express the of result of Sroute in comparison with the result of RotDL.

86 SIM 2011 — 26" South Symposium on Microelectronics

Tab. 1 — Wirelength and Vias comparison
Circuit | Layers | RotDL Sroute WL RotDL Sroute Vias
WL WL Ratio Vias Vias Ratio
CLA 1 3 325060 | 299170 | 0.92035 1176 832 0.70748
4 273650 | 259810 | 0.94942 1206 813 0.67412
CLA2 3 520700 | 456660 | 0.87701 1932 1217 0.62991
4 437630 | 417850 | 0.95480 1839 1203 0.65415
RPC Adder 3 62120 55240 | 0.88924 417 199 0.4772
4 62120 55240 | 0.88924 417 199 0.4772
Comparator 3 806050 | 578650 | 0.71788 2910 1665 0.57216
4 617500 | 578200 | 0.93635 2652 1676 0.63197
Average 0.89179 0.60303

The total wirelength was reduced by about 10% as it can be seen in Tab. 1. The improvement is mostly
noticeable when routing with fewer metal layers.

Tab. 1 also shows that the number of vias has reduced considerably. It happens because RotDL assigns a
metal layer to implement wires in a specific direction. In this case, there is a via insertion when the wire
changes direction. This reduction is very important because vias can be a challenge to be implemented in the
circuit. Also, vias increase the electrical resistance and capacitance, so reducing the number of vias may reduce
electrical demands.

Preferred direction per layer is usually done to increase routability [7], however, in this case, routability
was not hurt by this. Another reason for using preferred directions is performance. Indeed, RotDL runs faster
than Sroute. However, both routers are run in an acceptable ammount of time.

5. Conclusion

Martelo, a regular layout generator proposed by [3], has been extended to work with a new router called
Sroute. This automatic flow has been shown functional when Sroute is active. Sroute still has potential for
improvement but it can already be used to generate layouts.

Although small circuits were used in the set of experiments, the Sroute results are positive. For example,
the reduction of the number of vias is very important. It is important because the layout complexity may be
reduced. The total wirelength, one of the most important metrics for physical routing, also has shown a
reasonable improvement with Sroute.

6. References

[1] H. Chen and Y. Chang, “Routing for manufacturability and reliability,” IEEE Circuits and Systems
Magazine, 2009. pp.20-31.

[2] P. Gupta and A. Kahng, “Manufacturing-aware physical design,” 2003 International Conference on
Computer Aided Design, 2003, pp. 681-687.

[3] C. Menezes, C. Meinhardt, R.Reis and R. Tavares “Design of regular layouts to improve predictability,”
Proceedings of the 6™ International Caribbean Conference on Devices, Circuits and Systems, pp. 67-72,

2006.

[4] C. Menezes, “Geragdo automatica de leiaute através de matriz de células — MARTELO,” Masters's
thesis, Universidade Federal do Rio Grande do Sul, Porto Alegre, Jan. 2004.

[5] G. Flach, R. Hentschke, and R. Reis, “Algorithms to improvement of RotDL router,” XIX South
Symposium on Microelectronics, pp. 100-107, 2004.

[6] T. H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, Introduction to Algorithms. MIT Press, 2001.

[7] N. Sherwani, Algorithms for VLSI Physical Design Automation, Kluwer Academic Publishers, 1995.

SIM 2011 — 26" South Symposium on Microelectronics 87

An Algorithm for Generating Logical Expressions
Using a Graph-based Approach

Julio S. Domingues Jr., Renato S. de Souza, Vinicius N. Possani,
Felipe S. Marques, Leomar S. da Rosa Jr.
{jsdomingues, rsdsouza, vnpossani, felipem, leomarjr} @inf.ufpel.edu.br

Grupo de Arquitetura e Circuitos Integrados — GACI
Universidade Federal de Pelotas — UFPel

Abstract

This paper presents a method to extract Boolean expressions from graphs that represent transistor
networks. It uses graph compaction techniques to identify whether a transistor network has only series-parallel
associations or also has bridge connections. The algorithm was implemented in Java language and integrated
to the Soptimizer tool, which is an academic tool to apply optimizations in Boolean functions based on graphs.
It has been validated using the set of 4-input functions of the P-class library set. Concerning series-parallel
networks, all achieved results are compatible to the SIS tool.

1. Introduction

Nowadays, most of the microelectronics market is mainly composed of Very Large Scale Integration
(VLSI) circuits. These electronic devices can have billions of transistors in a single die. Due to the complexity
of these circuits, Electronic Design Automation (EDA) tools play an important role in the design time. It
reduces the time-to-market. Some of these tools work at the logic synthesis level, minimizing logic expressions
through factorization procedures [1][2] in order to obtain equations with fewer literals.

In a previous work, we have proposed a method to generated transistor networks from sum-of-products.
This method uses edge sharing techniques to reduce the number of transistors need to implement a given
Boolean function. The implementation of this set of method resulted in the Soptimizer tool. The Soptimizer only
works at the graph level, and it is not able to generate a Boolean expression that symbolizes the Boolean
function represented by a graph. In order to close this gap, this paper presents an algorithm able to extract
expressions from graphs that represent Boolean functions. The method proposed by Soptimizer proven to be a
good solution, because the optimizations applied could to generate networks with Wheatstone Bridged
configuration, considered the most optimal configuration of the circuit for some logic functions.

The remaining of this paper is organized as follows. First, some basic concepts are reviewed in section 2.
In section 3, we describe the proposed algorithm. Some results are shown in section 4. Finally, conclusions are
presented in section 5.

2. Background

For better understanding of this paper, some related concepts are reviewed on this section. Sum-of-
products (SOPs) are canonical forms to represent Boolean functions through expressions. These expressions
are not optimal concerning the number of literals. Factorization [1][2] is an optimization technique that can be
applied to Boolean expressions (such as SOPs) aiming the minimization of some criteria. Usually, it aims the
reduction on the number of literals in a given expression. There are algebraic and Boolean methods for
factorization. Due to the algorithm complexity, algebraic are faster than Boolean methods. However, Boolean
factorization can achieve better results.

Boolean functions can be represented in different ways. Graphs can be used to represent them. A graph
is an ordered pair G = (¥, E) comprising a set V' of vertices or nodes together with a set £ of edges or lines,
which are 2-element subsets of V. A directed graph is an ordered pair D = (V, A) with V being a set vertices,
and A4 being a set of ordered pairs of vertices, called arcs, directed edges, or arrows. An arc a = (x,) is
considered to be directed from x to y; y is called the head and x is called the tail of the arc; y is said to be a
direct successor of x, and x is said to be a direct predecessor of y. If a path leads from x to y, then y is said to
be a successor of x and reachable from x, and x is said to be a predecessor of y.

Different kinds of data structures can be used to store graphs in computer systems. The adjacency
matrix is one of them. This is an n by n matrix 4, where n is the number of vertices in the graph. If there is an
edge from a vertex x to a vertex y, then the element a,, is 1 (or in general the number of xy edges), otherwise it
is 0. In computing, this matrix makes it easy to find subgraphs, and to reverse a directed graph.

Besides Boolean function representation, graphs can also be used to represent transistor networks [3]. In
this case, each edge represents a given transistor and the vertices are points of connections among transistors.
Usually, CMOS transistor networks are constructed through series-parallel associations. In this case, each literal

88 SIM 2011 — 26" South Symposium on Microelectronics

of a Boolean expression becomes an edge (transistor) in the graph representation. Therefore, the fewer literals
in an expression the fewer transistors are needed to implement a Boolean function.

Prefuse is a Java graphics library where you can create graphical interfaces to provide networking
capabilities. SIS it is a tool for factorization of logic expressions used as reference. PClass is a library cells with
known functions that were used as a method to benchmark the proposed algorithm.

3. The Proposed Algorithm

This section describes an algorithm to extract Boolean expressions from graphs that represent transistor
networks. The proposed method is integrated with the Soptimizer tool. This tool factorizes SOPs (represented
by graphs) using algebraic techniques applied to graphs. It reduces the number of edges required to represent a
given Boolean function. As result, the Soptimizer tool presents a minimized graph.

In order to allow integration with other tools and other validation procedures, a Boolean expression is
desired. The generation of a Boolean expression requires successive traversals of a graph from a terminal node
to another. On each traversal, every edge associated in series to an adjacent edge is “compacted” to a single
edge. If there is no more series edges to be compacted, then the algorithm start to traverse the graph aiming the
compaction of edges associated in parallel. When there are no more edges in parallel to be compacted, the
algorithm is started again looking for series compaction. This iterative process stops when there is no more
possibility of series and parallel compaction.

The graph compression steps are demonstrated in Fig. 1. The initial graph is shown in Fig. 1.a. The
process begins by searching adjacent edges connected in series in sub-graphs. In this example, the first sets of
edges to be compacted are connected to the terminal node 70. For instance, the edges /F, /E and /C are
associated in series, and can be compacted to a single edge. Therefore, the sub-graph composed by these edges
is replaced by a new edge that actually is a list of edges. In this case, this new edge is referred as the product
“/F.JE.]C”. In a similar way, the edges “F.E.C” and “D.B.A” are created. This process is depicted in Fig. 1.b.

After performing the first iteration of series compaction, the algorithm looks for parallel associations. In
Fig. 1.b, there are two sub-graphs in parallel. As shown in Fig. 1.c, the edges “/F./E./C” and “F.E.C” can be
compacted in a single edge that is referred as “/F./E./C + F.E.C”. At this point, there are no more edges in
parallel. The algorithm is restarted in order to look for edges associated in series. Hence, the graph in Fig. 1.c
can reduced to the one in Fig. 1.d. The final graph has a single edge that represents the Boolean function
expressed by “(/F./E.!C + F.E.C).D.A.B”.

O FEc+rECHO{ pAB HD) =) O (FIEIC+FEC)DAB ___ HTM)
©)

d)
Fig. 1 — Graph compaction example.

Using graph compaction it is possible to identify bridge connections. Accordingly to [3], the minimal
number of transistors to implement a Boolean function cannot be achieved by purely series-parallel networks.
As an alternative, “bridge” transistor networks can be used. In this case, bridge connections are compacted
through the compaction algorithm. Therefore, the final graph will have at least five edges on its construction
(the minimal construction of a bridge network).

The main objective of our method is to extract a Boolean expression from a graph. When a graph can be
compacted into a single edge (meaning that there are only series-parallel connections), the Boolean expression
is naturally achieved. This is not the case of bridge networks that requires a more sophisticated algorithm to
construct the expression. An example of bridge network compaction can be seen in Fig. 2.

SIM 2011 — 26" South Symposium on Microelectronics 89

Fig. 2 — Example of bridge network compaction.

Considering the graph compaction of a bridge network, it is necessary to roam it to in order to generate a
Boolean expression that represents the whole graph. This final procedure is done using an adjacency matrix to
represent the compacted graph. The expression can be extracted applying a depth-first-search algorithm on the
adjacency matrix. The search starts on a terminal node and ends on another. Fig. 3 shows the searches on the
adjacency matrix that represents the compacted graph of Fig. 2. The paths followed during the iterations are
presented in the matrix of the Fig. 3 and differentiated by the colors black and gray. The depth-first-search
starts on the terminal node “T0”, i.e., on the index zero of the adjacency matrix. This way, two expressions
starts to be created from this point, considering the products “4.B./C” and “/A./B”. The information of each
visited edge is concatenated to the expressions resultant from the previous visited edges. For this example, the
expression resultant of this process is “4.B./C.(!D.E+G.D.E) + A.!B.(G.!D.E+D.E)”.

0 1 3 4 0 1 2 3

2 4
>0 <AB!C} IAIB > ABIC <!A!B }\
1 E I 7 E

ABIC 2 | ABIC G
AB | O ‘@ 3 | 1aB i
(Elg D [~ 4 (é;—qa— —D_|

a) b)
Fig. 3 — Adjacency matrix representation.

[

s

ENE VS)

The graphics library Prefuse [4] was used as a form of better understanding and viewing of the final graph.
Fig. 4 shows the graphical output of the tool Soptimizer.

) Soptimizer Beta 2.0

Fig. 4 — Prefuse of the Soptimizer.

4. Experimental Results

Since the Soptimizer tools is implemented in Java language, the proposed algorithm was implemented
through a set of Java classes that are already integrated into the tool and the Prefuse [4] tool kit, which is used
to visualize all generated graphs.

In order to validate the expressions generated by our algorithm, we have run a set experiments on a
computer with a Core2Duo processor and 4GB of RAM, and a 64-bit version of the Ubuntu 10.10 operating
system. The first experiment validated 10 functions randomly chosen from the complete set of the 7-input
pClass library. The second experiment has validated all 3.982 functions of the 4-input pClass logic functions.
All expressions were optimized through the Soptimizer tool and the resultant expressions were generated
through the proposed algorithm in approximately 8 minutes. All expressions generated by our algorithm were
compared to the input expressions in order to validate the algorithm.

90 SIM 2011 — 26" South Symposium on Microelectronics

Tab. 1 presents a comparison of the SIS [5] factorization procedure and our method associated to the
Soptimizer tool, considering a sub set of 15 functions of the 7-input pClass library. The second column shows
the number of literals of each SOP that represents each function. The third column shows the number of literals
of the factored forms generated by the SIS tool. The last column presents the number literals achieved by our
tool. Since these functions have their minimal representation using series-parallel networks, both SIS and
Soptimizer give the same result. SIS does not handle bridge networks. This is the advantage of our method.

Tab.1 — Literals count of factored forms

Function # literals in the SOP | # literals from SIS | #literals from Soptimizer
3 8 6 6
16 6 5 5
18 5 4 4

120 16 11 11
468 12 9 9

469 10 8 8

456 10 8 8

502 13 11 11
508 12 9 9

520 7 6 6

521 12 8 8

525 12 9 9
3567 15 10 10
3569 19 13 13
3809 8 7 7

5. Conclusions and Future Works

This paper presented a solution for the generation of Boolean expressions from graphs. This method fills
a gap between Soptimizer and other tools that uses expression as input. Our algorithm is able to generate
expression for series-parallel and bridge transistor networks represented by graphs in the Soptimizer tool.

Boolean expressions do not have an operator to denote bridge connections. This way, when expressed
using the primitive operators, a lot of redundancies are added into the expression. Our algorithm is able to
handle this problem, leading to optimal solutions.

As future work we intent to eliminate non-sensitized paths of the transistor network. This characteristic
will lead to the extraction of smaller expressions in terms of literals.

6. References
[1T BRAYTON, R. K. Factoring logic functions. IBM J. Res. Dev. 31, 2 (1987), 187- 198.

[2] MINTZ, A. and Golumbic, M. C. Factoring boolean functions using graph partitioning. Discrete Appl.
Math. 149, 1-3 (2005), 131-153.

[3] ZHU, J. et al. On the Optimization of MOS Circuits. IEEE Transactions on Circuits and Systems:
Fundamental Theory and Applications. (1993), 412-422.

[4] PREFUSE.ORG. The Prefuse Visualization Toolkit. [Online] Avaliable: http:/prefuse.org/ [Acessed:
Mar. 25, 2010].

[5] SENTOVICH, E. et al. SIS: A system for sequential circuit synthesis. Tech.Rep. UCB/ERL M92/41. UC
Berkeley, Berkeley. (1992).

SIM 2011 — 26" South Symposium on Microelectronics 91

Video Coding 2

92

SIM 2011 — 26" South Symposium on Microelectronics

SIM 2011 — 26" South Symposium on Microelectronics 93

A Media Processing Implementation for ISDTV Middleware
with Optional Hardware Acceleration Support

Jean F. G. Quadro, Tiago H. Trojahn, Juliano L. Gongalves,
Luciano V. Agostini, Leomar S. da Rosa Junior
{jeanquadro, thtrojahn, juliano, agostini, leomarjr} @inf.ufpel.edu.br

Group of Architectures and Integrated Circuits — GACI
Technology Development Center - CDTec
Federal University of Pelotas — UFPel
Pelotas — Brazil

Abstract

The media decoding is one of the fundamental components required in a Digital TV standard, mainly
because High Definition uncompressed videos cannot be transmitted due to bandwidth constraints. Currently,
one of the most advanced Digital TV standards is the Brazilian International Standard for Digital Television
(ISDTV), featuring a return channel, high-definition content and a middleware named Ginga. This paper
describes a media decoder, with optional hardware acceleration support, compatible with Ginga. Results
present a performance analyze of the Media Processing with and without hardware acceleration support when
reproducing video stream with different resolutions.

1. Introduction

The video stream, normally broadcasted through the air or using a cable, in the Digital TV standards is a
coded version of the original video created directly by the producers. The coding process is used to reduce the
video stream size: a single frame using 3-bytes for coloring in the 1920x1080 resolution uses about 5.93 Mega
Bytes (MB) of size. In a video with 30 frames per second (FPYS), it is required a constant transmission rate of
about 178 MB per second, much more than an average internet connection or even a local network can provide
nowadays.

In addition, some of the Digital TV standards provide support to multiple audio and subtitle streams and, in
some cases, even applications to be used in a single stream, know as Transport Stream (TS), requiring even
more bandwidth of the transmission channel. For this reason, coding standards are required to provide high-
definition and high-quality content to TV viewers at reasonable costs.

After coded, the data needs to be decoded to be effectively used. In terms of Digital TV, the decoded video
and audio stream can be showed right to the viewer or manipulated by other application, increasing the
complexity of the decoding procedure.

This work presents a video decoding application, named Media Processing, able to handle both audio,
video and subtitle streams using an open-source library. The Media Processing was developed to be compatible
with the Ginga, the International System for Digital Television (ISDTV) middleware and its audio, video and
subtitle specifications.

The ISDTV is an emergent Digital TV standard developed in Brazil which presents several peculiar aspects
that innovates and improves the quality of Digital TV services. For example, the Brazilian Digital TV system
adopts the H.264/AVC [1] as video coding standard, differently from the established American, European and
Japanese Digital TV standards. Also, the Ginga middleware provides support to interactivity through a return
channel, delivering more possibilities to Digital TV applications like bank accounts access, shopping, and mass
advertising.

This work is organized as follow: section 2 presents the Media Processing and its main feature. Section 3
presents the performance analysis of the Media Processing. Finally, section 4 presents conclusions and future
works.

2. The Media Processing

The libVLC [2] library at version 1.1.5 was used to implements the Media Processing module. The Media
Processing was developed to be able to provide all the basic features expected from a video decoder, including
the methods:

e Play — The most used and the very fundamental feature of all media decoders. It is responsible to start all
the decoding operation and provide the decoded stream to the viewer or to another application.

e Pause — Responsible to pause the operation without deallocating the resources to continue the decoding.

e Stop — The finalization method, used to deallocate all resources and shutdown the decoding process.

However, the ISDTV standard requires more features of the Media Processing than these basic methods.
For example, the Media Processing must provide data to other modules and, sometimes, directly to applications

94 SIM 2011 — 26" South Symposium on Microelectronics

installed by the viewers. This characteristic makes the Media Processing much more complex and consequently
prone to eventual failures. Thus, the Media Processing implemented in this paper presents a wide exception
control in all methods provided to others modules or applications in order to offer a smooth an easy utilization
by applications programmers. Exception like malformed inputs streams and mistakes in calling methods are
trivially controlled. Some more complex exception handling, like race conditions and allocation problems are
performed directly by libVLC.

Besides the main methods of reproduction, auxiliary methods were implemented to applications and viewer
usage. These methods are divided in two large groups, getter and setter methods. The details of each group are
explained below:

e Getters methods: A large number of getters of various video, audio and subtitle information like video
resolution and audio volume. These methods are important to other modules or applications that may
require details of the media being reproduced.

e Setter methods: A set of setters methods that can change the reproduction behavior, like video brightness,
audio volume and subtitle stream. These methods are fundamental to viewers to control the reproduction,
reducing the volume for example. Applications can also use these methods.

A part from that, the Media Processing presents a large set of implemented features, listed below:

e Video Reproduction: The Media Processing support a wide range of video coding standards, including the
H.264/AVC used in the ISDTV.

e Audio Reproduction: In terms of audio, the Media Processing provides full support to the mp3 and the
AAC audio coded streams.

o Subtitles: The SubRip (SRT) and the Advanced Substation Alpha (ASS) are supported. Multiple subtitle
streams in the same media stream are supported too.

e Demux: The Media Processing has a built-in Demux which can recognize the ISDTV Transport Stream
and other input containers like Audio Video Interlace (AVI) and the Matroska Video (MKV).

e Screenshot: The Media Processing provides methods permitting a viewer to take screenshot and save it in a
lossless JPEG format [3].

e Optimizations: The Media Processing can use all the optimizations present on the libVLC library like SSE
and SSE2. A video card accelerated decoding can be used when the computer have a compatible video card
[4], aiming to reduce the decoding stress to processor.

e Input: The input stream can be a file containing the streams which needs to be demuxed, a basic media
stream already demuxed by another application or module, or an interface to an input device. A remotely
located media can be accessed through a connection using the HTTP, FTP or RTP protocols.

e Output: The current Media Processing implementation features a built-in X.Org and a FrameBuffer video
output. ALSA and DirectX WaveOut are the audio outputs currently implemented.

Fig. 1 shows the complete procedure to reproduce an input stream in a Digital TV device.

Video

Decoding

" | Audic
| | Decoding)

—

f
I Subtitles

Fig. 1- Basic audio, video and subtitles decoding procedure.

The process described in Fig. 1 presents the Input, where the stream is recognized as valid input. The validated
input goes to Demux, where the input stream is demuxed into audio, video and subtitles streams. Each
elemental stream goes to the corresponding decoder and, after the decoding process, the output shows the
resulting video and subtitle on-screen and the audio on TV speakers, for example.

An alternative Media Processing for the ISDTV is presented in [5], but it does not present audio decoding,
video card hardware acceleration and some other features.

3. Performance Analysis

The Media Processing implementation was evaluated to verify the performance when reproducing input
video and audio streams during nine minutes. This experiment was repeated three times in order to deliver more
accurate results. The performance was measured in terms of processor usage and memory cost. The samples
were generated with the procps application in an Ubuntu 10.04 operating system with recommended installation
settings.

As benchmarks, the videos, were used the Big Buck Bunny [6], the Elephants Dream [7] and the Sintel [8]
animations for input streams in three different resolutions: 848x480 (480p), 1280x720 (720p) and 1920x1080

SIM 2011 — 26" South Symposium on Microelectronics 95

(1080p). The progressive scan was utilized, dispensing the default libVLC De-Interlace filter. Video streams
were coded using the x264 [9] in version 1649, and audio streams were coded with the Nero AAC Codec [10]
at version 1.5.4.0.

All videos were coded using 10.000 Kbps (10 Mbps) for Average Bitrate (ABR) in High Profile at 3.2
level. It was used three reference frames, CABAC and Trellis activated and a 4:2:0 YCbCr sub sampling. The
video frame rate was converted to 30 FPS to be ISDTV compatible.

The audio was coded in Constant Bitrate (CBR) mode with 192 Kbps using the Low Complexity (known
as AAC-LC) in version 4. It was used 48 kHz for output frequency.

An Intel Core i5 760 with 2.8 GHz and 4 GB of RAM was the basic platform for the experiment. Three
video cards configurations were used:

e The first configuration was named Computer A, without any dedicated video card and using only the
software-based decoding of Media Processing.

e The second, named Computer B, using a XFX Geforce 9500GT with 512 MB of DDR2 RAM memory and
the Media Processing hardware accelerated decoding activated.

e The last one, named Computer C, using a Zotac Geforce GTX 470 with 1280 MB of DDR5 RAM memory
and the Media Processing hardware accelerated decoding activated.

3.1. Results

The processor usage, in percentage, and memory cost, in MegaBytes, results for the performance tests are
presented in Fig. 2 and Fig. 3 respectively.

e)
S
()
8o B Computer A
)
2 m Computer B
o
ﬁ Computer C
S
& |
_ Resolution)

Fig. 2 - Processor usage (%) of Media Processing.

~
/

™)
=3
- B Computer A
o
‘; B Computer B
g Computer C
(]
b
_ Resolution Y,

Fig. 3 - Memory cost (MB) of Media Processing.

The results show a processor usage increment when increasing the video resolution, which can be
explained with the increase of the pixels which needs to be processed. The Computer A and Computer B
presented an equivalent performance in terms of processor usage. However, the Computer C presents a better
performance. The processing power of Geforce GTX 470 when compared to Geforce 9500GT suggests that the
reduction of the main processor usage is directly related to the increase in video card processing power. Also,
the equivalency between the Computer A and Computer B test results suggest that the Computer B video card
is not able to reduce the load in the main processor in a satisfactory manner when decoding H.264/AVC videos.

In terms of memory, the implementations using the hardware acceleration in video card presented a larger
memory cost. This behavior can be explained by the decoding methodology that 1ibVLC adopts. Basically, the
coded frame is sent to the video card and the decoded frame is kept in memory while not displayed. The

96 SIM 2011 — 26" South Symposium on Microelectronics

memory cost increases even more because several frames are kept in the memory to prevent synchronization
problems. As with processor usage tests, the memory cost has risen as the increase in video resolution.

4. Conclusions and Future Works

This paper presented a decoding module, the Media Processing, for the Ginga ISDTV middleware. A
performance test was performed to evaluate the component when using some of the available methods.

The ISDTV plays an important role in South America, where the standard was adopted in others countries
like Argentina, Chile and Venezuela. Besides, Africa countries like South Africa and Democratic Republic of
Congo are currently testing the ISDTV for possible use as their Digital TV standard. The Media Processing
presented in this paper can be used in all these countries to achieve video, audio and subtitle decoding features.

Our Media Processing performance tests demonstrates that better results can be achieved in terms of
processor usage when using a video card with high processing power with hardware acceleration activated.
When using a video card with lower processing power, the advantage becomes negligible.

In terms of memory, the Media Processing hardware acceleration increases more than two times the
memory needs when compared with the full software solution. The Computer B, without a significant better
processor usage when compared with Computer A and with two times the memory cost, becomes the worst
solution analyzed.

If the device presents a compatible video card and enough memory, the best solution consists in to activate
the Media Processing video card hardware acceleration. On the other hand, if memory is limited, the full
software decoding is better, but with a significant increase in processor usage.

Finally, it is important to mention that these results also point to the fact that an Application Specific
Integrated Circuit (ASIC) dedicated to decode High Definition videos for the Brazilian Digital TV standard
could be investigated. Powerful CPU, GPU and video cards are not feasible to be embedded in affordable
Digital TV equipments.

For future works it is intended to do a wider performance tests using some other optimizations based in the
processor architecture. It is also intended to use the Media Processing in a portable device to analyze its
behavior when running streams with different video resolutions. Finally, another version of Media Processing is
being implemented using the NVIDIA CUDA framework to achieve even better performance with a computer
equipped with a dedicated video card.

5. References

[1] G. Sullivan, P. N. Topiwala and A. Luthra. “The H.264/AVC Advanced Video Coding standard: overview
and introduction to the fidelity range extensions”, 2004. XXVII Conference on Applications of Digital
Image Processing. p. 454-474.

[2] VideoLAN. “libVLC — VideoLAN Wiki”, 2010. Available: wiki.videolan.org/LibVLC

[3] M. Weinberger, G. Seroussi, and G. Sapiro, “The LOCO-I lossless image compression algorithm:
Principles and standardization into JPEG-LS,” IEEE Trans. Image Processing, vol. 9, no. 8, pp. 1309—
1324, Aug. 2000.

[4] VideoLAN. “VLC Release 1.1.5”,2010. Available: www.videolan.org/vic/releases/1.1.5.html

[5] T.H. Trojahn, J. L. Gongalves, J. C. B. Mattos, L. S Da Rosa Junior, L. V. Agostini. “A Media Processing
Implementation Using Libvlc for the Ginga Middleware”. 5th FUTURETECH, pp.1-8, May 2010.

[6] Blender Institute. “Big Buck Bunny”, 2008. Available: www.bigbuckbunny.org

[7] Orange Open Movie Project. “Elephants Dream”, 2006. Available: www.elephantsdream.org

[8] Blender Institute. “Sintel”, 2010. Available: www.sintel.org

[9] X264. “VideoLAN - x264”,2011. Available: www.videolan.org/developers/x264.html

[10]Nero AG. “Nero AAC Codec”, 2011. Available: www.nero.com/eng/technologies-aac-codec.html.

SIM 2011 — 26" South Symposium on Microelectronics 97

Random Search Motion Estimation Algorithm
for High Definition Videos

! Cassio Cristani, ! Pargles Dall'Oglio, 2Diego Noble, 2 Marcelo Porto, 'Luciano
Agostini, 2 Sérgio Bampi.
{crcristani,pdalloglio,lvagostini,dvnoble}@inf.ufpel.edu.br, {msporto,
bampi}@inf.ufrgs.br

'GACI, Federal University of Pelotas — UFPel
*Institute of Informatics, Federal University of Rio Grande do Sul - UFRGS

Abstract

This paper presents a new algorithm focusing in high quality fast motion estimation for high definition
video coding. This algorithm provides more efficiency to avoid local minima falls in fast motion estimation due
to random search exploration. The developed algorithm is called Random Search with Iterative Center
Evaluation and Iterative Final Refinement (RSICIFR). It evaluates the central region of the search area, and
also chooses, randomly, many other candidate blocks in the search area. This approach gives to the algorithm
the possibility to avoid local minima falls, increasing the quality results, especially for high definition videos.
The RSICIFR algorithm was implemented and evaluated to ten HD 1080p test video sequences. The evaluation
results shows that a quality gain can be achieved in comparison of many fast algorithms.

1. Introduction

Motion Estimation (ME) presents the highest computational complexity among all steps of the current
standards for video coding. In fact, ME represents 80% of the total computational complexity of current video
coders [1]. The search for best vectors is known to be very expensive in terms of calculations and,
consequentially, in terms of processing time. The Full Search (FS) [2] algorithm must explore all possibilities
in a given search window, which implies in a very high computational cost, especially for high resolution
videos. Based on this fact, it is important to explore new solutions which bring a good tradeoff between
objective quality (PSNR) and computational complexity.

There are many fast algorithms and techniques in scientific literature which handle with this complexity at
different levels of impact in objective quality (PSNR). These algorithms exploit the information redundancy to
reduce the computational complexity. However, fast algorithms have a weak point which is the increase in local
minima falls with the increase of the video resolutions, especially for high activity video sequences. This
undesired characteristic leads the algorithm to choose not good motion vectors, consequentially, perceivable
losses in the visual quality could be achieved in comparison with FS algorithm. In the H.264/AVC standard [3],
the current most efficient video coding standard, there is no restriction about how the block matching is done in
the motion estimation process, so there is a lot of space to explore new ideas. Hardware solutions are very
important for real time ME in high definition videos applications. However, fast algorithms have not easy
hardware implementation, some characteristics as data dependencies and not regular memory access can be
very complicated to deal with. In other hand, FS algorithm requires lots of hardware resources to achieve high
performance. In this context, a fast algorithm, that can be easily implemented in hardware, is very important for
real time ME in high definition videos.

In this paper, we propose a new algorithm for fast motion estimation targeting high quality when
processing high definition videos. This algorithm provides an efficient way to avoid local minima falls in the
fast ME for high definition videos, due to the random search exploration. This algorithm is not focused on a
specific standard and it can be used with all current standards. The developed algorithm is called Random
Search with Iterative Center Evaluation and Iterative Final Refinement (RSICIFR). This paper presents the new
algorithm, its results and comparisons with other well known motion estimation algorithms. The RSICIFR was
applied to ten HD 1080p test video sequences and the results shows that an average gain of 1.49dBcan be
achieved in comparison with the Diamond Search (DS) algorithm [4]. The computational cost is increased in
comparison with the original DS, however it is more than 26.5 times lower when compared with FS algorithm
for the same search area.

The rest of this paper is organized a follows: Section 2 describes the main concepts related to the ME
process and also some concepts for common fast ME algorithms. The proposed algorithm is showed in Section
3 and the results at Section 4. The comparative results are presented in the Section 5. Conclusions are given at
the section 6.

98 SIM 2011 — 26" South Symposium on Microelectronics

2. Motion Estimation

A digital video consists of a sequence of independent images, captured during the time. To obtain
continuous motion (real time) a capture rate of 24 to 30 pictures (frames) per second is required [5]. Video
compression is based on the elimination of data redundancies. Data is considered redundant if its value does not
represent a new relevant information to the representation of the frame. There is three different types of
redundancies exploited in video compression: spatial redundancy, temporal redundancy and entropy
redundancy. The motion estimation handles with the redundancy between neighboring frames, called temporal
redundancy. The frame is divided into blocks to be processed. These blocks are compared with blocks from
previews, and already processed frames, called reference frames. The motion estimation process tries to
identify and reduce the temporal redundancy between adjacent frames of a scene, mapping this information
using motion vectors of two dimensions (X, y). The motion vector indicates the position where the most similar
block (in comparison with current block) was found in the reference frame.

The search algorithms define how the search for the most similar block (best matching) must occur inside
the search area in the reference frame. Full Search (FS) algorithm is the one that generates the optimum motion
vector for a given search area. It evaluates all the candidate blocks in search area, so it can always find the most
similar candidate block, however, its computational costs is huge. The fast algorithms (suboptimal) did not
compare all possible candidate blocks, so the computational cost in relation to the FS is much lower. There are
also quality losses, mainly due to the occurrences of local minima falls.

A local minima is a candidate block that results a small residue (in a given region), however, this residue
does not represent the global minimum, which is smaller and can be located in another region. There are several
fast algorithms in the literature that have already been consolidated. The comparisons in this work will be done
with the Diamond Search (DS), Three Step Search (TSS)[6], Four Step Search (FSS)[4].The RSICIFR
algorithm

3. The RSICIFR algorithm

The Random Search with Iterative Center Evaluation and Iterative Final Refinement (RSICIFR) do the
search for the best result in four steps. In the first step, the central block of the search area and their neighbors
left, right, top and bottom are calculated. The second step is an iterative search, made when the best result is not
found at the central block. The third step is to randomly choose N candidate blocks inside the search area, this
step can be done in parallel with steps one and two. The fourth step is an iterative search using the best
candidate block from the step three as a new center. The final result is obtained due to the comparison with the
best result from the central iterative search and the iterative search done in the best random candidate block.

Figure 1 shows a search example of the RSICIFR algorithm, the first step is illustrated with the number
one. In this example, the best match is not found at the center, the right neighbors is chosen as the best
candidate block, so the algorithm starts the iterative search, comparing three more candidate blocks (the
neighbors), illustrated as number two in Figure 1. The search continues still the best result is found at the
central block. In best case, the best result will be found at the center and only the five center blocks (number
one in Figure 1) are calculated, and the iterative search will not be done. In the third stage N candidate blocks
are randomly chosen inside the search area (number three in Figure 1). The N candidate blocks are evaluated
and the best candidate block is found. The same iterative process of the step two is applied to this best
candidate block , where its four neighbors is evaluated, and the iteration is applied when the best result is not
found at the central candidate block. The blocks resulting from the stages two and four are compared, and the
motion vector will be generated for the block that presents the best result for similarity.

3
3
3
1]2
11 W 2
1]2 3
3 444
43 4

Fig.1 — The function RSICIFR with N=6

SIM 2011 — 26" South Symposium on Microelectronics 99

4. Software Evaluation Results

The Proposed algorithm was described in C language and it was evaluated with ten HD 1080p test video
sequences [7]. The used search window for all evaluations is a range of [-16, +16] pixels, and the used
distortion criteria is the Sum of Absolute Differences (SAD) [4]. The synthesis was made for 8x8, 16x16 and
32x32 block sizes. The block size 32x32 was not supported by any current coding standard, this is one of the
new proposes for the HEVC, the new coding standard, still in development stage[8]. The number of randomly
chosen blocks (N) was 16. The experiments consider the first two hundreds frames of all the ten HD 1080p
sequences. The simulations do not explore the possibility of parallelism of the stages, since the time of
simulation was not evaluated.

The Table 1 presents the average results (for the 10 test video sequences) of RSICIFR algorithm for
different block sizes. The quality results are presented in PSNR gain and percentage of residue reduction
(PRR). The PRR is the differences between the differential residue (without ME) and the residue achieved after
the ME process. The computational complexity results are presented in the number of evaluated candidate
blocks (ECB) and the number of used SAD operations. The evaluation was done with a small search
area, it increases the probability of finding the global minimum. It also an interesting strategy for hardware
implementation, since decreases the size of necessary internal memory.

Tab.1 - Evaluation results for different size block

Block Size PSNR (dB) PRR (%) # ECB (x10% SAD(x10°)
8x8 34.46 62.34 274.01 16.88
16x16 33.60 57.57 73.32 18.77
32x32 32.67 53.33 19.62 20.09

The results presented in the Table 1 shows that the growing in the block size implies directly in quality
losses. For 8x8 blocks, the RSICIFR algorithm achieves 34.46dB in PSNR, and more than 62% in residue
reduction. Using larger blocks, the PSNR gain is decreased, 0.86 dB for 16x6 blocks, and 0.79 dB for 32x32
blocks. The number of evaluated candidate blocks is decreased for higher block sizes, however, this decreasing
is not proportional as the blocks growing. It indicates that for higher blocks the iterative steps are more intense,
it causes a small increasing in the number of SAD operations for higher block sizes. Even using for a small
search area, the quality results obtained by the RSICIFR algorithm are very interesting. It demonstrated that the
algorithm can efficiently explores the search area. It also an interesting result for a hardware implementation of
the RSICIFR algorithm, since a small internal memory will be necessary.

5. Comparative Results:

The RSICIFR was compared with the FS, DS, TSS and 4SS algorithms. In Table 2, the average results of
PSNR, PRR and the number of SAD operations are presented. Ten HD 1080p test video sequences was used,
each one has different content characteristics, so an average result can be achieved with this set of test video
sequence. Thus, is possible to show that the developed algorithm has good results for any kind of video. The
Figure 2 presents a graph with the quality results for all evaluated algorithms. The RSICIFR algorithm has the
best result in comparison with all fast algorithms. The RSICIFR algorithm presents a PSNR gain of 1.02dB,
1.49dB and 2.57dB, in comparison with 4SS, DS and TSS algorithms, respectively. Comparing with FS
algorithms, the losses in PSNR is only about 1.43dB. However, the reduction in the number of SAD operations
is about 26 times.

37
36
35
4
3 N rs
g 33 H RSICIFR
[4ss
32 @ ps
31 O 3ss
30
29

algorithm

Fig.2 — PSNR comparison

The quality losses of the fast algorithms are generally caused by the local minima falls. The RSICIFR
algorithm can reduce the local minima fall due to the randomly exploration of the search area. The quality

100 SIM 2011 — 26" South Symposium on Microelectronics

results, presented by the RSICIFR algorithm, shows that this approach is an efficient strategy to avoid local
minima falls in high definition videos.

The RSICIFR algorithm presents the best tradeoff between quality and computational cost, since it can
increase the quality in comparison with fast algorithms with an acceptable increasing in the number of SAD
operations.

Tab.2 — Comparative results for RSICIFR, FS, DS, 3SS and 4SS.

Algorithms PSNR (dB) PRR(%) SAD (x. 10°)
FS 35,89 72,91 447,381
RSICIFR 34,46 62,34 16,897
4SS 33,44 65,60 14,922
DS 32,97 62,66 10,795
3SS 31,89 56,60 11,211

6. Conclusions and Future Works

This paper presented a new algorithm for motion estimation, named Random Search with Iterative Center
Evaluation and Iterative Final Refinement (RSICIFR). This algorithm can reduce the local minima fall,
increasing the quality results. The RSICIFR algorithm can achieved a gain of 1.49dB in comparison with DS
algorithm, 1.02 dB in comparison with 4SS, and 2,57dB in comparison with TSS algorithm. In comparison with
the FS algorithm, a reduction more of 26 times in the number of SAD operations can be achieved, with quality
losses about 1.43dB. The results for the RSICIFR algorithm shows that it presents the best tradeoff between
quality and computational cost among all evaluated fast algorithms This algorithm is also a good option for
hardware implementation, since it can achieve good quality results with a small search area, which implies in
lower requirements for internal memory.

As future work is intended to generate a new version of RSICIFR with multiplies iterative searches. This
algorithm will present an increase in the computational cost, however, it can significantly increase the quality
results.

7. References
[1T PURI, A. et al. Video Coding Using the H.264/MPEG-4 AVC Compression Standard. Elsevier Signal
Processing: Image Communication, [S.1.], n. 19, p.793—-849, 2004.

2] BHASKARAN, V.; KONSTANTINIDES, K. Image and Video Compression Standards: Algorithms
and Architectures. 2nd ed. Boston: Kluwer Academic Publishers, 1999.

[3] JVT Editors (T. Wiegand, G. Sullivan, A. Luthra), Draft ITU-T Recommendation and final draft
international standard of joint video specification (ITU-T Rec.H.264 [ISO/IEC 14496-10 AVC), JVT-
GO050r1, Geneva, May 2003.

[4] KUHN, P., Algorithms, Complexity, Analysis and VLSI Architectures for MPEG-4 Motion Estimation,
Springer, June 1999.

[5] GONZALEZ, R.; WOODS, R. Processamento de Imagens Digitais. Sdo Paulo: Edgard Bliicher, 2003.

[6] JING, X.; CHAU, L. An efficient three-step search algorithm for Block motion estimation. IEEE
Transactions on Multimedia, [S.1.], v. 6, n. 3, p. 435-438, June 2004.

[71 Xiph.org: Test media, available at <http://media.xiph.org/video/derf/>, December, 2009.

[8] JOINT COLLABORATIVE TEAM ON VIDEO CODING - JCT-VT: Documents of meetings of the
group in: <http://wftp3.itu.int/av-arch/jctvc-site/>. Acess in: Jan. 2011.

SIM 2011 — 26" South Symposium on Microelectronics 101

CABAC Integration Into an H.264/AVC Intra-only Hardware Video
Decoder

"Alonso A. de A. Schmidt, ' Altamiro A. Susin
{alonso.schmidt, altamiro.susin}@ufrgs.br

'"Universidade Federal do Rio Grande do Sul

Abstract
This work presents the integration of CABAC entropy decoder into an H.264 / AVC intra-only Video
Decoder. Two previously developed Intellectual Properties were integrated with the development of a control
and synchronization module. Also, since CABAC entropy decoder uses previously decoded syntactic elements
values to select context models to estimate symbols occurrence probabilities, it was also developed a module to
organize those syntactic elements values in memories and provide them as neighbor values to the current
syntactic element being decoded. The final architecture reaches the frequency necessary to decode HD videos.

1. Introduction

The project of an H.264/AVC hardware video decoder is a goal of the Rede H.264 project [1]. The
H.264/AVC is video compression standard selected for the SBTVD (Sistema Brasileiro de Televisdo Digital)
[2]. The Rede H.264 project is a consortium of several Brazilian universities to develop national products to
deal with the source-signals coding for the SBTVD [1].

The development of the H.264/AVC video decoder is done by incremental hardware and modular software
co-design in C / VHDL with FPGA prototyping. A software, called PRH.264 [3] was made to decode
H.264/AVC progressive video bitstreams up to the main profile. This software easily provides intermediary
decoding data for validating every hardware module.

There are three profiles in H.264/AVC, adopted by the SBTVD, in increasing level of complexity, which
are Baseline, Main and High. At the time this work was being done, there was available an intra-only baseline
H.264/AVC video decoder and a parser with support for new modules [4]. Since the development is done in an
incremental approach, the team was working on the integration of the motion compensation module to complete
the video decoder for the baseline profile, and the integration of the CABAC entropy decoder. The latter is the
topic of this paper.

Fundamental H.264/AVC features, considered in this work, are explained in the section 2, focusing in
specific knowledge needed to integrate and debug the CABAC entropy decoder. Section 3 explains
functionalities of the CABAC decoder, the parser and propose some modules needed to make the integration
possible. In section 4, simulation and FPGA synthesis results are presented. Finally, in section 5 concluding
remarks and future works are indicated.

2. H.264/AVC Standard in the SBTVD

H.264/AVC is the video compression standard adopted by the SBTVD. Developed to surpass MPEG-2,
H.264/AVC reaches higher compression rates taking advantage of new coding techniques. However, its coding
algorithm leads to a higher computational complexity.

In the fig. 1, which shows a simplified block diagram of the H.264/AVC decoder, a video bitstream is
processed by the parser and entropy decoder to supply parameters to the prediction and residual blocks. Images
are reconstructed by adding residual data to predicted data. Residual data is obtained by the entropy decoder in
the form of coefficents that must pass through the processes of inverse quantization and inverse transform.
After the whole image has been processed, it is filtered to reduce block edges and it is stored for exibition and
motion compensation reference.

To represent images, the color space YcbCr is used, with subsampling 4:2:0. Video images can have the
structure of frames or fields (for interlaced video), and can have one or more slices, which are decoded
independently. Each slice is divided into 16x16 samples regions called macroblocks, that are decoded in raster-
scan order, except in the case of adaptive frames. Adaptive frames are processed in raster-scan order of pairs of
macroblocks, that can be coded either as frames or fields. In each pair of macroblock, the top macroblock is
first decoded, then the bottom one

In the intra prediction, a macroblock is reconstructed through a directional copy or mean DC value of
border samples of the neighbor samples. The prediction can be done over a whole macroblock in the intra
16x16 prediction mode, or over blocks of 4x4 samples. In the first case, there are four possible intra 16x16
modes that are derived directly from the intra macroblock ID. In the case of the intra 4x4, there are nine
possible prediction modes that are each derived separately.

102 SIM 2011 — 26" South Symposium on Microelectronics

Video Output Reference Encoded video

T Pictures ¢ bitstream

Inter
Prediction

Parser

Parser,

Decoded
Pictures

Intra
Prediction

Inverse | Inverse Entropy
Transform |+ Quantization Decoder

Current Adaptive +
Picture Filter

A

Fig. 1 — H.264/AVC video decoder block diagram.

Residual data is obtained by the entropy decoder in the form of coefficient blocks of an integer transform,
based on DCT (Discrete Cosine Transform). There are arrays of 4x4 coefficients for Luminance AC,
Chrominance AC, or Luminance DC. For chrominance DC the block is an array of 2x2 coefficients. The
coefficient blocks are processed by an inverse quantization and then an inverse transform, employing only
adders and shifters, to build the residual block data to sum with the predicted data.

2.1. CABAC decoding

CABAC (Context-based adaptive Binary Arithmetic Coding) is entropy coding employed to obtain the
value of each syntactic element for the reconstruction of the macroblocks of the image. It supplies residual
coefficents and parameters for the spatial and temporal prediction. Data compression is reached applying
principles of arithmetic coding, and it depends on an accurate estimation of symbol occurrence probabilities.

Every syntactic element is obtained by decoding bins of a binstring. The binstring is converted to a
syntactic element value by a de-binarization process.

For each bin to be decoded, a context model is selected. The context model stores the probability of a bin
being ‘0’ or ‘1°. The selection of the context model is based on values of previously decoded syntactic
elements, at the neighborhood of the current macroblock or partition. There are 460 context indexes specified in
the H.264/ AVC Standard [5] for videos in the main or high profile.

3. CABAC entropy decoder integration

The CABAC entropy decoder (denominated here as CABAC entropy decoder core) adopted for integration
[6] implements no control over the sequence of the syntactic elements to be decoded by the video decoder. This
task is supposed to be executed by an external control, done by the parser. The CABAC entropy decoder core
also doesn’t perform contexts initialization, bitstream handling, coefficient blocks building nor syntactic
elements values storage and neighborhood managing necessary for context selection.

An already developed module [7] was adopted for contexts initialization. It implements four-stage pipeline
to write in a RAM port the value of 460 context variables consuming 464 cycles. Other modules presented here
had to be developed to complete the CABAC entropy decoder.

3.1. General control and communication with parser

A module was created to command contexts models initialization, environment values reading from the
bitstream and syntactic elements decoding. This module is responsible for receiving syntactic elements
decoding request by the parser and coordinating every module in the cabac decoder, as well as informing the
parser when the task is finished. For this purpose, a finite state machine as shown in fig. 2 was designed.

3.2. Bitstream Handling

For this purpose, the CABAC environment variables are initialized consuming 9 bits from the bitstream in
the init_env_vars state in the fig. 2. Then, in state init_bs handler, 24 bits are read from bitstream without
consumption, to feed three byte buffers for CABAC entropy decoder core.

While CABAC entropy decoder core is operating in state decod_se, it requests shifts in the buffers that
must be read from the bitstream with the signal incr_decod stream_lenght and marks current bit position in the
first byte with the signal bits fo go. The module bs_handler read this information and mark bits consumption
to update the buffers, by comparing those two signals with copies stored in bs_handler itself and performing
simple arithmetic operations.

SIM 2011 — 26" South Symposium on Microelectronics

103

reset=1

init_ctx_done = 1 and
input_byte_aligned = 1 init_env_vars_done = 1

enable =1

build_contexts init_bs_handler

init_bs_handler_done = 1

parser_ack = 0 and
cabad_se_manager_done = 1
residual_req =0

enable =1

decod_se

wait_se_request_
after_terminate

wait_se_request

parser_ack = 0 and
cabad_se_manager_done = 1
residual_req =1

cabac_decoder_ready = 1

decod_res_block

parser_ack = 1 and

decod_se_ack
decode_terminate = 1

parser_ack =1and

decode:terminate =0

cabac_residual_block_done =1

Fig. 2 — General control for CABAC entropy decoder modules

3.3.

Decoded syntactic elements managing

CABAC entropy decoder core [6] uses a 41 bits input to calculate the context model index to decode a
syntactic element (SE). The value that must be present in this interface depends on the syntactic element type to
be decoded. For most of the syntactic elements, values of top and left neighbor syntactic elements must be
provided for context selection. In an adaptive frame, the top or left macroblock may be the top or the bottom
macroblock of a pair, as show in fig. 3. The occurrence of syntactic elements depends on its type and may be:
one per macroblock (16x16 samples), one per sub-macroblock (8x8 samples) or one per block (4x4 samples),
also shown in fig. 3. Thus, there must be syntactic elements values stored for the previously decoded neighbor

macroblocks and inside the current macroblock being decoded.

The proposed solution involves grouping syntactic element types into four memories with different data
width, where they are to be stored, as shown in tab. 1. Two memories are reserved for inter prediction syntactic
elements. The memories are used for top SEs only, except for mb_se_info that can be used to read the left and
the top neighbor at the same time in a dual port. The memory mb_se_info is used to read at once all SEs that
occur once per MB. For others SEs, the left neighbors are stored in registers.

Image width of an adaptive frame with field pairs and frame pairs of macroblocks

Top
MB

Left

Current
MB

2 Macroblocks

2 top and 2 left SEs

4 top and 4 left SEs

Current
MB

Fig. 3 — General control for CABAC entropy decoder modules

Tab.1 — Memories designed for storing previously decoded syntactic element values

Memory Data width Granularity SEs per MB Dual port
mb_se_info 20 16x16 1 yes
cbf ac info 8 4x4 8 no

Ref idx info 20 8x8 4 no
mvd_info 128 4x4 1 no

104 SIM 2011 — 26" South Symposium on Microelectronics

4. Simulation and synthesis results

To verify the proposed architecture, a test bench for the parser was executed. It reads a H.264/AVC video
bitstream encoded with JM [8], and saves residual coefficient blocks for comparison with data generated by
PRH.264 [3]. The results were proved correct for the first image frame, which contains only intra macroblocks.

CABAC entropy decoder (CABAD) and it’s most expressive modules separately were synthesized for
Xilinx Virtex 5 FPGA, as shown in tab. 2. Synthesis of the parser prior to the integration and then including the
CABAC entropy decoder were done and the results are shown in tab. 3. The max frequency of 56 MHz is
higher than the frequency established in [9] and enough for the CABAC entropy decoder to process HD video

compressed data.

Tab.1 — Virtex 5 FPGA Synthesis summary for CABAC entropy decoder modules

Module Flip Flops LUTS BRAMS Max frequency
CABAD 861 4194 198 KB 56 MHz
CABAD CORE [6] 441 3035 90 KB 57 MHz
SE MANAGER 221 643 36 KB 176 MHz
RES. BLOCK 75 244 72 KB 292 MHz
BS HANDLER 19 186 0 318 MHz
Tab.2 — Virtex 5 FPGA Synthesis summary for parser without CABAC and then after its integration
Integration Flip Flops LUTS BRAMS Max frequency
Before 1339 3762 18 KB 103.4 MHz
After 2750 8993 216 KB 56 MHz

5. Conclusion and future works

This paper shows adequate solutions to the main problems that arise with the integration of CABAC into
an H.264/AVC video decoder, reaching the frequency of SOMHz necessary for HD as shown in [9]. As future
work, support for inter prediction must be integrated, with the development of arbitrarily sized macroblock and
sub-macroblocks partitions neighborhood managing. Also, the parser with CABAC entropy decoder must go
through a rigorous validation process, with a wider variety of video bitstreams.

6. References
[1] “Rede H.264 SBTVD Wiki”, www.lapsi.eletro.ufrgs.br/h264/wiki, 2011.

[2] “Televisdo Digital Terrestre — Codificagdo de video, audio e multiplexacdo”, ABNT, Rio de Janeiro-RJ,
2007.

[3] A. A. Schmidt, F. F. Vidor, M. A. Lorencetti and A. A. Susin, “Development of a Software Model for an
H.264/AVC Progressive Main Profile Hardware Video Decoder”, 10" Students Forum on
Microelectronics SForum’10, Sdo Paulo-SP, 2010.

[4] M. A. Lorencetti, “Parser em VHDL para Decodificador de Video H.264 para SBTVD”, UFRGS, Porto
Alegre, 2010.

[5] Video Coding Experts Group, “ITU-T Recommendation H.264 (03/05): Advanced video coding for
generic audiovisual services”, International Telecommunication Union, 2005.

[6] J. P. A. Carvalho, “Arquitetura Dedicada para Decodificacio CABAC H.264/AVC em Sistemas em
Silicio”, master’s thesis, UnB, Brasilia, 2009.

[7] D. A. Depra, “Algoritmos e Desenvolvimento de Arquitetura para a Codificacdo Binaria Adaptativa ao
Contexto para o Decodificador H.264/AVC”, master’s thesis, Instituto de Informatica, UFRGS, Porto
Alegre, 2009.

[8] “H.264 Reference Software”, http://iphom.hhi.de/suehring/tml/, 2010.

[9] A. C. Bonatto, A. B. Soares, A. Renner, A. A. Susin, L. Silva, S. Bampi, “A 720p H.264/AVC Decoder
ASIC Implementation for Digital Television Set-top Boxes”, SBCCI, Sdo Paulo-SP, 2010.

SIM 2011 — 26" South Symposium on Microelectronics 105

A High Throughput Hardware Solution for the
H.264/AVC Quarter-Pixel Motion Estimation Refinement

Marcel Moscarelli Corréa, Mateus Thurow Schoenknecht,
Luciano Volcan Agostini
{mmcorrea, mtschoenknecht, agostini} @inf.ufpel.edu.br

UFPel — Federal University of Pelotas

Abstract

This work proposes a hardware solution for the H.264/AVC Quarter-Pixel Motion Estimation Refinement,
ready to be used in a complete Fractional Motion Estimation architecture. The architecture was optimized to
reach a high throughput through a balanced pipeline and parallelism exploration. The design was described in
VHDL and synthesized to an Altera Stratix 11l FPGA device, achieving an operation frequency of 245 MHz and
processing up to 39 QHDTV frames (3840x2048 pixels) per second. This architecture is also able to reach real
time when processing lower resolutions, like HD 1080p (1920x1080 pixels) with lower operation frequencies.
The final results are very competitive when compared to related works.

1. Introduction

The H.264/AVC (Advanced Video Coding) standard [1] is the state of art in video coding. It was
developed by experts from ITU-T and ISO/IEC intending to achieve the highest compression rates when
compared to older standards, like the MPEG-2. The current video coding standards primarily define two things:
(1) a coded representation (or syntax) which describes the visual data in a compressed form and (2) a method to
decode the syntax to reconstruct the visual information [2].

The H.264/AVC has a very high computational complexity, which makes difficult for software solutions to
encode high definition videos in real time when using the H.264/AVC most complex features. The high
complexity of the H.264/AVC encoding tools are also a restriction for embedded and mobile systems, since
software implementations in this scenario demand high performance embedded CPUs, consuming a lot of
energy. For these reasons, hardware architectures are the best way to encode and decode high definitions videos
in real time processing, e.g. HD 1080p (1920x1080 pixels) at 30 frames per second.

The Motion Estimation (ME) is most complex module of the H.264/AVC encoding process. It explores and
reduces the temporal redundancy, which is the similarity between sequential frames and works by splitting the
current frame into several macroblocks (16x16 pixels) and then searching in the previous coded frames
(reference frames) for the macroblock that is most similar to the current one. After this search, an integer
motion vector (IMV) is generated to indicate the offset of the selected macroblock inside the reference frame.
The goal of the ME is to find the best IMV whilst keeping the computational complexity between acceptable
limits [2].

This work proposes a high throughput and low cost hardware architecture to perform the interpolation and
refinement search of quarter-pixel samples used in the fractional motion estimation (FME). This architecture
will be integrated to a Half-Pixel ME Refinement architecture and to an Integer ME (IME) architecture (which
are being designed in parallel works), generating a complete FME solution able to process high resolution
videos in real time.

This paper is structured as follows: Section 2 presents the FME and the quarter-pixel ME refinement
process, Section 3 discusses software experiments, Section 4 presents the proposed hardware architecture,
Section 5 shows the synthesis results and discusses related works, and finally, Section 6 concludes this work.

2. Fractional Motion Estimation

A characteristic that contributes to the high compression rates achieved by the Motion Estimation of the
H.264/AVC standard is the possibility to generate fractional motion vectors [1]. In other words, a movement
that happens from a frame to another is not restricted to integer pixel positions only.

The H.264/AVC includes both half-pixel and quarter-pixel ME refinements. In this case, the process
usually follows three steps: (1) Integer Motion Estimation, (2) Half-Pixel ME Refinement, and finally, (3)
Quarter-Pixel ME Refinement. These refinement processes increase significantly the computational complexity
of the ME.

2.1. Quarter-Pixel Interpolation Process

The quarter-pixel accuracy in the FME is a H.264/AVC innovation. The interpolation of quarter-pixels
happens after the interpolation of half-pixels and the half-pixel ME search. It uses the best match block

106 SIM 2011 — 26" South Symposium on Microelectronics

composed by integer position samples and half-pixels to generate a new search area. Any quarter-pixel can be
obtained through a bilinear filter, defined in (1), where A and B are 8-bit luminance samples.

y=(A+B+1)>>1 (1

There are three types of quarter-pixel samples: (1) H Type, which is calculated using the two closest
horizontal samples; (2) V Type, calculated using the two closest vertical samples; and D Type, calculated using
the two closest diagonal samples in each direction. Fig. 1 shows a set of interpolated half-pixels between the
integer position samples. The integer samples and the half-pixel interpolated samples are used to generate the
quarter-pixel samples. Fig. 2a shows a set of H Type quarter-pixels, Fig. 2b shows a set of V Type
quarter-pixels, and finally, the Fig. 2c shows a set of D Type quarter-pixels.

= B EHEE [[
] EEFE] [3] [
LM

=] [E

11 12

0 m=H
0 O ErE oLl

Fig 1 — Half-pixel positions (white squares) between Fig 2 — Quarter-pixel positions (labeled with numbers)
integer position samples (gray squares). between half-pixels and integer position samples.

nlin
] mli=
5 B
oo
] nlin
nlin

2.2. Quarter-Pixel Motion Estimation Search

Using the interpolated search area, the search process tests all the eight possible matches inside this area to
check if there is a block composed by quarter-pixels that is more similar to the original block than the best
match found by the previous refinement step. The search is done using a block-matching algorithm, which uses
a distortion criterion to determine the most similar block. This criterion can be a simple arithmetic difference
between blocks or more complex calculations. Among the most used distortion criterion are the Mean Square
Error (MSE), Sum of Squared Differences (SSD) and the Sum of Absolute Differences (SAD) [1].

The SAD is defined in equation (2) and it is probably the most widely used criteria for reasons of
computational simplicity [1]. The SAD takes the absolute value of the difference between each sample in the
original block and the corresponding sample in the candidate block. These differences are added to create a
simple metric of block similarity.

m—1ln—1

sADP.0)= 23R, -0, ®

i=0 j=0

Once the SAD values for all the eight possible matches are calculated, search module will check if there is a
better match by comparing the SAD values of the quarter-pixel candidate blocks with the best match of the
half-pixel search. If there is a better match, the motion vector must be modified through the addition of the
corresponding quarter sample precision offset.

3. Experimental Evaluation

Using the H.264/AVC reference software [3], an evaluation was done to check the impact of simplifying the
ME excluding the variable block size support (VBS) and maintaining the fractional motion estimation. Five
QCIF video sequences commonly used by the video coding community were coded using two different ME
block size configurations. Two main results were measured: PSNR and bit-rate.

Table 1 considered the use of all possible partitions and sub partitions sizes, and Table 2 presents the results
when only the 8x8 block size is used. The use of only 8x8 blocks increased the bit-rate by 3.84% and reduced
the PSNR by 0.32 dB on average when compared to the optimal case (Table 1). Considering the presented
results, we decided to design a complete fractional motion estimation architecture that supports only the 8x8
block size, since this decision simplifies a lot the hardware design without expressive quality and compression

SIM 2011 — 26" South Symposium on Microelectronics 107

rate losses. The use of a single block size reduces a lot the motion estimation complexity and avoids the
necessity of a decision mode to choose the best block size. The decision mode is a big bottleneck in the
H.264/AVC encoder, since the adopted rate-distortion criterion (RDO) is very complex [4].

Results for the complex variable block size Results for the simple block size
configuration. configuration.

Video PSNR Bit-rate Video PSNR Bit-rate
Sequence (dB) (Kbps) Sequence (dB) (Kbps)
Akiyo 40.82 114.5 Akiyo 40.47 116.53
Bridge Close 37.38 155.33 Bridge Close 37.16 154.56
Coastguard 34.12 272.33 Coastguard 33.80 277.21
Foreman 36.47 207.87 Foreman 36.01 225.24
Mobile 32.59 391.81 Mobile 32.34 412.16
Average 36.28 228.37 Average 35.96 237.14

* ME configuration: FullSearch algorithm, 32x32 search area, one reference frame, quarter-pixel accuracy, QP=28

4. Quarter-Pixel Motion Estimation Refinement Architecture

This paper presents an architecture that increases the accuracy of the ME process. The architecture is
divided in two main parts: the quarter-pixel interpolation and the motion estimation search. These two
operations were interleaved to reduce the use of clock cycles.

4.1. Proposed Interpolation Unit

The Quarter-Pixel Interpolation Unit for 8x8 blocks proposed in this section has two main parts: the Filter
Line and the Buffers.

The Filter Line is a module that interpolates an entire line of two possible matches in a single step. Since
there are 8 quarter-pixels per line, the Filter Line must have 16 Processing Units (PU). Each PU is a basic
operative unit used to apply the bilinear filter defined in the equation (1).

The buffers are necessary to store and shift both the input and output samples. There is a main buffer to
store the 17x17 area composed by integer position samples and half-pixels, and three buffers to store the
interpolated V, H and D Type quarter-pixels.

The interpolation architecture needs 17 clock cycles to fill the main buffer, one line per clock cycle. Then, it
needs another 32 clock cycles to interpolate and store all quarter-pixel samples. A total of 49 clock cycles are
necessary to interpolate a new search area composed by quarter-pixels around the best match chosen by the
previous refinement process.

4.2. Proposed Search Module

The quarter-pixel search process is very similar to the half-pixel search, and it has two steps: the SAD
calculation and the SAD comparison. Since the interpolation unit can interpolate an entire line or column of two
blocks composed by quarter-pixels in a single step, the SAD calculation can be done in parallel with the
interpolation.

The SAD calculation is done using two SAD Trees operating in parallel. The SAD Tree (ST) is a module
that calculates the SAD value for a candidate block line by line. The SAD value of a single line or column is
calculated and stored in an accumulator register. Each ST use a 2-stages pipeline configuration, taking 9 clock
cycles to calculate the SAD value for the entire block.

The SAD Comparator (SC) can compare four SAD values in parallel and it uses a two-stage pipeline
configuration. As first step, the comparator stores the smallest SAD value and its corresponding FMV among
the V and H Type possible matches and then compares it to the best SAD found by the previous refinement
process. Extra clock cycles are not necessary since this comparison occurs in parallel with the D Type
interpolation and SAD calculation. As second step, the comparator stores the smallest value among the D Type
possible matches and compares it to the smallest SAD obtained in the first step. Two extra clock cycles are
necessary to obtain the smallest SAD value and its corresponding MV.

5. Synthesis Results and Related Works

The proposed design was fully described in VHDL and synthesized to an Altera Stratix III ep3s150f484c2
FPGA device using the Quartus II synthesis tool [5].

When synthesized to the ep3s150f484c2 device the architecture achieves a maximum frequency of 245 MHz
in the worst case (when the slow 1100mv 85¢ mode is considered) and 252 MHz in the best case (when the
slow 1100mv Oc mode is considered). At the worst-case scenario, our architecture can process up to
39 QHDTYV frames (3840x2048 pixels) per second. However, since the quarter-pixel ME refinement is the less

108 SIM 2011 — 26" South Symposium on Microelectronics

complex process in the FME, it might be limited by a bottleneck. The minimum frequencies to process videos
at 30 frames per second are: 188.01 MHz for QHDTV, 49.97 MHz for HD 1080p (1920x1080), and 22.03 MHz
for HD 720p (1280x720).

The operative module (Filter Line, two SAD Trees, and SAD Comparator) of the architecture consumed
659 LUTs (1.7% of the target device resources) and 132 dedicated logic registers (0.3% of the target device
resources). The buffers were mapped as registers banks and consumed 9 registers (13-bits), 801 registers
(8-bits), 289 4:1-multiplexers (8-bit) and 512 2:1-multiplexers (8-bit).

Works focusing on hardware design for a quarter-pixel ME refinement that works only with 8x8 blocks
were not found in the literature. For comparison, two works about FME are considered, however these works
target different technologies.

Performance comparison among related works.

Oktem [6] Kao [7] This Work
Technology | FPGA Virtex2 | TSMC 0.13 um | FPGA Stratix III
Support to VBS Yes Yes No
Quality Drop (PSNR) - ~0.27 dB ~0.32 dB
Maximum Frequency 60 MHz 100 MHz 245 MHz
Throughput (QHDTYV frames/s) 1.3 293 39

The FME architecture proposed by [6] gives support to VBS by splitting a macroblock into smaller 4x4, 8x4
or 4x8 blocks. Since [6] takes 44 clock cycles to perform the interpolation and search of a 4x4 block, it needs
176 clock cycles to interpolate an 8x8 block. Our design needs 61% less clock cycles to process a 8x8 block,
making it more suitable for high quality video coding, with a quality loss of only 0.32 dB.

The FME architecture proposed by [7] gives support to VBS too, and it uses a heuristic based mathematical
model to make the quarter-pixel interpolation less expensive, however it degrades the resultant quality of the
video. When compared with our approach, the solution proposed in [7] causes an inexpressive gain of 0.05 dB
in terms of quality. Even using a heuristic to reduce the ME complexity the solution [7] is more complex, since
it supports VBSME and makes necessary the use of a decision mode.

6. Conclusions and Future Works

In this paper, a high performance and low cost hardware architecture for the H.264/AVC quarter-pixel
motion estimation refinement process was presented. This architecture supports only 8x8 block sizes instead of
the complete VBS proposed by the H.264/AVC standard. This simplification reduces a lot the ME complexity
with a little loss of 0.32 dB in PSNR.

When synthesized to an Altera Stratix III FPGA, our architecture achieves a very high processing rate. It
can process high definition videos like HD 1080p in real time (30 frames per second) when running at lower
frequencies, such as 50 MHz, which is very important when power and energy consumption restrictions are
being considered. Our solution is also able to process 39 QHDTV frames per second surpassing all related
works in terms of throughput. A high throughput is very important to not degrade the performance of a
complete FME architecture.

Our solution presents a very good tradeoff between throughput and hardware cost, since it requires a low
frequency to encode high definition videos and it consumes a small amount of hardware resources.

As future works, we plan to design a fully functional Fractional Motion Estimation architecture with fast
search algorithm and quarter pixel accuracy.

7. References

[1] Joint Video Team (JVT) of ITU-T VCEG and ISO/IEC MPEG, Draft ITU-T Recommendation and Final Draft
International Standard of Joint Video Specification, ITU-T Rec. H.264 and ISO/IEC 14496-10 AVC, May 2003.

[2] I. G. Richardson, H.264 and MPEG-4 Video Compression, Wiley, 2003.
[3] IM17. “H.264/AVC JM Reference Software.” Mar, 2011; http://iphome.hhi.de/suehring/tml

[4] Sullivan, G; Wiegand, T. "Rate-Distortion Optimization for Video Compression," [EEE Signal Processing
Magazine, vol. 15, no. 6, pp. 74-90, 1998.

[5] ALTERA. “FPGA CPLD and ASIC from Altera.” Mar, 2011; http://www.altera.com

[6] Oktem, S; Hamzaoglu, I, “An efficient hardware architecture for quarter-pixel accurate H.264 motion estimation,”
10th Euromicro Conference on Digital System Design Architectures, Methods and Tools, August 2007.

[7] Kao, C; Kuo, H; Lin, Y, “High performance fractional motion estimation and mode decision for the H.264/AVC,”
IEEE International Conference on Multimedia and Expo, July 2006.

SIM 2011 — 26" South Symposium on Microelectronics 109

A Rate-Distortion Metric Targeting Perceptual Video Coding

Bruno George de Moraes, Ismael Seidel, José Luis A. Giintzel
{brunogm,ismaelseidel,guntzel } @inf.ufsc.br

Embedded Computing Lab. (LCE)
Federal University of Santa Catarina, Florianépolis, Brazil

Abstract

This paper presents a new metric, called Quantization Distortion Energy (ODE), based on perceptual
video coding, proposed for block matching considering the losses in quantization, and its evaluation in an
H.264/AVC encoder. Three tests were elaborated to compare the metric using rate—distortion optimization
(RDO) with Sum of absolute transformed differences (SATD) metric. The first test shows the curve of structural
dissimilarity (DSSIM) and peak signal to noise ratio (PSNR) at various bit-rates. The second test shows the size
reduction with the quality normalized by SSIM, resulting in a variable constant ratefactor (CRF) for the
proposed encoder and a fixed CRF for the original encoder. In the third test an algorithm was used to perform
the second test automatically spanning CRF range. The results show that the proposed metric, at the same
quality in SSIM, provides gains in bit-rate ranging from 2% to 60%. Furthermore, in most cases considering
the same bit-rate, gains were obtained in both quality metrics: SSIM and PSNR.

1. Introduction

The H.264/AVC standard provides at least 50% of bit rate improvement over MPEG2, which has
guaranteed its widespread adoption for transmission and storage of high definition video in applications such as
some digital television standards (e.g., SBTVD, DVB-S2), recent movie formats (e.g., Blu-ray and AVCHD),
etc. Despite being the state-of-art for its efficiency, the bandwidth and costs associated with, per example, a
1080p IPTV (Internet Protocol television) application has limits in user-base by definition of broadband
penetration on the market. Therefore, improving the analysis step of an H.264/AVC encoder contributes to
expand its use to other applications.

Motion pictures or videos have lots of data. To compress them, each frame is divided into macroblocks
and further into smaller blocks that are submitted to the Inter and Intra Frame Prediction techniques. Those
techniques explore temporal and spatial redundancy (i.e., nearby video blocks exhibiting high correlation) by
coding only the differences between similar blocks. A search algorithm will look for candidate blocks, and the
best candidate block is selected in a simple view with a specific distortion metric [1]. Thus, by exploring the
encoder metrics used to find matching blocks with minimum residues and distortion, it is possible to achieve
better compression rates, while keeping the video quality or, conversely, increasing quality for the same bit-
rate.

Distortion metrics are divided into objective and subjective. Objective metrics are purely mathematical
models derived from signal theory and do not consider human visual system (HVS) characteristics. However,
for performance reasons, they are the most used ones. Subjective metrics exploit the HVS models. The few
existing ones suffer from poor performance and explore only a small set of features. For that reason, they are
neither widely used nor well accepted [2]. Examples of the common used metrics are the SAD (Sum of
Absolute Differences) [3], the SSD (Sum of Squared Differences) [4] and the SATD (Sum of Absolute
Transformed Differences) [3]. This paper presents, as contribution, the development and evaluation of a
subjective metric, named Quantization Distortion Energy (QDE) which is explained in Section 2.

The rest of this paper is organized as follows. Section 3 shows the evaluation process for the metric,
whereas Section 4 comments the evaluation results. Conclusions and perspective work are outlined in Section
S.

2. Proposed Metric

Most of the metrics used for matching block does not directly consider the quantization step, which
occurs after the discrete cosine transform (DCT) [5], for the current block. Typically, only the reconstructed
data is considered containing losses in quantization, inverse quantization and inverse transform. The DCT
coefficients represent frequency bands, for which it is known that the HVS has different sensitivity, as defined
by the contrast sensitivity function (CSF) [6]. The quantization eliminates some of those frequency bands in
order to achieve high compression rates. However, as drawback, the quantization causes a great amount of
image distortion, either by rounding errors or by frequency band elimination [4].

By considering the errors caused by the quantization step, it is possible to predict what block match
candidate will cause less distortion after the inverses of quantization and transform steps, for frame re-
assembly. The worst errors occur when some transformed coefficients are eliminated. Based on that fact, we
propose to apply a greater weight for the coefficients that will cause the most distortions. This is done by

110 SIM 2011 — 26" South Symposium on Microelectronics

predicting the eliminated coefficients before the quantization. Thus, for all the 52 quantization parameters (QP),
the thresholds of DCT coefficients that will be eliminated shall be calculated, for the multiplicative factors
(MF) table of H.264/AVC [3].

0 = round (Coeff * MF[QP%6,n]/ 2" @7 *% [31(1)

In order to calculate the metric some threshold values are obtained from the quantization equation (1)
which was solved for “Coeff”, obtaining the root value for all MF, as mentioned before. The thresholds were
calculated for 4x4 and 8x8 DCT of H.264/AVC. Only the QP 51 thresholds were stored, whose values can be
seen in Tab.1, for 4x4 blocks. The others thresholds can be obtained by doing a simple shift operation by /8§ -
floor(QP/6)]. By comparison of the DCT coefficients with the thresholds values, the coefficients can be
classified in two groups, eliminated and encoded. The encoded will be handled as in SATD, by gathering
absolute sums. The eliminated coefficients will be quadratically summed as in SSD. This ensures that the
encoded group will be representative for the bit-rate and the eliminated group will estimate the distortion
caused by quantization. Such proposed metric will be called Quantization Distortion Energy (QDE).

Tab. 1 - The QP 51 thresholds coefficients for 4x4 block

640 1039 1599
703 1119 1800
832 1279 2000
896 1440 2300
1023 1599 2500
1151 1840 2899

3. Testing QDE

As test platform for QDE the H.264/AVC encoder of the x264 project [7] was used. In the x264 there
are three modes of rate control: Constant Quantizer, Bit-rate and Constant Ratefactor, which is similar to
constant quantizer, but acts on reducing/improving quality according to frame importance, maximizing
perceptual quality of the encoded video. To compare to the original version of the x264, which uses SATD,
appropriate modifications in the encoder were accomplished, in order to use QDE thresholds to perform
coefficient classification. Residues were summed in absolute and squared parts respectively, constituting the
modified x264 version. It is important to notice that in x264, after quantization there is one step called
decimation which eliminates some coefficients. This step is present in both encoders, and hence does not
influence the comparison itself. Those two versions of x264 encoder were compared against each other, to show
the possible gains or losses of the new metric. For the tests, nine random video samples were selected from the
Xiph.org Test Media Repository [8] to form a miscellaneous resolution and complexity set. The tests were run
on a 2.83GHz Intel Core 2 Quad Q9550 machine with 12M Cache and 4GB of RAM with Ubuntu Linux 10.04
SMP 64bit 2.6.32-23-generic operating system. The three performed tests are referred to as “A”, “B” and “C”.

In the experiment “A”, the encoder is parameterized to compress the video by restricting bit-rates at
the values of 400, 700, 1000, 2000, 4000 and 8000 Kbit/s, using the multi pass controller, which guarantees the
specified rates. A script iterated all bit-rate values for both encoders, and then two charts were generated from
the statistics file, one chart showing the curves for the bit-rates against PSNR [4], and another one with bit-rates
against DSSIM [4], which is a distance metric derived from SSIM [9].

The SSIM measures the structural similarity between two images: an original (distortion-free) to
which the distorted image will be compared. This kind of approach is known as full-reference (FR). The other
two approaches are no-reference (NR), in which the reference image is not available, and reduced-reference
(RR), in which the reference image is only partially available. The most traditional image/video quality
evaluation metric is the PSNR. However, the PSNR values do not correspond to the perceived visual quality
due to the non-linear behavior of the HVS. In principle, the SSIM assumes that the HVS perception is highly
adapted to extract structural information from a scene. Hence, SSIM is one of the most effective perceptual
quality evaluation metrics and that justifies its adoption in this work to measure quality.

For experiment “B”, the quality measured in SSIM was restricted by encoding the video with CRF [7]
equals to 20.0 (23.0 by default at x264 encoder, used 20.0 to have high quality samples). For each test sample,
the same quality was sought by doing manual changes in CRF on the modified version of the encoder until the
quality was reached. By doing so, it was possible to measure the differences in video size for the two encoders.

Experiment “C” can be considered as the most important one because it allows the comparison of
gains (in bit-rate) for the same SSIM on both encoded videos. As long as in x264 there was not a way to choose
final SSIM, an algorithm was created to iterate over several test samples spanning CRF from 10 to 30, looking
for convergence between the original SSIM and the modified one by adjusting its CRF.

SIM 2011 — 26" South Symposium on Microelectronics 111

4. Results

The following results present the QDE performance in quality against the SATD as defined in the
RDO of the x264, both metrics act as D metrics (part of RDO) in such case. Charts showed in Fig.1 indicates,
for the sequences "Riverbed" and "Sunflower, the behavior of QDE and SATD in quality, DSSIM (upside
charts) and PSNR (downside charts) versus the bit-rate of the final encoded sample, as defined in experiment
"A". The charts of “Riverbed” show that, for all samples, QDE had better DSSIM and PSNR over SATD.
"Sunflower" is a video sample that achieved gains up to 60% in compression at experiment "C" (see Fig. 3), for
the same quality in original encoder. This sample in lower bit-rates has losses in PSNR and DSSIM. However,
as its bit-rate increases, the QDE shows better results than SATD. Thus, experiment “A” shows an apparent
tendency of QDE superiority over SATD, as the bit-rate increases. On the other hand, experiment “C” shows
that there are cases, for the same quality, where higher bit-rates result in a worse compression with QDE.

Riverbed - dSSIM Sunflower - dSSIM
8 50
adl 45
71 40t
S 5] e
7] 7]
@ % 30+ 1
T 54 T
- T 25¢ T
4
20+ 1
31 T 15+ T
Original x264 (SATD) —— Criginal x284 (SATD) —+—
QDE " —w— QDE —w—
2 =t i i | 10—+ t] |
471 2 4 8 471 2 4 8
BitRate(Mbps) BitRata(Mbps)
Riverbed - PSNR Sunflower - PSNR
6 44
s+ + 43 r
344 4 42 |
334 41 L
m 32+ o 40 L
2 2
e 311 x 39 -
Z z
9 304 D a8 3
29 37 r
28 1 38 |
27 + Original k264 (SATD)=——— T 35 Original x264 (SATD)—— T
QDE —»— DE —t—
26—+ : i 34 84 f + i
471 2 4 8 471 2 4 8
BitRate(Mbps) BitRate(Mbps)

Fig. 1 - Graphics generated for PSNR and DSSIM for sequences “Sunflower” and “Riverbed”, as part of
the experiment “A”

Size CRF

B Sunflower 24,95
H Bunny 21

O Ducks 20,7

B Foreman 21,29
H Tree 20,79

B Park 20,9

B Pedestrian 22,84
I Riverbed 20,66
B Soccer 20,93

10%
0% +—— —

% about original

-70%

Bitrate (Mbit/s)

Fig. 2 - Experiment “B”: results at size of QDE relative to the original

The simplest experiment, “B” (Fig. 2), is a short overview of the metric at CRF 20 for all nine tested
video samples. In Fig. 3 it is possible to see the results for experiment “C”. In this figure each marked point at

112 SIM 2011 — 26" South Symposium on Microelectronics

the curves represents, from right to left, a CRF value of the original coded video, ranging from 10 to 30. The
horizontal axis informs the quality in SSIM achieved for both encoders at different CRFs. The vertical axis
shows the gain in size (kb) relative to the original encoded sample. In the case of “Ducks take off” there is a
steady improvement at CRF range from 10 to 19 of 0.5% to 2.5%. Above that, from CRF 20 to 27, there are
higher gains until a peak of ~5%. From CRF 28 to 30 diminishing gains occur due to the limits imposed by
lower qualities. Yet for the experiment “C”, the results for “Sunflower” samples show a minor improvement
range until CRF 15 (in practice, lossless). Above that, a substantial gain, up to a peak of ~60% in CRF 20.
Above such CRF the gains diminish down to some penalty at CRF 28 (with a bottom of ~ -5%). These effects
in CRFs greater than 28 are felt even at CRF 51 in which QDE presents better SSIM quality than attainable,
because there is no higher CRF. Thus, the problem relies on achieving higher quality for the entire quantizer
range allowed by H.264/AVC. For CRF after ~28, the encoder tries to match the available space in the
encoding buffer, for which a low bit-rate is needed.

5 . , 60 ; . . .
size (kb) —+— size (Kb) ——
45 -
50

4
S 35¢ O
g g
£ 5 30
& 25" G
(] (]
£, £ 20 ¢
=] 5
3 2
| 15- ® 10
2 2 L
5 1 T T
0] \ O 4

05 - /

i i i i i i

Fig. 3 - Experiment “C” shows the result of DSSIM vs. size gain over the original using the proposed
metric for samples “Ducks Take Off” and “Sunflower”, respectively

5. Conclusion and perspective work

The evaluation of the Quantization Distortion Energy (QDE) metric, based on the prediction of
eliminated coefficients caused by quantization, showed that there is much information available during the
encoding process which could be used for better block-matching, and this metric successfully utilizes some of
this information. The generated graphics show gains in videos coded with QDE. This efficacy has been
presented with the three conducted experiments for most of the tested video samples. Regarding experiment
“B”, only one among the nine tested videos had a loss in bit-rate, for the same quality. Experiment “A” shows
that, switching the bit-rate, the quality can be increased not only by increasing the bit-rate itself, but also by
using new block match metrics, such as QDE. Experiment “C” shows that there are certain CRF ranges where,
at the same quality, compression rates are better for QDE than for SATD.

Ongoing work includes the implementation and comparison of the QDE within the JM reference
software of H.264/AVC [10] to also investigate how this proposed metric behaves. In addition, a hardware
implementation of QDE is currently under development.

6. References

[1] R. Dornelles, L.Agostini. “A Low Cost Real Time Motion Estimation/Compensation Architecture for the
H.264/AVC Video Coding Standard”. Proc. 25" South Symposium on Microelectronics (SIM’10), 2010.

[2] H. R. Wu, K. R. Rao. Digital Image Video Quality and Perceptual Coding. CRC, Boca Raton, FL, 2005.

[3] I. Richardson, H.264 and MPEG-4 video compression — Video Coding for Next-Generation Multimedia.
John Wiley&Sons, Chichester, 2003.

[4] B. G. Moraes. “Uma métrica para Taxa de Distor¢ao voltada codificacdo de video perceptiva”. Undergrad
dissertation, UFSC, Floriandpolis, 2010.

[5] E.T.M. Manoel. “Codificagdo de Video H.264 - Estudo de Codificacio Mista de Macroblocos”. M.Sc.
dissertation, UFSC, Floriandpolis, 2007.

[6] R. L. D. Valois ¢ K. K. D. Valois, Spatial vision. Oxford University Press US, 1990.

[7] L. Merritt, et al. x264 Project. Available at: <http://developers.videolan.org/x264.html>.

[8] Xiph.org. Test media. Available at: <http://media.xiph.org/>.

[9] Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli, "Image quality assessment: From error visibility
to structural similarity," IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600-612, Apr. 2004.

[10] IM Joint Video Team Reference Software. Available at: <http://iphome.hhi.de/suehring/tml/>.

SIM 2011 — 26" South Symposium on Microelectronics 113

Processor and Demux Integration for the SoC-SBTVD

!Jeffrei Moreira, !Jonatas Rech, 1Henrique Klein, ' Altamiro Susin
jeffrei.moreira@ufrgs.br, {jrrech,haklein}@inf.ufrgs.br, altamiro.susin@ufrgs.br

"Universidade Federal do Rio Grande do Sul

Abstract

The main goal of this paper is the integration of a transport stream demultiplexer (Demux) and a closed
caption decoder to the main processor of a Set-top Box (STB) for the Brazilian Digital Television System
(SBTVD). The modules were presented in a previous paper at the 25" SIM ([1]), and now the integration to the
STB architecture is reported. The AMBA bus was used to connect the main processor core to the demultiplexer
and other peripherals. The attachment of the decoders is briefly addressed, with an emphasis to the coupling of
a closed caption decoder to the corresponding demultiplexer output and its interface with the digital video
output through the system main memory. An Aeroflex Gaisler Leon3 core was used as main processor.

1. Introduction

The project in the framework of which this work has been developed is called System on Chip for the
Brazilian Digital Television System (Soc — SBTVD), and comprehends a national academic cooperation in
order to develop an encoding and decoding specific hardware complying with the ISDB-T standard for digital
television broadcasting. This work follows the path started in the 2010’ SIM with [1], describing the
implantation of a development environment for an open-source soft-core processor. Although further work
showed that the Plasma processor performed faster than the Leon3 core in data demultiplexing tasks, the latter
has been chosen due to greater portability, support for operational systems and documentation, leaving raw data
demultiplexing to a dedicated hardware module.

The work flow begins with the compilation of a Linux kernel for the Leon3 core, followed by a description
and comparison of data input methods used in the initial integration tests. After that, the integration of the CPU,
hardware demux peripheral and closed-caption decoder will be reported.

2. Leon3 processor and Transport Stream input

2.1. Operational system compilation

The Leon3 processor is a soft-core CPU developed by Aeroflex Gaisler [2] (former Gaisler Research),
totally described in open-source VHDL (except for optional IP cores not needed for this project). It features,
among other IP cores, a memory management unit (MMU), that allows us, combined with an external RAM, to
run virtual memory-based operational systems (i.e. Linux 2.6) on the processor. Fig. 1 shows a diagram of the
possible configurations.

MAC 16 3-Port Register File LEON 3
MUL 32
7-Stage
Integer Pipeline
DIV 32 .
; Debug
5 nstruction Data Debug I'F
R Cache Cache D Interface
IRQ Interrupt | Memory Management Power Trace
15 Control Unit Down Buffer
AMBA AHBE Interface D Minimum Configuration
[] optional Blocks
isz - Co-Processors

Fig. 1 - block diagram of the Leon3 CPU;

The Leon3 hardware is being currently prototyped in a Xilinx Virtex 5 LX110T FPGA, hosted in a
XUPV5-ML509 board. The Virtex 5 device was preferred to the Virtex 2 for being able to host the whole
system when the integration reaches its final stage, since the processor itself occupied nearly 90% of the Virtex
2 FPGA, while in the Virtex 5 approximately 40% of the gates were used.

114 SIM 2011 — 26" South Symposium on Microelectronics

The intention in running a fully-featured OS comes from the future need of providing and managing a
graphical user interface for the SBTVD, along with the wish of having a more powerful platform for software
than that provided by the Plasma processor (both in terms of performance and library availability). It also
simplifies the task of data input, since it saves the programmer the work of tweaking the lower network layers
in case of an Ethernet-based transmission, or the abstraction of a file system in a mass storage device (local or
remote).

A previously running version of Linux (kernel 2.6.11.1) was taken from a previous work as a start off. The
migration to kernel 2.6.36 occurred as Gaisler Research announced official support and additional driver
packages, and required minor adjustments to match the synthesized hardware current settings.

2.2, Transport Stream data input

At the earliest stage of research on the data input and demultiplexing, the Plasma processor was used to run
a software demux fed by Transport Stream (TS) chunks previously stored in internal RAM. Such test was for
functional software and processor validation only, since it did not represent a continuous and “infinite” source
of data, as does real digital TV broadcasting. With support from an OS, the implementation of a data source
using an Ethernet interface seemed reasonable, since it supports high speed data transfers (up to 100Mbps,
much more than the approx. 2.3 MByte/s needed for FullHD video) and was readily available for testing (an
Ethernet MAC IP core is available as a peripheral for Leon3). The utilization of a CompactFlash card as source
of data was also considered, but it was no longer supported by Linux newer kernels, being eventually discarded.

In the current system, two data sources are available, one through an NFS share and the other through a
UNIX sockets interface, managed by two pieces of software that work under the client-server model. The NFS
share consists on a remote storage folder, being transparent to the client. A client running on Leon3 can access
the files and folders as they were stored locally, and the OS does the job of fetching the data on the server
through the NFS protocol. Further testing must be done in order to measure the impact of NFS in memory and
bandwidth utilization.

The data input through UNIX sockets interface is performed, as previously stated, by two pieces of
software. The communication occurs in a lower level than that of the NFS share, which means we have more
control over the data transfer. The main advantage of this method is that it is possible to capture TS data using a
"PenTV" USB receiver in the server and continuously send it through the socket as data is received.

3. System description

In such a complex project, there is significant interaction and dependency between the different modules,
so the information flow between them is also relevant. That is why a dedicated bus is necessary. As previously
stated in [1], the AMBA bus open standard has been chosen, and a demultiplexer has been attached to it as a
new peripheral to the Leon3 processor.

3.1. Amba Bus

The AMBA bus specification, supplied by ARM Holdings, is implemented in the IP library GRLIB,
distributed for free by Aeroflex Gaisler. Although several variations of AMBA are available, only AMBA 2.0 —
AHB is used. AHB is a high performance, multi-slave bus that can withstand up to 16 masters. It is structured
around two main elements: the arbiter and the address decoder. The former receives access calls from the
master modules and must then decide which one of them the access priority will be given to; the latter is
responsible for finding the selected slave in the memory map and routing the master's instruction to this slave.

The bus specific signals are exchanged inside dedicated records, which conceal the granting and response
signals among other system configurations. This AHB specification also features a pipelined mode of operation
with independent address and data phases and allows one data transfer per cycle.

e The demultiplexer

The demultiplexer receives from the microprocessor chunk of TS that contains an Elementary Stream (ES)
of audio, video or data, as well as other network configuration information. It must then parse the input packet
header, extract the ES and identify its nature in order to send it to the proper decoder.

Clock R PID (0 - 12
Ll
Enable > Demux Data out (0 -7)
—Daain(0-7) Data Valid

Fig. 3 — Demultiplexer interface

The demultiplexer designed for the Set-top Box, which is currently under development, has a typical DVB-
SPI input, depicted in Fig. 3. Its output includes a Packet Identifier (PID) that indicates the nature of the ES
(video, audio or data) as well as a serial byte stream with its respective validation signal.

SIM 2011 — 26" South Symposium on Microelectronics 115

4. System integration

The integration of the closed-caption decoder is a good example of the solutions developed so far. A new
entity which performs the transition between the AMBA protocol and the input format of the demultiplexer has
been created. A basic schematic of the signals that the interface handles is shown in Fig. 4.

The Amba2Demux interface reads all the signals from the bus output, including the slave selection signal
during the address phase, indicating that the next data phase is meant for this slave (for the moment, the slave
only handles writing operations, returning an error when a master tries to read from it. Although, a returning
path might be added for monitoring purposes.). The interface can signal the bus when the transfer is completed
or when an error has occurred, and is designed to occupy the bus as little as possible (typically for one cycle). A
specially designed FIFO holds the 32-bit data, and a buffer allows it to output one byte at a time. This
peripheral occupies only 256 bytes in the bus memory map, the minimal amount of space required by the
processor.

AMBA
(‘Ir?mk >
. Enabl
slavei signals Amba2Demux AL» Demux
% ::_g—_: > Data (0-7) »

Fig. 4 — Data path from the processor bus to the demultiplexer

For the interface between the demultiplexer and the closed-caption decoder, a simple PID interpreter has
been written, which receives the PID from the demultiplexer and, according to a previously defined table,
indicates the packets intended for the closed-caption decoder. In the version under development, the necessary
step of interpreting the PID signal will be taken inside the demux unit, making a selection signal directly
available for each decoder.

The chain datapath of Fig. 4 has been written, integrated to the processor and simulated, with satisfactory
results in the transmission of the incoming data, without losses. It was observed that the Amba2Demux internal
FIFO may have an optimal depth of 4 words, meaning that the proposed interfaces do not represent any kind of
bottleneck for the data flow, and respond properly to every possible situation that may occur during the
different bus states.

5. Closed Caption manipulation

The demultiplexing tasks are followed be the audio, video and data decoders. The operation of the latter
consists on decoding the information regarding the subtitles sent by the network, a work initiated by F. Caetano
in [3], who built the filter and parser modules. The subtitles are divided mainly in control bytes and data bytes,
as shown in [4]. So, it was built a module that first separate them and then translate the data bytes with the
parameters set by the control bytes into a matrix, that indicates positioning in the TV screen, and a 16-bit data,
that consists of information on which symbol and color that particular character indicates. The 16-bit data is
composed by 8 bits indicating color from both background and caption and an 8-bit pointer to a ROM
containing the symbols in pixels. The input stream and its decoded data are shown in Fig. 5 and 6.

Signals Waves

700 ns

Time

clk 1=
input_1[7:0] =
instr_bus[7:0] =
instr_bus[7:0] =
data valid o=
data_o[15:0] =

ram_addr[7:0] = o0
memdata o[15:0] = U

Fig. 5 — Separation between data and control bytes: “input_i” is the input stream and “instr_bus” (shown in both
hexadecimal and ASCII) indicates the data bytes.

In Fig. 6 it is also shown that the caption data is stored into a RAM memory when the flag “data_valid o0”
is set. The data is written in the position indexed by the matrix's row and column values (concatenated in the
signal “ram_addr™), so that it stores in the right position for showing on the TV screen. Later on the project, the
video output module will read from the RAM the parameters of color and the pointer to the symbol ROM

116 SIM 2011 — 26" South Symposium on Microelectronics

memory so it can display the video with the subtitles in it. An example of the reading of data is depicted in Fig.
7.

Signals Waves

1100 ns

Time
clk_i=
input_1[7:0] =
instr_bus[7:0] 5
instr_bus[7:0] 5
data_valid o=
data_ol[15:0] =
ram_addr[7:0] 5
memdata_o[15:0] = | [ENE0]
Fig. 6 — Decoding of the data in picture 1: “data_o” represents the 16-bit output and “ram_addr” consists of
the positioning in the TV screen.

Signals Waves

Time
clk_i=
input_1[7:0] =
instr_bus[7:0] 5
instr_bus[7:0] =
data_valid_o=
data_ol15:0] =
ram_addr[7:0] =
memdata_ol[15:0] = | G L 702 : 3
Fig. 7 — Reading of the RAM memory: “data_o” in picture 2 is read from the “ram_addr” position.

As for the video, the data decoded in the H.264 video decoder is stored in the external DDR memory, and
the video output reads from the DDR in a line of pixels format, instead of the written format which is in
macroblocks. Furthermore, in order for the video output from the set-top-box to successfully show the video
multiplexed with the subtitles, it is necessary to access the external DDR memory containing the video data and
to read both the RAM and ROM memories simultaneously. So, when the control indicates that a caption is
required, the position of the caption in the video output is set to be the data from the memories: the color (which
comes from the RAM) and character in pixels (which comes from the ROM indexed by the RAM less
significant 8 bits). The video output and closed caption modules were tested independently and need yet to be
fully integrated with the symbol ROM memory.

6. Conclusion

This paper described the efforts made towards the achievement of a full functional set-top box system for
the Brazilian digital television system. Focusing on the system integration, an example of the complete path for
the reception, demultiplexing and decoding of closed caption was also presented, with significant results on the
system performance. The next steps include the integration of the other decoders in order to have the complete
system ready for testing and further improvements and optimizations.

7. References

[1T J. Rech, L. Faganello and A. Susin, “A front-end development environment for the Brazilian digital
television system”, XXV South Symposium on Microelectronics (SIM 2010). SIM, 2010.

[2] Aeroflex Gaisler/ GRLIB, accessed in March 2011; http://www.gaisler.com/cms/
[3] F. Caetano, “Graphic Processor”, dez. 2010; http://hdl.handle.net/10183/27976

[4] ABNT NBR 15606-1, “Televisdo digital terrestre — Codificacdo de dados e especificacdes de
transmissdo para radiodifusdo digital, Parte 1: Codifica¢do de dados”, 2010. pp. 20-23.

SIM 2011 — 26" South Symposium on Microelectronics 117

Design Automation Tools 3

118 SIM 2011 — 26" South Symposium on Microelectronics

SIM 2011 — 26" South Symposium on Microelectronics 119

On Placement Coloring

Guilherme Flach, Marcelo Johann, Lucas Nunes, Ricardo Reis
{gaflach, johann, lpnunes, reis}@inf.ufrgs.br

Universidade Federal do Rio Grande do Sul (UFRGS)

Abstract

We present a new technique for visually comparing placement results through component coloring using
partitioning and the Fiedler eigenvector. By coloring a placement result, we can quickly get insights on how to
improve a placement tool and understand what matters and what does not to the placement quality. As a side
effect, our coloring scheme may generate beautiful images, making this paper about both artistic and scientific
experiments.

1. Introduction

Placement is the task responsible to place components evenly without overlap over the circuit area so that
wirelength and other parameters are targeted. Put in those words, placement seems to be a simple task,
however, due to the huge number of components that should be processed at same time, placement is
challenging. Indeed placement is a NP-Complete problem [1] and hence practical techniques do not try to solve
it optimality.

The large number of components also imposes a difficulty when comparing placement results from
different placement tools. Although other metrics as congestion and routability are being introduced, half-
perimeter wirelength (HPWL) still being the one most used to compare placement results. However HPWL
only can indicates that one placement result may be assembled with more or less wirelength, but does not
answer an important question for research: why one placement result is better than other?

Fig. 1 — An example of placement coloring using Fiedler eigenvector.

To try to answer that question we developed two schemes for component coloring using partitioning [2]
and the Fiedler eigenvector [3]. Wisely coloring components allows to compare visually different placement
results and get insight on why a placement results is better than other.

2. Placement Coloring

It is known that placement and partitioning are in some extent correlated [2]. This correlation suggests that
cells in a same partition tend to be placed in such a way they are clustered. This is the main idea and motivation
behind our coloring schemes. With that in mind, we then have selected two algorithms to color components: (1)
min-cut partitioning and (2) Fiedler eigenvector.

120 SIM 2011 — 26" South Symposium on Microelectronics

2.1. Coloring using Min-Cut Partitioning

A min-cut partitioner attempts to minimize the number of hyperedges which nodes belong to different
partitions keeping partitions balanced.

A circuit netlist is directly mapped to a hypergraph and so any partitioner that supports hypergraphs
can be used. In this work, we use hMetis [4]. Coloring a placement using a min-cut partitioning results is
straightforward: to each partition a different color is set and all cells belonging to a partition are painted with
the partition color. An example of min-cut partitioning coloring is presented in Table 1 where the netlist was
partitioned in 8 balanced partitions.

Tab.1 - Min-Cut coloring scheme. Images for ibm01 benchmark using 8 partitions.
Capo Dragon FastPlace 3 mPL
HPWL: 1.90689¢+06 HPWL: 1.87986¢e+06 HPWL: 1.72773e+06 HPWL: 1.6185e+06

2.1.1. Experimental Results

This coloring scheme was then used to colorize ISPD 2002 benchmarks set [10] using the placement
results from four placers: Capo [6], Dragon [7], FastPlace 3 [8] and mPL [9]. Each benchmarks-result pair was
colored using 2, 4, 8, 16, 32, 64 and 128 partitions.

Table 1 presents the bechmark-result pair for ibm0I benchmark colored using 8 partitions. We can
notice clearly that Capo and Dragon use partitioning based techniques in their placement flow as the clusters
are well-shaped. Analytical placers do not have this pattern and tend to form amorphous clusters. This patterns
of well-shaped and amorphous clusters remains through all experiments using these placers.

Another tendency in the experiments indicates that amorphous clusters implies in better HPWL results.
For this, we may conclude that, although placement and partitioning are related, imposing a shape to the
partition cluster may harm the result quality. Both FastPlace and mPL do not use partitioning, but as the
experiments indicate the partitioning is indirectly take into account.

2.1.2. Case Study: Improving Our Placement Tool Quality using Partitioning

When developing our placement tool, we were able to beat most of state-of-the-art placer runtimes, but
were unable to match the same HPWL quality. Using the min-cut partitioning coloring scheme we realized that
our placer failed to capture global information on how cluster must be placed. This problem can be noticed in
Figure 2a where clusters formed by our prior placer are less concentrated than those formed by FastPlace 3 as
shown in Figure 2b.

To insert global view in our placement tool, we used partitioning itself. As we have noticed
previously, imposing a hard shape for partition clusters could harm the result quality, so we use the partitioning
of cells only to impose an initial position for each cell.

(2) (b) (©)

Fig. 2 — Placement coloring. (a) Our prior placer result; (b) FastPlace 3 result; (c) Our final placer result
using partitioning for initial placement.

The initial placement is done placing cell in the same partitioning in one of the four placement area
quadrants instead of putting all cells in the middle of the circuit. This increased the total run-time of the

SIM 2011 — 26" South Symposium on Microelectronics 121

placement, but allowed our placer to provide state-of-the-art results. The result after partitioning is presented in
Figure 2c.

2.2. Coloring using Fiedler Eigenvector

The Fiedler eigenvector provides a ordering of nodes of a connected graph and can be used for
partitioning [3]. The great advantage over min-cut partitioner is that Fiedler method provides a way to measure
how close and how far in connectivity terms a cell is from other creating a continuous partitioning. The
disadvantage is that Fiedler method only works on graphs so the netlist, a hypergraph, must be casted to
become a graph.

The Fiedler eigenvector is the eigenvector associated to the second smallest eigenvalue of the
Laplacian matrix of a graph. The Laplacian matrix represents the connectivity of the graph, hence of the circuit.
Each cell is associated to an element in the eigenvector. In this work, we use the method described in [5] for
computing the Fiedler eigenvector.

(a) (b)

Fig. 3 — Fiedler coloring scheme: (a) ibm01; (b) ibm18.

To color the cells we first normalize the Fiedler eigenvector such that the smallest value in the
eigenvector is mapped to zero and the largest value is mapped to one. After we simply paint the cell picking up
the color in a color temperature pallet respective to the element value in the vector associated to that cell. This
way, cell with values bellow 0.5 are mapped to cold colors and the remain ones to hot colors.

2.2.1. Experimental Results

Again, this coloring scheme confirmed the fact that placement and partitioning are correlated
problems. All images generated from results provided by good placer show same-colored cells clustered
together. Here another interesting effect is noticed hot colors and cold colors tend to appear clustered as can be
seen in Figure 3. This relates with the fact that Fiedler eigenvector can be used as a approximation for min-cut
bi-partitioning.

Fiedler coloring brings another very useful property for analytical placer. These placers start with cells
concentrated in the center of the placement area and iteratively spread cells until they are evenly spread over the
circuit. In the spreading process, many placers create tentacles as the mass of cell is spread from the very
concentrated initial state. This effect can be seen in Figure 1 where tentacles are formed by cluster of same-
colored cells. Therefore Fiedler coloring scheme can predict cell clusters which are more easily expelled from
the mass of cell. Such property is still in study and it was not used in our placer till now.

3. Conclusions and Future Work

In this paper we developed and presented some experimental results that supported placement coloring as a
technique to compare visually placement results as well as a tool to get insights on how to improve placement
quality. Our coloring schemes are created using the min-cut partitioning and the Fiedler eigenvector. Both
coloring schemes confirmed that placement and partitioning are indeed correlated problems, since same-colored
components tend to be placed together. However it is shown that imposing a hard shape for cells of a partition
may harm the placement quality. This indicates that partitioning can be used as a guide for placement, but not
as a sole solution.

Besides technical contributions presented by coloring schemes, as a side effect, beautiful images are
generated. This make the coloring technique useful for both science and, in some extent, for arts.

Undoubtedly, this is an underdevelopment work and many more experiments can be performed. A
interesting experiment to be done is to study the relation of hierarchical partitioning and the min-cut
partitioning. Also new coloring schemes can be explored.

122 SIM 2011 — 26" South Symposium on Microelectronics

4. References

[1] Donath, W. E. 1980. Complexity theory and design automation. In Proceedings of the 17th Design
Automation Conference. pp. 412-419.

[2] M. A. Brever,“Min-Cut Placement”, Journal of Design Automation and Fault Tolerant Computing, Oct.,
1977, pp. 343-362.

[3] A. J. Seary and W. D. Richards. Partitioning networks by eigenvectors. In Proceedings of the
International Conference on Social Networks, volume 1, 1995.

[4] G. Karypis and V. Kumar. “hMETIS 1.5: A hypergraph partitioning package”. Technical report,
Department of Computer Science, University of Minnesota, 1998. Available on the Web at URL

http://www.cs.umn.edu/~metis.

[5] N.P. Kruyt. “A conjugate gradient method for the spectral partitioning of graphs”. Parallel Computing,
22(11):1493-1502, 1996.

[6] J. A. Roy, D. A. Papa, S. N. Adya, H. H. Chan, A. N. Ng, J. F. Lu, and I. L. Markov. Capo: Robust and
scalable open-source min-cut floorplacer. In ACM/SIGDA International Symposium on Physical Design
(ISPD), pages 224-226, 2005.

[7] T. Taghavi, X. Yang, and B.-K. Choi. “Dragon2005: Large-scale mixed-size placement tool.” In
ACMY/SIGDA International Symposium on Physical Design (ISPD), pages 245-247, 2005.

[8] N. Viswanathan , Min Pan , C. Chu. “FastPlace 3.0: A Fast Multilevel Quadratic Placement Algorithm
with Placement Congestion Control”. Proceedings of the 2007 Asia and South Pacific Design
Automation Conference, p.135-140, January 23-26, 2007.

[9] T. Chan, J. Cong, and K. Sze. Multilevel generalized force-directed method for circuit placement. In
ACM/SIGDA International Symposium on Physical Design (ISPD), pages 185-192, 2005.

[10] N. Viswanathan , C. C. Chu, “FastPlace: efficient analytical placement using cell shifting, iterative local
refinement and a hybrid net model”, Proceedings of the 2004 international symposium on Physical
design, April 18-21, 2004, Phoenix, Arizona, USA.

SIM 2011 — 26" South Symposium on Microelectronics 123

A Test Environment for Validation of Subthreshold and Leakage Current
Estimation Method in CMOS Logic Gates

'Kim A. Escobar, Paulo F. Butzen, 'André 1. Reis, "Renato P. Ribas
{kaescobar,pbutzen,andreis,rpribas} @inf.ufrgs.br

"Institute of Informatics, UFRGS, Porto Alegre, Brazil.
2Center for Computational Science, FURG, Rio Grande, Brazil

Abstract

Several analytical methods for estimating the subthreshold and gate oxide leakage currents in CMOS
circuits have been presented in the literature. However, such currents are strongly dependent on the fabrication
process targeted, and the methods present different prediction data accuracy according to the profile of logic
gates, in terms of transistor arrangements, stacked devices, and gate sizing. In this work is presented a test
environment developed to evaluate and validate the method of subthreshold and gate leakage current
estimation for general CMOS logic gates proposed in [1]. PTM 32 nm CMOS parameters were considered to
demonstrate the proposed test environment.

1. Introduction

Computer-aided design (CAD) tools are quite necessary on integrated circuit (IC) digital design [4] due to
the high complexity of current VLSI systems. These tools are used for different purposes, from the analysis
processes yield to the automatic construction of circuit layout. Two general types of CAD tools for circuit
analysis could be identified: (a) the ones that applies numerical methods and (b) the other ones based on
analytical models. Nowadays, an important circuit evaluation task to be embedded in the IC design flow is
related to the static power consumption estimation, including the subthreshold and gate oxide leakage currents.

The reduced dimensions of advanced MOS transistors at nanometer scale have increased the static
consumption. Such increasing in the static consumption is caused by static currents like subthreshold and
leakage currents [2]. Because of these, more accurate methods to estimate such static currents in CMOS logic
gates are needed. Several methods for subthreshold and leakage currents estimation have been proposed in the
literature [1]-[7]. One of the main challenge in developing these kind of methods and algorithms is the wide
range of existing manufacturing processes, which are somewhat different from each other, presenting many
particular effects that can affect the static currents behavior, like the ‘inverter narrow width effect’ (INWE) [8].
Thus, it is necessary to have available a test environment to verify, evaluate and validate the estimator for each
new process targeted.

This paper describes such a kind of test environment developed to verify the accuracy of the subthreshold
and gate leakage current estimation method proposed in [1]. This method has been included in the SwitchCraft
tool [9]. The method presented in [1] intends to be independent of technology. It uses the configuration file
containing specific parameters related to a pre-characterization of the addressed technology. This paper focuses
on showing the wealth of data that can be obtained from the environment. The proposed environment presents
specific pre-defined sets of gate netlists choose appropriately for different type of analysis.

Initially, in Section 2 is presented the technical background in order to understand the main subject of this
paper. The methodology used in the environment to validate the estimator is described in Section 3. Also, in
Section 3, is presented briefly the execution flow of the enviroment, inlcuding all test steps. Some results and
analysis are inferred using some output examples in Section 4. The main conclusions are outlined in Section 5.

2. Static Current Modeling (Technical Background)

With the scaling of transistors, the static currents are growing in relation with the total current. These static
currents comprise mainly the subthreshold current, gate-oxide tunneling current and reverse-bias pn-junction
[1], as illustrated in Fig. 1. Also, with less significance to normal mode of operation, there are the gate induced
drain leakage (GIDL) and punchthrough current [10]. The subthreshold current occurs when the transistor is
operating in weak inversion region, being that this current component increases exponentially with the scaling
of transistor threshold voltage [1]. The gate-oxide tunneling current happens because of the scaling of oxide
thickness, even with some techniques to reduce this current, like high-K dielectrics [11]. It is important to
consider such current in the calculation of the total static current in logic gates. The other currents are not taken
into account in this work.

124 SIM 2011 — 26" South Symposium on Microelectronics

S \ D
1 1] gate leakage
v
A A i subthreshold leakage
<duisssnmnnnnnnunnn v
L) L
. ° 1 reverse-biased
¥ Junction BTBT
L) L
.. ..
< »
substrate
]
bulk

Figure 1 — Major leakage mechanisms in MOS transistor.

There are several analytical models for estimation of these static currents proposed in the literature. There
are some models that take into account only the subthreshold current component, like the models proposed in
[2], [3] and [4]. Moreover, a method to estimate the gate-oxide tunneling current is presented in [5].
Furthermore, there are some models that predict both currents and their interaction given in [1] and [6]. The
model proposed in [7] takes into account also the BTBT leakage.

The environment proposed in this paper is intended to validate de estimating method proposed in [1]. One
of the main features of this model is to be process independent. Another feature is that DIBL and body effects
are considered in this model, which gives it a good precision on the leakage estimation task. In spite of this
features, there are some effects not actually covered by the model due to the large variety of existing processes,
as the inverted narrow width effect (INWE) that happens only in some kind of technologies, like SOI-based
processes. In order to evaluate how much these particular effects can impact the estimation accuracy, this test
environment is proposed herein.

3. Test Environment

This proposed environment is modular and can be divided in five parts, as illustrated in the flow diagram in
Fig. 2: (1) process analysis, (2) transistor scaling analysis, (3) transistor stack analysis, (4) general analysis of
logic gates composed only by series-parallel (SP) networks; (5) analysis of logic gates with non-series-parallel
(NSP) transistor arrangements. The main tasks (or steps) executed in the analysis flow are: extraction of process
parameters for specific estimator configuration; leakage estimation through Java program; electrical simulations
using spice decks; and generation of results data (tables and graphs).

PMOS and NMOS Extraction Script| |liyodel card
Spice circuits

Process Analysis

| Configuration File

Estimator Inverter Netlist
proposed in [3], [{drive Strenght=(1-10,16,32)

Configuration F\Ie7_/“

MSP Analysis Scaling Analysis

SP Netlist
Circuits of Genlib446 with
at most 5 inputs

Stack Netlist Estimator
Inverter, Nandz-5, Nor 2-5 | prepesed in [31,
Configuration File

v

MNSP Metlist
Mine MNSP logical gates

General Analysis of
SP Logical Gates

\ N 7

Reports, Graphics and Tables

Stack Analysis

Figure 2 — Test environment flow and analysis available.

The first evaluation part corresponds to the process parameter extraction task. The input data is only the
model card of the target process under evaluation. The extractor is basically a shell script program that works
with regular expression and some text editors, like ‘sed’ and ‘cut’, to create the configuration file required by
the leakage estimator. There are two additional programs that generate the configuration file to a range of
device operating temperatures and power supply. These ones provide data tables to be used by gnuplot script in
order to generate plots for analysis of power supply and temperature variations versus a specific desired
parameter for analysis.

The other analysis provided by the environment presents similar tasks and steps. First of all, the static
currents are estimated using the Java program developed for this purpose. As mentioned, it represents the
execution of the method proposed in [1]. The input data is the circuit netlist described in Spice format. The
output data is the current estimation of all possible input vectors and the computation time for that. In the next

SIM 2011 — 26" South Symposium on Microelectronics 125

step, electrical simulations (HSPICE) are executed using the same set of circuits. The output results are
comparative tables with several information, such as average, minimum and maximum leakage currents
(predicted analytically and obtained from simulations), as well as the error involved.

The different evaluations provided by the test environment are:

Process analysis — Among the values obtained in the process parameters extraction are represented in the
configuration file are the subthreshold and gate currents related to the minimum transistors width allowed by
the target process. This values are called, respectively, ‘isO(N/P)’ and ‘ig(on/off)(N/P)’. Moreover, DIBL and
body effect are represented by the parameters ‘n(N | P)” and ‘y(N | P)’, respectively.

Transistor scaling analysis — The objective is to evaluate the behavior of the model with respect to the
scaling of inverter gates, i.e., by increasing the drive strength of this logic gate. It is expected that the minimum
inverter size electrical behavior fits well with the predicted leakage value, since the parameters used in the
method configuration is based on these PMOS and NMOS transistors sizing. The differences observed in this
analysis correspond to the general inaccuracy of the estimation method.

Transistor stack analysis — The behavior of the model is evaluated with respect to the transistor stack
effect. The stack effect occurs when two or more transistors are placed in series and it presents a particular
impact in the subthreshold current decreasing, affecting the total static current value. It is expected that, even
with an increasing inaccuracy of the method, the total estimation error reduces significantly due to the reduction
of absolute values of currents involved. The circuits used for this analysis are the minimum inverter (reference),
NAND and NOR gates with up to 5 inputs.

General analysis of SP logic gates — In order to evaluate the general behavior of the leakage estimation
method, a set of series-parallel complex CMOS gates have been considered. They were taken from the
‘genlib_44-6’ list for functions with up to 5-inputs [12]. This kind of CMOS logic gate is also covered by other
estimation methods and they are quite representative in terms of the cells usually instantiated in digital circuits.

Analysis of NSP logic gates — Differently from others, the methods proposed in [1] is the only one that is
suitable for this kind of logic gate. It was created a set of nine NSP logic gates, with up 5-inputs, whose SP
counterparts represent gates with more transistor count.

4. Experimental Results (Environment Validation)

Some experimental results are shown here to illustrate and validate the proposed test environment. The
PTM 32 nm CMOS parameters were considered to demonstrate these results. In Fig. 3a is shown the principal
parameters of the configuration file of the estimator. As mentioned before, the process analysis could be
exploited to evaluate the behavior of some parameters in relation to power supply and operating temperature.
An example if illustrated in Fig. 3b.

i - B.6803 T T T T . — y
#E Orquiva de configuralio para *## isepxudd

] tecnologia de ptm_3Zn e

6.88028 |

Wdd= 1

Vine= 2,BEG0E-01
OutYdrop= 7,3632E-01
WT= 0,0258

VBp= 1

WBn= 0

n= 1,45

*

0.80026 -

8.88824 [

* parametroz do pmos
np= 2,6361E-01

yp= 1,5424E-01

is0p= 2,9635E-04
igonOp= 1,2604E-02
igoffOp= B,1641E-03
konp= 4 5E71E+00
koffp= 4, 5460E+00 8.86018 -
* parametros do nmos
nn= 2,0206E-01

yn= 1.8533E-01 0.80016 |-
is0r= 1,4862E-03

igonln= §,E845E+00

igoffon= 1,4035E+00 6.68614

0.80022 -

6.8882

Subthreshold Current(A/un)

konn= 5, 8311E+00 a.z a.3 8.4 a.5 a.6 8.7 0.8 6.9 1
koffn= 5,5355E+00 Bias Voltage(v)
*

(a) (b)

Figure 3 — Process analysis: (a) configuration parameters, and (b) supply voltage variation.

Another interesting result demonstrated here is the second type of analysis, described above, related to the
transistor scaling observed in inverter gates with different drive strengths. As show in Fig. 4, the inaccuracy of
the method increases when the transistor widths become larger. It suggests that there is a room for future
investigations, and further development must be done to improve the leakage method proposed in [1].

126 SIM 2011 — 26" South Symposium on Microelectronics

PTM 32n Estimative
FTMW 32n Simulation

Se-06

4e-06

Current(A)

2e-06

2e-06

1e-06 |

0 L ' L L ' L L ' ' L
K1 X2 X3 A4 X5 Gl X7 pats] X9 K10 K16 K32
Drive Strenght{multiple of minimun W)

Figure 4 — Behavior of total static current in CMOS inverter.

5. Conclusions

A test environment for evaluation and validation of the subthreshold and gate oxide estimation method
proposed in [1] has been described in this paper. It is quite useful to verify the validity of the leakage method in
different CMOS processes, as well as in different logic gate topologies. This automatic environment provides a
fast and useful analysis before applying the target estimation method in new processes. The results suggest that
the evaluated leakage method can be further improved. Other SMOC process are being evaluated identify
general inaccuracies and the ones specific related to particular technologies.

6. Acknowledgments

Research partially funded by Nangate Inc. under a Nangate/UFRGS research agreement, by CNPq and
CAPES Brazilian funding agencies, and by the European Community's Seventh Framework Programme under
grant 248538 - Synaptic.

7. References

[1] BUTZEN, P. F.; da ROSA Jr., L. S.; CHIAPPETTA FILHO, E. J. D.; REIS, A. I.; RIBAS, R. P.,
Standby power consumption estimation by interacting leakage current mechanisms in nanoscaled
CMOS digital circuits. Microelectronics Journal, v.4, n.4, p.247-255, Apr. 2010.

[2] GU, R. X.; ELMASRY, M. L., Power dissipation analysis and optimization of deep submicron
CMOS digital circuits. IEEE J. Solid State Circuits, v.31, n.5, p.707-713, May 1996.

[3] NARENDRA, S. G.; CHANDRASKASAN, A., Leakage in Nanometer CMOS Technologies.
New York: Springer, 2006.

[5] LEE, D.; KWONG, W.; BLAAUW, D.; SYLVESTER, D., Analysis and minimization
techniques for total leakage considering gate oxide leakage. Proc. DAC, 2003, p.615-621.

[6] YANG, S. et al. Accurate stacking effect macro-modeling of leakage power in sub-100nm
circuits. Proc. Int’l Conf. of VLSI Design, 2005, p.165-170.

[7] MUKHOPADHYAY, S. et al. Gate leakage reduction for scaled device using transistor stacking.
IEEE Trans. on VLSI Systems, v.11, n.4, p.716-730, Aug. 2003.

[8] PACHA, C et al. Impact of STI-induced stress, inverse narrow width effect, and statistical Vth
variations on leakage currents in 120 nm CMOS. Proc. ESSDERC, 2004, p.397-400.

[9] CALLEGARO, V.; MARQUES, F. S.; KLOCK, C. E.; da ROSA IJr., L. S

RIBAS, R. P., REIS, A. I., SwitchCraft: a framework for transistor network
design. Proc. SBCCI, 2010.

[10] AGARWAL, A et al.,, Leakage power analysis and reduction: models, estimation and tools. IEE
Proceeding, v.152, n.3, p353-368, May 2005.

[11] GUSEV, E. et al, Ultrathin high-K gate stacks for advanced CMOS devices. [IEDM Technical
Digest, p.451-454, 2001.

[12] Sentovich, E.M. et al., “SIS: A system for sequential circuit synthesis.” Tech. Rep. UCB/ERL

M92/41. UC Berkeley, 1992.

SIM 2011 — 26" South Symposium on Microelectronics 127

CAD Tool for Switch Network Profiling

Carlos E. Klock, Vinicius Callegaro, André 1. Reis, Renato P. Ribas
{ceklock,vcallegaro,andreis,rpribas } @inf.ufrgs.br

PPGC, UFRGS, Porto Alegre, Brazil.

Abstract

This paper presents a CAD tool to analyze switch networks and generate profiles to detect possible issues
that may affect the design of integrated circuits, especially those related to routing congestion. The analysis of
a switch network is useful to find out information about the general structure of the network and its layout, for
instance, to predict the behavior in terms of physical area and signal routing congestion. The experimental
results show that the proposed tool can identify undesired diffusion separations and possible routing
congestion. Specific applications include RTL (regular transistor layout) and standard cells.

1. Introduction

The automation of layout generation is playing an important role in cell design. The complexity of making
well elaborated layouts with a high density of transistors is a motivation to design CAD tools to evaluate and
automate the process of layout generation [1]-[5].

As the number of transistors increase, more wires are needed to connect the signals in the circuit, resulting
in more density and, consequently, more signal routing congestion [3][4]. Furthermore, the size of the
transistors has decreased but the dimensions of the wires are not actually decreasing at the same rate [3]. The
density of the wires in an integrated circuit (IC) defines the complexity of the signal routing task. This
represents an important issue in IC design because wires occupy a significant area in the final physical layout.
In general, the use of metal layers and contacts is optimized by reducing the number of signals to connect. The
number of contacts is of special concern because they can represent a significant penalty related to area. To
minimize these problems some authors [1][6] proposed methods for minimum-width transistor placement.
These methods try to avoid the implications involved with diffusion gaps (separations) by pairing N and P
transistors by the common gate input signal. The idea is that less diffusion gaps lead to fewer contacts and,
consequently, fewer wires.

In this paper, we propose a CAD tool to identify the aforementioned issues. To do so, the tool analyzes the
graphs and the Euler paths of logic gates. Logic gates are composed of switch networks. Thus, the goal of this
tool is to profile switch networks and to estimate how many connections and switches (transistors) exist in an
IC. This is important to realize if a specific network needs special attention related to wiring congestion. A
switch network here means that there is no concern about physical aspects in a first moment, because the profile
is generated from the logical data structure represented by a graph model, where the edges are the switches and
the vertices are the nodes (nets) of the network [6]. Hence, switch networks and logic gates are treated in a high
level of abstraction by the proposed CAD tool. The tool presented here is going to be incorporated to the
SwitchCraft environment [5], which provides a set of modules for automatic generation and analysis of switch
networks and logic gates.

The next sections are organized as follows. First of all, in Section 2, we describe the technical background
involved with this work. In Section 3 are described the methods that are employed by the tool to analyze the
switch networks and generate the profiles. The next sections present applications and experimental results.
Finally, the conclusions of this work are outlined.

2. Technical Background

Graph models, as stated in Section 1, are high level abstract representations of transistor (switch) networks
[6]. Switches are the edges of the graph. Nodes (nets) are the vertices of the graph, as seen in Fig. 1. From the
graph model we can extract much information. The most important one is the Euler paths.

An Euler path, or Eulerian path, is a walk on the edges of a graph which uses each graph edge exactly
once. An undirected graph contains an Eulerian cycle if and only if it is connected and all vertices are of even
degree. A graph that contains an Eulerian cycle is called Eulerian graph. An undirected graph contains an
Eulerian path if and only if it is connected, and all but two vertices are of even degree. In this case, these two
vertices represent the beginning and ending points of any path [7][8]. A graph that contains an Eulerian path is
called semi-Eulerian graph.

A connection is defined by repeated nodes in the Euler path. If a node appears more than once in the Euler
path then there is one connection (net), i.e., they must be connected in the physical layout. For example, two
nodes 7/ and three nodes n2 equals 2 connections. No repeated nodes equal zero connections.

An external node is a node that does not belong to the network, such as power supply (vdd), ground
reference (gnd) and output node in logic gates. Internal nodes, by the way, are the nodes that belong to the

128 SIM 2011 — 26" South Symposium on Microelectronics

network. It is understood here that a CMOS logic gate is composed by two logic planes (i.e., two networks), as
illustrated in Fig. 1. They are the pull-up plane that connects the value ‘1’ source to the output node of the gate,
and the pull-down plane that connects the value ‘0’ source to the output node of the gate. An unconnected node
is a node that is external or is not repeated in the Euler path.
A break is a special edge that represents a permanent off-switch, added to eulerize a graph when it does not
have an Euler path. A break may also be a separation of the diffusion in the layout of a circuit.
XOR2 PULL-DOWN

XOR2 PULL-UP Ib la
b la inv_bi(b) > - nv_ala)
i gnd
inv_b(b) inv_a(a)
- vdd
pd_swl(a) 4 4 pd_sw2(!b)
pu_sw4(a) pu_sw2(!b)
pu_nd pu_nl + pd_nl
pu_sw3(la) pu_swl(a)
pd_swa({b) 1 - pd_sw3(!a)
gout
(a) (b)

Figure 1 — Example of pull-up (a) and pull-down (b) switch networks of an exclusive-OR gate.

3. Proposed Methods

The proposed profiling tool aims to generate information about a switch network that includes:

e number of variables: the total number of positive polarity variables in the networks (in the logic gate);

e input inverters: the number of input inverters in the logic gate, related to the number of negated inputs;

e output inverter: indicates if there is an inverter at the output of the logic gate;

e size of the Euler paths: the number of edges of the Euler paths at each plane (pull-up and pull-down);

e number of connected nodes: number of internal nodes with connection at each plane;

e number of unconnected nodes: nodes that are not repeated in the Euler path or external nodes;

e path beginning at power node: true if starts at vdd or gnd (otherwise false);

e number of breaks: the number of diffusion gaps or disabled switches.

To build the graphs that are used in this paper, we start from a switch network description or from a
Boolean expression. The SwitchCraft environment [5] is employed to generate the graphs. The graphs contain
all the required information to generate the Euler paths with a path finding algorithm.

Note that to find Euler paths of a given graph it must be Eulerian or semi-Eulerian. If is not possible to find
an Eulerian path or Eulerian cycle then the graph must be eulerized. The profiling tool checks the condition of
the graph to find out if is possible to find an Eulerian path or cycle. If not possible, one or more breaks must be
added to the graph, until only two vertices have odd degree. In the case of switch networks, it is desired to add
the minimum number of breaks to the graph, what is done in our algorithm of eulerization. To calculate the
minimum number of breaks we must keep in mind that we want to have two vertices of odd degree after the
process of eulerization. Thus, the final number of breaks is equal to the number of odd degree vertices divided
by 2 and minus 1.

When the graph is eulerized we must find the Eulerian paths. There are many algorithms described in the
literature to find Euler paths [7][8]. The profiling tool uses one of these algorithms to find the Euler paths and
selects one of the Euler paths that were found. The Euler path to be selected will be the one with the less
number of connections and, if possible, starting at a power node and ending at an output node (or vice-versa).

3.1. Single Switch Network and Internal Connections

Looking for a single switch network the tool extracts the Euler paths and selects one of them to start the
profiling mechanism. When evaluating the Euler path alone, the profiler extracts information like the number of
connected and unconnected nodes, size of the Euler paths and number of breaks. We want to find the path with
the smallest amount of connections to achieve a circuit with less wire routing congestion [3].

With this information is possible to detect the wire behavior and possible crossings that may happen if
there are interchanging repeated nodes, and thus estimate the height of the cell. For example, suppose that [X1,
X2, X3, X2, X3, X4] is an Euler path, where each Xn is a node. The two X2 nodes are connected, as well as the
X3 nodes. Considering this Euler path, the minimum height (or number of rows) of the cell represented by this
network will be 2.

SIM 2011 — 26" South Symposium on Microelectronics 129

3.2. Alignment of Two Switch Networks

In [1] and [6] the authors define methods for the alignment of switch networks by matching the Euler paths
of pull-up and pull-down planes. This avoids the usage of extra metal wires to interconnect the two planes. In
fact, this is a desirable solution for CMOS styles that use topologically complementary networks, where the
number of transistors in the pull-up is the same of the pull-down. But there are other types of networks that are
not complementary or cannot be aligned because they are not placed horizontally. This is the case of VCTA
networks [9], for example that is presented in the next section. For such non-complementary networks, the tool
proposed in this paper is of special interest because the routing congestion will be more critical.

The Euler paths of both pull-up and pull-down networks are very important in the process of layout
generation because the number of breaks (separations of diffusion areas), the number of connections and the
proper alignment of pull-up and pull down are directly related to the quality of the Euler paths that are selected.
With good paths and good alignment of both pull-up and pull-down less wires and contacts are needed [1][6],
but this subject is beyond the scope of this paper and may be implemented as a future work.

4. Applications

The proposed tool is quite useful for logic gate design. One interesting application is the new regular
transistor layout (RTL) strategy applied to improve the parametric yield of circuits in advanced nanometric
CMOS processes. A particular tool version has been provided to evaluate the implementation of logic gates
over the via-configurable transistor array (VCTA) approach [9]. The VCTA presents a basic structure
composed by two transistor regions: a PMOS region for building the pull-up network and a NMOS region for
pull-down plane implementation, as illustrated in Fig. 2a. The transistor regions are physically disposed in line
(in a single column), differently from conventional standard cell and mask-programmable gate array linear
matrix technique, in which both pull-up PMOS (PU-P) and pull-down NMOS (PD-N) are organized as rows
that run in parallel. As a result, while in standard cells and gate arrays the polysilicon wires of two transistors
controlled by the same signal should be aligned to optimize the layout construction, in a VCTA structure both
PU-P and PD-N networks can be planned independently.

File Options Help
Vdd RTL PROFILER
PULL-UP PULL-DOWN
Profile a a
- Metal 1 Results) Switch Network
- Metal 2 ‘:va’s Z a d inv_a a ‘{ inv_a PULL-UP PULL-DOWN
= Metal 3 |2 pu_n3 pd_n3 5
u_n
o Contact/Via vout [0 N ipd_n3
b 4 pu_sw2 la ~{ pd_sw1
PUpath |6
Puconn |0 pu_n1 pd_n1 ‘b b la4 +b
PUunc 4
Pupower]|0 la d pu_swi a ~{ pd_sw3
A T
Puiso |0 out out pu_nd pu_n1 1pd nt
our PDpath |6
" _| PDconn |1 a 4 pu_sw3 b «{ pd_sw4 1a
PDunc |2 a a4 +1b
pu_n4 pd_n1
B 4 PDpower [0
i Poiso |0 1o-q[pu_sw4 b pd_sw2 v
Gnd
I show swiitch Network pu_n3 pd_n3 out out
I
Gnd I @In!its bd inv_b b-{ inv_b
i Ib b
(@) (b)

Figure 2 —Regular transistor layout (RTL): (a) VCTA approach [9], and (b) RTL CAD profiler.

In order to build the PU-P and PD-N logic planes on the VCTA structure, the Euler path of each plane must
be obtained according to the transistor network. In a second step, the found Euler paths have to be assigned (or
physically mapped) to the transistor columns. In the case where the Euler path in a plane has more transistors
than the number of available devices in a column of the array, the Euler path must be broken in two or more
sub-paths to be built in more than one VCTA unit. Conversely, when the Euler paths of a logic gate are shorter
than the number of transistors available in the VCTA cell, the remaining devices can be isolated by connecting
PMOS gate terminals to ‘vdd’ and NMOS gate terminals to ‘gnd’. Note that Euler paths may require breaks in
the transistor networks. Specific CAD tool were developed for this application, as shown in Fig. 2b.

5. Experimental Results

Assuming that we have a 2-input exclusive-OR (XOR2) network, like the one illustrated in Fig. 1, we may
achieve the following Euler paths:

e Pull-up: la, vdd, pu_n4, out, pu_nl, vdd, !b (nodes)
inv_a, pu_sw4, pu_sw3, pu_swl, pu_sw2, inv_b (edges)
e Pull-down: la, gnd, pd nl, out, pd nl, gnd, 'b (nodes)
inv_a, pd swl, pd sw3, pd sw4, pd_sw2, inv_b (edges)

130 SIM 2011 — 26" South Symposium on Microelectronics

Table 1 below presents some information that can be extracted from the Euler paths, and from the XOR2
graph, depicted in Fig.1, we have:
e number of variables: 2
e input inverters: 2
e output inverter: false
From these results is possible to see that the implementation of a XOR2 using this methodology will have
no separations in the diffusion area of pull-up and pull-down networks. It is also possible to observe that the
pull-up has no repeated internal nodes, so no internal connections are needed. The pull-down network needs
one connection because the node pd_nl appears twice in the Euler path.

Experiments to evaluate CMOS logic gate implementation in a single VCTA unit [9] also have been
performed. A set of 222 cells including the 4-input NPN representative functions has been analyzed. The main
conclusions of this analysis is that few logic gates can be built in a single VCTA cell if this cell has only 6
PMOS and 6 NMOS transistors and 4 inputs, as was the current configuration. With this cell it becomes
necessary to spread the (transistor network of the) logic gates in two or more cells or to remap complex gates
into combinations of simpler (basic) ones. The optimal number of pre-designed column heights in each logic
plane is around 12 PMOS and 12 NMOS transistors for this specific set of cells. In this case, half of the cells
from the set used in the experiment would fit in a single unit, while two units should be enough for building the
rest of them.

Table 1 — Evaluation of exclusive-OR Euler paths, from Fig. 1.

Number of Not repeated nodes .
Network connections (nodes that do not need a connection) Breaks Euler path size
Pull-up 0 4 ('a, pu n4, pu nl, 'b) 0 6 edges
Pull-down 1 2 (a, 'b) 0 6 edges

6. Conclusions

This paper presented a useful tool to profile switch networks. It is able to extract information from the
graph and Euler paths of CMOS logic gates, comprising the pull-up and pull-down logic planes. With the
extracted information is possible to do a better analysis of the network with a focus in the number of
connections that will be needed to generate the layout of the network, thus trying to avoid routing congestion
and the need of more metal layers. As future work, the order of the Euler paths may be implemented to match
pull-up and pull-down polysilicon stripes, trying to avoid the need of extra metal wires to connect pull-up and
pull-down planes.

7. Acknowledgements

Research partially funded by Nangate Inc. under a Nangate/UFRGS research agreement, by CNPq and
CAPES Brazilian funding agencies, and by the European Community's Seventh Framework Programme under
grant 248538 - Synaptic.

8. References

[1] lizuka, T.; Ikeda, M.; Kunihiro, A.; “Exact minimum-width transistor placement without dual constraint
for CMOS cells”, in Proceedings of the 15th ACM Great Lakes symposium on VLSI, pp. 74-77, 2005.

[2] Guruswamy, M. et al. “CELLERITY: A fully automatic layout synthesis system for standard cell
libraries”, in Proc. ACM/IEEE 34th Design Automation Conference, pp. 327-332, 1997.

[3] Saxena, P.; Shelar, R. S.; Sapatnekar, S.; "Routing congestion in VLSI circuits", Springer, 2007.

[4] Wang, M.; Sarrafzadeh, M.; “Modeling and minimization of routing congestion”, in Proceedings of the
2000 Asia and South Pacific Design Automation Conference, pp. 185-190, 2000.

[5] Callegaro, V.; Marques, F. S.; Klock, C. E.; Rosa Junior, L. S.; Ribas, R. P.; Reis, A. L.; “SwitchCraft: a
framework for transistor network design”, in: SBCCI 2010, Sao Paulo, p. 49-53.

[6] Uehara, T.; VanCleemput W.; “Optimal layout of CMOS functional arrays”, in IEEE Transactions on
Computers, vol. c-30, n.5, May 1981.

[7] Skiena, S.; “The Algorithm Design Manual”, Second Edition, Springer, 2008, pp. 502-504.

[8] Harju, T.; “Lecture Notes on Graph Theory”, Department of Mathematics, University of Turku, Finland,
2011, pp. 29-31

[9] Pons, M.; Moll, F.; Rubio, A.; Abella, J.; Vera, X.; Gonzalez, A.; “VCTA: A via-configurable transistor
array regular fabric”, in IEEE/IFIP VLSI System on Chip Conference (VLSI-SoC), 2010.

SIM 2011 — 26" South Symposium on Microelectronics 131

A Lookup Table Method for Optimal Transistor Network Synthesis

'Anderson Santos da Silva, ’Vinicius Callegaro, 2Renato P. Ribas, 12André I. Reis
{assilva, vcallegaro, rpribas, andreis } @inf.ufrgs.br

'Institute of Informatics, UFRGS, Porto Alegre, Brazil
*PPGC, UFRGS, Porto Alegre, Brazil

Abstract

This paper presents a lookup table based method for switch networks and logic gates implementation. The
proposed approach is able to deliver optimal transistor networks for all Boolean functions up to four inputs.
Results show a new transistor count lower bound for P-class and NPN-class for four inputs logic gates.

1. Introduction

Nowadays, technology-scaling problem have been addressed by several approaches. One of the most
important design strategies is the layout regularity [1], which is able to produce lithography-aware circuits up to
20 nm of transistor channel length. However, the regular transistor layout (RTL) approach has an important
drawback related to the increased circuit area when compared to the most popular standard cells methodology.
In order to overcome that, algorithms for generating optimized transistor networks can be applied for reducing
the total transistor count in logic gates.

There are several algorithms for generating transistor networks. These algorithms could be divided into two
main groups: factorization [2][3] and graph-based [4]-[6]. Factorization methods always deliver transistor
networks in series-parallel arrangements. It is known that series-parallel arrangements may not reach the
optimal design regarding transistor count. Graph-based algorithms are able to generate not only series-parallel
networks, but also non-series-parallel arrangements, i.e., presenting Wheatstone-bridge type connections. These
kinds of arrangements consist of transistors that cannot be classified as series or parallel switches in the
network arrangement. The non-series-parallel networks have presented promising results in the transistor
reduction count [6], being of great interest to reduce the circuit area when RTL approaches are targeted.

Some algorithms for generating non-series-parallel arrangements have as main goal the minimization of the
total number of transistors in networks and consequently in logic gates [4][S]. Other ones reach transistor
arrangements that respect the minimum theoretical transistor stack for a specific Boolean function [6]. Note that
there is a large variety of transistor network arrangements that represent the same logical functionality. Such
richness on arrangements could be used on library-free technology mapping concept, by exploiting automatic
on-the-fly cell generation [7].

This paper presents a lookup table method for delivering optimal transistor networks for all functions up to
four input variables. These optimal transistor networks also respect the minimum theoretical stack for a target
Boolean function, while using non-series-parallel arrangements to reduce the total transistor count in networks.
Results show a new lower bound on transistor count for 4-input P-class and NPN-class functions [8] when
compared with previous approaches [5][6]. A set of all functions up to 4 inputs was performed, giving the result
in transistor count through the implementation of all these functions as logic gates.

2. Technical Background

The basic element to implement a switch network is the logic switch. This element can be called ‘direct
switch’ if it is turned on by applying the logic value ‘1’ in the control terminal, and ‘complementary switch’ if
it is turned on by applying the logic value ‘0’ in the control terminal. By composing switches, it is possible to
build arrangements, known as logic networks or switch networks, in order to provide the interconnection
between two different terminals according to a given logic function behavior.

Depending on the technology used, these switches can be implemented as physical devices. In the current
CMOS technology, they are represented by the NMOS transistor (direct switch) and the PMOS transistor
(complementary switch).

When looking at a single two terminal network, it may present the following properties [6]:

e Planar network — Networks corresponding to a planar graph. This kind of graph can be drawn in the
plane without crossing lines. In the case of networks, it is additionally required that the terminals be
externally connected without crossing any lines. Planar networks can provide a dual graph, which has
the interesting property of being logically and topologically complementary.

e Series-parallel network — When all switches in the network are connected in series or in parallel
arrangements recursively. A network is series-parallel if and only if there is no embedded network
presenting a Wheatstone-bridge configuration.

e Bridge network — A network with an embedded network containing at least one Wheatstone-bridge
configuration. A bridge network may or may not be planar, and it is never a series-parallel network.

132 SIM 2011 — 26" South Symposium on Microelectronics

o Bidirectional transistors — A bridge network where transistors may conduct current from drain to
source or from source to drain device terminals according to the input vector. That means the
bidirectional transistors are activated by different logic vectors in both directions.

Additionally, switch networks can present two-terminals, three-terminals, or multiple-terminals. Two-
terminals networks provide the connection between two nodes, and are usually applied to built single-rail logic
gates. Three-terminal networks, in turn, are capable of attaching one node to other two terminals, which are
frequently one for the direct polarity signal (or direct path) and the other for the inverted polarity signal (or
complementary path). These ones are exploited to design dual-rail CMOS logic families, like DCVSL, DSL and
ECDL [9]. Multiple-terminal networks are useful to build multiple-output gates like the Manchester chain used
in carry lookahead adders [10].

These characteristics are very important once it is possible to build logic gates with similar functionality,
and distinct electrical behavior (timing and power consumption) to compose digital circuits by exploiting these
different switch arrangements.

3. Proposed Approach

The proposed work focuses only on Boolean functions that have up to four input variables. This set
represents the great majority of logic gates available in standard cell libraries. The transistor arrangements
returned by our approach intends to be the optimal solution regarding the transistor count. In order to make the
lookup table, the following tasks are performed:

e implementation of a NPN-matching algorithm;
e manual transcription of catalog by Moore for a digital format (Spice netlist like);
e lookup table synthesis.

3.1. NPN Matching

Determining when a logic gate could implement an arbitrary logic function is a common problem on the
logic synthesis. This matching could be done by permutation of the inputs and/or inserting inverters on the
inputs/output of the logic function.

The circuit illustrated in Fig. 1a implements the logic function described by Equation (1). To perform the
different logic function described by Equation (2), it is possible by just swapping the inputs B and D, and
inserting additional inverters on such inputs as well as in the circuit output node. The new circuit is depicted in
Fig. 1b.

F1 =!(A*B + C*D) (1)
F2 = (A*!D + IB*C) 2)

A A |

= :D_DDC*” > o F2

c o —

D D B -[>o—

(a) (b)

Figure 1 — Circuit implementation of logic functions described in: (a) Equation 1 and (b) Equation 2.

The rearrangement made in Fig. 1b was possible because the Equations (1) and (2) belong to the same
NPN-class. In this way, each function belongs to an NPN-class. The algorithm that shows how to rearrange the
logic gate to implement an arbitrary logic function is the NPN matching. Several approaches for NPN matching
have been proposed in the literature [11][12]. In this work, the approach proposed by Sasao [12] was
considered.

3.2. Catalog by Moore

The main resource of this work is a catalog, published by Edward Moore [13], in 1958. This catalog has
the optimal switches arrangements for all NPN-class up to four inputs functions set. As it is possible to see in
Fig. 2, each NPN class has a main switch network. The function and its complement always belong to the same
NPN-class, and consequently the same related network on the catalog.

For a standard CMOS logic gate design, it is necessary to obtain both pull-up and pull-down planes. Pull-
up plane is responsible for implementing the direct function and the pull-down plane the complementary
function. In order to achieve that, it is necessary to find the complementary network on the catalog. However,
when the network is planar, the complement is absent from the catalog. In order to achieve the topological and
logical complementary network, the dual graph of the original network is obtained [14]. For functions which

SIM 2011 — 26" South Symposium on Microelectronics 133

the best arrangement is a non-planar-bridge network, the complementary network is always present on the
catalog.

= o P P ¥ Buls s
T @ 2 g Algebraic expression o |=D|d]| =2
S friares ot | § 155 58| 53
SE| B |R© (y Schematic for others Z|E5|5%| 55

@ S o Qilz

Qo = <=
T ONE CONSTITUENT
1400 1{0 w'x'y'z J 4| 8] 16
0/4 4/4 (1234/4 0123/4)
I TWO CONSTITUENTS

2| 396 1 | 01 same cube wx'y' J 3 6 32

3| 397 2 | 0 3 same cube w'x’ (¥'2' +yz) J 6 |10 48

4| 398 3 | 0 7 same cube w' (xy' +a2)(y+2") J g a5 b 32

5|399| 4015 (W')Wy -+)Y +2) 31 8]12 8

04/4 (123/4)
I THREE CONSTITUENTS

6| 390 1|01 2same cube w's' (' +2') J 4 8 96

71 391 2 | 01 6 same cube w' (x'y' +x2"y) J 6 |10 | 192

81392 3|0114 (w'x Fuwy)(x2'+") J 7|11 64

—1y—7
913%93| 4035 same cube —uw" B _—I-— QO F-8113 | 68
x—y'—;z
10 | 294 510312 (W' +wy'x)(yz+5'z") Wi 9|14 48
i Wy
11| 395| 60313 ‘{ ¥ X| 9114 96
o e

Figure 2 - Catalog switch networks by Moore [13].

3.3. Proposed Lookup Table

The proposed lookup table (LUT) consists on all functions up to four inputs, and for each function the
following information is stored:
e which NPN-class it belongs;
e transistor count to implement the logic function;
e inputs permutations;
e inputs and output inversion.

In terms of memory usage, the following cost of bits was used:
e NPN-class: 9 bits;
e transistor count: 4 bits;
e input order: (2 bits each) times four inputs: 8 bits;
e input inversion: (1 bit each) times four inputs: 4 bits;
e output inversion: 1 bit.

4

The set of all functions up to four inputs contains 65,536 elements (22). In this sense, for each function

we have used 26 bits of information. Therefore, we will create a primitive int array with 65,536 elements. As a

primitive int is represented with 32 bits in almost all program languages, it is enough for us. In this way, the

total memory used by our lookup table is only 256 Kbytes (2° x 2' — 2%). In order to access the information
element on array, the function is itself the key.

4. Experimental Results

In Table 1 are shown total switch count and the execution time required to provide it considering three sets
of Boolean functions: NPN-class, P-class and all 65,536 functions mentioned in the previous section. As shown
in Table 2, when comparing the total number of transistors used to implement the 4-input P-class functions
obtaining by applying other transistor network generation methods, the proposed approach demonstrates that
there is room for optimization in the existing methods presented by Kagaris et al. [5] and Da Rosa Jr. [6].

Table 1 — Transistor count to implement the different sets of functions with 4 variables.

Class Switch Count Time
NPN-class 3,563 657 us
P-class 64,530 11 ms

All functions (65,536) 1,050,880 3 min

134 SIM 2011 — 26" South Symposium on Microelectronics

Table 2 — Comparison between switch network generation methods to implement the P-class.

P-class functions Transistor Count
Kagaris [5] 97,174
Da Rosa Jr. [6] 97,098
LUT approach 91,177

5. Conclusion

This paper presented a lookup table (LUT) method for delivering transistor networks for all functions up to
four input variables. As our approach always reach an optimal transistor arrangement, it could be used to find
out the lower bound transistor count for every benchmark function set with up to four input variables. As future
work, a method for generating circuits with more than 4 inputs will be performed. The main idea is generate
cofactors and cube-cofactor of a target function and compose the circuit using the proposed lookup table.

6. Acknowledgments

Research partially funded by Nangate Inc. under a Nangate/UFRGS research agreement, by CNPq and
CAPES Brazilian funding agencies, and by the European Community’s Seventh Framework Programme under
grant 248538-Synaptic.

7. References

[1] B. H. Calhoun, Yu Cao, Xin Li, Ken Mai, L. T. Pileggi, R. A. Rutenbar, and K. L. Shepard, “Digital
circuit design challenges and opportunities in the era of nanoscale CMOS”, IEE Proccedings, vol. 96,
no. 2, pp. 343-365, Feb. 2008.

[2] M. G. A. Martins, L. S. Rosa Jr., A. B. R. Rasmussen, R. P. Ribas, and A. I. Reis, “Boolean factoring
with multiple objective goals”. ICCD 2010, pp. 229-234.

[3] V. Callegaro, L. S. Da Rosa Jr., A. 1. Reis, and R. P. Ribas, “A Kernel-based approach for factoring
logic functions,” Microelectronics Students Forum, 2009.

[4] J. Zhu and M. Abd-El-Barr, “On the optimization of MOS circuits,” IEEE Trans. on Circuits and
Systems, vol. 40, no. 6, pp. 412-422, June 1993.

[5] D.Kagaris and T. Haniotakis, “A methodology for transistor-efficient supergate design,” IEEE Trans. on
VLSI Systems, vol. 15, no. 4, pp. 488-492. Apr. 2007.

[6] L. S. Da Rosa Junior, “Automatic generation and evaluation of transistor networks in different logic
styles,” PhD Thesis, PGMicro / UFRGS, 2008.

[71 T Xue, D Al-Khalili, and C. N Rozon, “Technology mapping in library-free logic synthesis,”
Proceedings of SPIE, 2005.

[8] T.Sasao, Switching Theory for Logic Synthesis. Norwell, Kluwer Academic Publishers, 1999.

[9] J. M, Rabaey, A. Chandrakasan and B. Nikolic, Digital Integrated Circuits: A Design Perspective, 2nd
ed., Prentice Hall, 2005.

[10] N. H. E. Weste and D. Harris, CMOS VLSI Design: A Circuits and Systems Perspective, 3rd ed.,
Pearson/Addison Wesley, 2005.

[11] U. Hinsberger and R. Kolla, “Boolean matching for large libraries,” Proc. Design Automation
Conference (DAC), pp. 206-211, 1998.

[12] D. Debnath and T. Sasao, “Efficient computation of canonical form for Boolean matching in large
libraries,” Proc. Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 591-596, 2004.

[13] E.F.Moore, “Table of four-relay contact networks”, In: Logical Design of Electrical Circuits, by R. A.
Higonnet and R. A. Grea, McGraw-Hill, 1958.

[14] V. Callegaro, L. S. Da Rosa Jr., A. L. Reis, and R. P. Ribas, “A Graph-based solution for dual transistor
network generation,” Student Forum on Microelectronics, 2008.

SIM 2011 — 26" South Symposium on Microelectronics 135

NoCs, MPSoCs and Analog Design

136 SIM 2011 — 26" South Symposium on Microelectronics

SIM 2011 — 26" South Symposium on Microelectronics 137

A Self-adaptable Distributed DFS Scheme for NoC-based MPSoCs

'Thiago Raupp da Rosa, 'Douglas Cardoso, 'Fernando Moraes
{thiago.raupp, douglas.cardoso} @acad.pucrs.br, fernando.moraes@pucrs.br

'pontificia Universidade Catélica do Rio Grande do Sul - PUCRS

Abstract

A clear trend in high-end embedded systems is the use of multiprocessor systems on chip (MPSoCs). As
processor count in these devices increases, the use of NoCs becomes relevant, if not mandatory. However,
power and energy restrictions, especially in mobile applications may render the design of NoC-based MPSoCs
over-constrained. The use of traditional dynamic voltage and frequency scaling (DVFS) techniques proved
useful in several scenarios to save energy/power, but it presents scaling problems and slow response times.
This work proposes a self-adaptable distributed dynamic frequency scaling (DFS) scheme for NoC-based
MPSoCs. It takes into account the communication load and the utilization level of each processor to
dynamically change its operating frequency. Frequency change decisions and clock generation are executed
locally to each processor. Clock generation is simple, based on clock gating of a single global clock. The
overhead of the scheme in terms of area is minimum, the range of generated clocks frequencies is wide and the
response time of frequency switching is negligible. Experimental results in an actual MPSoC running a real
application show that the proposed scheme has an average execution time overhead below 14%, and may lead
to considerable power and energy savings, since it allows an average reduction of 64% on the total number of
executed instructions.

1. Introduction

MPSoCs increase system performance by employing multiple processors to execute system tasks, which
are interconnected by a communication infrastructure. NoC-based MPSoCs provide massive computing power
on a single chip.

Energy consumption in CMOS circuits can be reduced by controlling two main variables: the supplied
voltage and the operating frequency. Controlling these two variables at runtime is the basis of Dynamic Voltage
and Frequency Scaling (DVFS) techniques.

This paper proposes and evaluates a new technique for Dynamic Frequency Scaling (DFS) with fixed
system voltage. The main goal of this technique is to enable fast frequency switching according to each
processor’s workload and communication load. The proposed DFS scheme is evaluated in a synthesizable NoC-
based MPSoC.

The rest of this paper is organized as follows. Section 2 reviews the related work, comparing it to the
proposed technique. Section 3 presents the clock generation module. Section 4 describes the MPSoC
architecture and the required modifications to enable the DFS scheme. The proposed DFS controller is
presented in Section 5. Section 6 presents the experimental setup and results. Finally, conclusions and future
works are drawn in Section 7.

2. Related Work

Tab. 1 summarizes the state of the art according to three criteria: target architecture, monitoring parameter,
and implementation. Just a few works address NoC-based MPSoCs [1], [10]-[13]. Most works target only one
CPU or bus-based architectures, using a centralized controller . DVFS schemes may use hardware or software
control parameters. Hardware parameters for controlling DVFS include temperature [7], [10], process variation
[1], current [2] and load in communication buffers [4]-[6]. Software parameters include application profile [8],
[13] and scheduling tasks [3], [9], [12]. In terms of implementation, most proposals employ software
parameters, releasing to the hardware the monitoring process (when a hardware parameter is monitored). The
approach proposed here aims to control DFS scheme through hardware and software mechanisms. The
hardware mechanism obtains data from the Network Interface (NI) and from the processor to parameterize the
clock generation module, setting the correct frequency for the NoC and PEs. Software mechanisms are
responsible for monitoring a set of parameters, making them available to the hardware mechanism.

3. Clock Generation

This Section presents the principles and design of a clock generator to enable the proposed DFS scheme.
This module uses as input a reference clock, which consists in the highest frequency usable in the system as a
local clock. The principle of the clock generation process is to achieve clock division by simply omitting
selected cycles of the reference clock, as Fig. 1 illustrates: initially, inputs num_i and den_i are natural numbers
2 and 5, respectively. This corresponds to set the frequency of the clock generator to two-fifths (40%) of the

138 SIM 2011 — 26" South Symposium on Microelectronics

Tab. 1 - DVFS state-of-the art comparison.

Author Architecture Monitoring Parameter Implementation
He;%eor;[ﬂ NoC-Based MPsoC Process Variation Off-line Calibration (Design Variability), Algorithms in Software
Poursh;og(l;sgm 2] Single CPU CPU Supply Current Fuzzy Logic Controller in Hardware
Chgt())l;)(z) 3 Synchronous Islands Tasks Deadlines GRLS Scheme, Local clock generation
280[‘9” NoC Queues Load Voltage Selection via Transistors
Alimonda [5] [6] g
2006/2009 Bus-Based MPSoC Queues Load Central Controller Hardware
8;611[07] Single CPU CPU Temperature Temperature Sensors and Software Algorithm
Sazlgfilo[S] Single CPU Application History Software Tracking Application Workload
Liu [9] 2 CPUs, Bus-based)
2009 Interconnect Tasks Slacks Task Graph Unrolling Software

Puschini [10] [11] Temperature and Task

NoC-Based MPSoC Parameter Modeling, Game Theory Algorithm

2008/2009 Synchronization/Latency
Goossens [12] NoC-Based MPSoC Tasks Slacks Voltage and Frequency Scaling Hardware, Software to adjust the
2010 Controller
Kong [13] Bus-Based MPSoC Application Profile Software computes Suitable DVFS Level and Informs Controller
2008 Hardware
This Work NoC-Based MPSoC Communication and CPU Load Local Clock Generation, Controller sets Correct Frequency Level.

Software updates Controller with Current CPU state.

reference clock. In other words, for each den i reference clock cycles, num_i cycles are propagated to the
output clock.

Any frequency obtained by changing the num i and den i values can be generated with the obvious
exceptions (den_i=0 is not an acceptable value, num_i=0 corresponds to a clock gating action and the constraint
num_i < den_i must be respected). Before changing the num_i and den_i values, the restart i signal must be
asserted to momentarily stop the output clock and reinitialize internal registers. After releasing restart i, the
new frequency, defined by the modified values of num_i and den_i appears at the output.

The main advantages of this clock generation module are the low area overhead and a large set of
generated frequencies. In addition, the clock output is always stable, contrary to what happens in standard DFS
methods, where the time required to stabilize a new frequency can be significant. The proposed module is also
glitch free by construction. Such features make the use of the proposed clock generator module appropriate for
distributed DFS in MPSoCs, where each PE may have its own frequency according to its load. The drawbacks
of the approach are how to couple it with voltage scaling and the need to design the critical paths of all modules
in the system to support the reference clock frequency.

num_i < 2 >< 1 >
den_i { 5 X 10 >
restart_i [ﬁ
clock_om m m ﬂ ﬂ

Fig. 1 - Example of the proposed clock generation process. Signal clock_i is the reference clock and clock o is
the output of some clock generator.

4. System Architecture

The reference MPSoC [14] is a homogeneous multiprocessing NoC-Based MPSoC. Fig. 2 shows an
instance of this MPSoC. The 2-D mesh NoC used in the reference MPSoC has the following features:
wormhole packet switching, flit width equal to 16 bits, XY routing algorithm, round-robin arbitration, input
buffers with 8-flits depth.

MPSoC Slave-PE

CECREEN |
i

Fig. 2 - Block diagram of the reference MPSoC architecture.

=
x 2
82
= a

53
o

Networl
Interfac:

Each PE includes the following modules: (i) a 32-bit Plasma processor (a MIPS-like architecture); (ii) a
local memory (RAM); (iii) a DMA module, responsible for transferring the task object code to the memory and
messages to/from the NoC to the local memory; (iv) a network interface (NI). Two types of PEs are used: slave
and master. Slave-PEs are responsible for executing application tasks, while the Master-PE is responsible for
managing task mapping and system debug. The task repository is an external memory, responsible to store all
object codes of applications that will eventually be executed. Each slave processor runs a multitask microkernel

SIM 2011 — 26" South Symposium on Microelectronics 139

that enables the communication between tasks through send and receive primitives, respectively called
WritePipe() and ReadPipe(). Each microkernel contains a vector, named pipe, which contains messages to be
exchanged between tasks. The most relevant features of the system for the DFS controller are task scheduling
and the inter-task communication process. Monitoring the scheduler it is possible to evaluate the CPU
utilization and monitoring the pipe occupation it is possible to evaluate the communication load.

4.1. Router-PE GALS interface

The present work assumes the NoC operates at a fixed frequency (the reference frequency divided by two)
and only processors change their frequency. Therefore, the router-PE interface needs to be modified to adapt to
the GALS paradigm, since processor and router may operate at different frequencies due to the DFS scheme.
This is achieved by substituting buffers in the NoC and network interface by bisynchronous FIFOs, and
introducing two-flop synchronizers in control signals. The router-PE interface contains two buffers (GALS
FIFOs), one at the router to receive data from the PE, and the other at the NI, to receive data from the NoC.
Besides these hardware modifications, the microkernel was changed to monitor CPU utilization and
communication pipe occupancy, storing them in new memory-mapped registers. Based on this information, the
controller can take decisions and dynamically change the processor frequency.

5. The DFS Controller Structure

The DFS controller computes the communication load and CPU utilization level according to values
provided by the microkernel. Such values are used by the controller to define each PE frequency. The controller
always operates at the reference frequency (the highest frequency in the system, used as input to the clock
generation module). As the DFS controller works at the reference frequency and the processor at a different
frequency, a synchronization scheme between them is necessary. The controller uses the clock generation
module, detailed in Section 3, to provide the output clocks. The role of the DFS controller is to choose the
correct PE frequency, by evaluating the following parameters:

e Pending message requests from other tasks. This situation takes place when the processor is not

producing data to the consumer task.

e Occupancy of the pipe. If the pipe has a high occupancy, the processor is producing messages at a
higher rate than the consumer tasks can consume, while the inverse scenario means a lack of produced
messages. Upper and lower parameterizable thresholds define the high and low occupancy states,
respectively. Occupancy between these values defines an operational state.

e CPU utilization. When the utilization is low the CPU is not executing any task or tasks are blocked,
e.g., waiting message(s) from other tasks. When the utilization is high, tasks are using the processor at
the maximum rate. Two parameterizable thresholds define high, low and operational CPU utilization
states.

Frequency decreases in three situations: (7) the pipe is almost full; (i7) the pipe occupation is increasing, i.e.
in the previous evaluation its state was /ow and the present state is operational; (iii) the pipe occupation is
almost empty and the CPU usage is low, meaning that even at a lower frequency the data in the pipe is being
consumed. Frequency increases in three situations: (i) existence of pending messages with operational or high
CPU utilization; (i) the pipe is almost empty and the CPU has high utilization; (iii) the pipe occupation is
dropping, i.e. in the previous evaluation its state was high and the present state it is operational.

Lastly, when a given PE receives a message request, and it has data to transmit, this PE goes to the
reference frequency during the message transmission. This action avoids stalling consumer PEs operating at
higher frequencies than the producer PEs.

6. Experimental Results

This section employs an instance of the reference MPSoC with 6 processors (1 Master-PE and 5 Slave-
PEs) and a 3x2 NoC to demonstrate the characteristics and advantages of the proposed DFS scheme. A Partial
MPEG filter application was used to evaluate the performance of the proposed DFS controller. The partial
MPEG filter is composed by five tasks, modeled as a pipeline. The DFS controller was parameterized to
generate 9 different frequencies: 5, 10, 25, 40, 50, 60, 75, 90 and 100% of the reference frequency. In the
graphic presented in this Section, these frequencies are plotted in the y axis, with values ranging from 0 to 8.

The result for the partial MPEG decoder is shown in Fig. 3. In this application iVLC is a CPU-intensive
task. Tasks iQuant and IDCT are simpler than iVLC. Tasks Start and Print are used to initialize the system and
to print the results, respectively. In this test case, 200 frames were transmitted.

The graphic shows that only the task executing a high amount of computation had its frequency increased
to the reference frequency, while Print and Start tasks had their frequency decreased to the lowest frequency
level. The execution time overhead, compared to the execution with the whole system operating at reference
frequency was 13%. The number of executed instruction is reduced in 64%.

When the whole system executes with no DFS scheme, the six processors and the NoC operate at the
reference frequency. On the other hand, using the proposed DFS scheme, only one processor operates at the

140

SIM 2011 — 26" South Symposium on Microelectronics

reference frequency, while three other processors and the NoC operate, in average, at half of the reference
frequency (including the Master-PE) and two processors operate at the lowest frequency level.

7.

8.
(1]
(2]

(3]
(4]
(5]

(6]

[10]
(1]
[12]

[13]
[14]

Frequency Level

Fig. 3 - Partial MPEG filter execution for 200 frames.

Conclusion

This work proposes a new DFS scheme and evaluates it in a real MPSoC platform. The frequency scaling
scheme is based in the communication load and CPU utilization of each MPSoC PE. The DFS controller uses
information provided by the microkernel. A clock generation module was designed to enable frequency
changing. This module presents a low-area overhead and requires no stabilization time at each frequency
switching. Results shows that the DFS scheme adjust the processor frequency according to the load injected
into the network. As shown in the MPEG benchmark, the CPU-intensive task has its frequency increased to
generate more data to the other tasks. Once the tasks with lower injection rate reach the reference frequency, the
system stabilizes, reducing the frequency of other tasks. The proposed DFS method has a small impact in the
total execution time. Therefore, an important energy reduction is expected, since few processors of the MPSoC
operate at the reference frequency, drastically reducing the number of executed instructions.

References
Herbert, S.; Marculescu, D. "Variation-aware dynamic voltage/ frequency scaling". In: HPCA, pp. 301-312, 2009.

Pourshaghaghi, H.R.; de Gyvez, J.P. "Dynamic voltage scaling based on supply current tracking using fuzzy Logic
controller". In: ICECS, pp.779-782, 2009.

Chabloz, J. M.; Hemani, A. "Distributed DVFS using rationally-related frequencies and discrete voltage levels". In:
ISLPED, pp.247-252, 2010.

Yin, A. et al. "Architectural Exploration of Per-Core DVFS for Energy-Constrained On-Chip Networks". In: DSD,
pp.141-146, 2009.

Alimonda, A. et al. "Non-Linear Feedback Control for Energy Efficient On-Chip Streaming Computation". In: IES,
pp.1-8, 2006.

Alimonda, A. et al. "A Feedback-Based Approach to DVFS in Data-Flow Applcations". IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 28, no. 11, pp. 1691-1704, 2009.

Shu, L.; Li, X. "Temperature-aware energy minimization technique through dynamic voltage frequency scaling for
embedded systems". In: ICETC, pp. 515-519, 2010.

Salehi, M. E. et al. "Dynamic Voltage and Frequency Scheduling for Embedded Processors Considering
Power/Performance Tradeoffs." IEEE Transactions on Very Large Scale Integration Systems, in press, 2010.

Liu, S.; Qiu, M. "A Discrete Dynamic Voltage and Frequency Scaling Algorithm Based on Task Graph Unrolling
for Multiprocessor System". In: SCALCOM-EMBEDDEDCOM, pp.3-8, 2009.

Puschini, D. et al. "Temperature-Aware Distributed Run-Time Optimization on MP-SoC Using Game Theory". In:
ISVLSI, pp.375-380, 2008.

Puschini, D. et al. "Adaptive energy-aware latency-constrained DVFS policy for MPSoC". In: SOCC, pp.89-92,
2009.

Goossens, K. et al. "Composable Dynamic Voltage and Frequency Scaling and Power Management for Dataflow
Applications". In: DSD, pp.107-114. 2010.

Kong, J. et al. "Low-Cost Application-Aware DVFS for Multi-core Architecture". In: ICCIT, pp.106-111. 2008.
Carara, E.A. et al. "HeMPS - a framework for NoC-based MPSoC generation". In: ISCAS, 2009, pp. 1345-1348.

SIM 2011 — 26" South Symposium on Microelectronics 141

Analog Design Methodology adopted in Training Center 1

'Sandro Ferreira, 'Everton Ghignatti, 'Alcides Costa, *Eric Fabris
{sandro,everton,alcides } @nscad.org.br, fabris@inf.ufrgs.br

I'NSCAD, >UFRGS

Abstract

This article presents the analog design flow, management structure and design architecture adopted in the
Brazilian IC design training program during the analog IC design phase, developed at Training Center #I in
Porto Alegre. The architecture selected for implementation is an IEEE 802.15.4 PHY transceiver.

1. Introduction

The Brazilian IC design training center #1 (CT1) was created in March 2008 as a government effort to
develop qualified human resources to the recent country semiconductor sector. Sponsored by the MCT
(Brazilian Ministry of Science and Technology) and part of the CI Brasil Program [1], CT1 is located at
Instituto de Informatica da UFRGS, in Porto Alegre. It is supported by the Nucleo de Suporte ao CAD
(NSCAD) Team [2]. The training center #2 (CT2) is also part of the CI Brasil Program and it is located at
Centro de Pesquisas Renato Archer (CTI), in Campinas.

Since its beginning, CT1 and CT2 trained more than 300 professionals on digital, analog and mixed-signal
(AMS) and radio frequency (RF) IC design areas to the country. The CI Brasil training program is structured in
the following way: an initial five months long phase, focused on theoretical lectures and EDA tool training
using Cadence Design Systems software, followed by a second phase (design phase), seven months long, where
the students are immersed in a carefully prepared simulated project environment, challenging a real IC design.

This article presents the structure developed by CT1 to support the AMS and RF design phase of the CI
Brasil Program and the proposed design itself. It focuses on the AMS and RF front end transceiver that
implements the protocol IEEE 802.15.4 PHY Layer. The proposed design was chosen to give the students a real
experience in design with all the challenges pertaining to real RF implementations being at the same time
feasible in the design period of time. The next sections of the article present the design phase, including its
main steps, major milestones, management structure adopted, followed by an overview of the transceiver
design scope and its top-level design. Finally, some conclusions are presented.

2. Design Phase

The second phase of the training takes students to a simulated environment where the student participates
in a complete analog design flow from preliminary specifications to tape out.

During the phase, students exercise best practices in design and management, working as a design team.
Project management concepts, such as tight schedule control, deadline dependencies and communication skills
are exercised according to a predefined Communication Plan used throughout the project.

The Analog Team is composed by NSCAD Team and students according to the following roles:
Technology Manager, Technical Leader, Field Application Engineer, Team Leader, Block Leader and
Designer. First three roles are played by NSCAD Team and the other roles are played by students.

The project is divided in five steps, according to the Project Management Body of Knowledge [3]:

- Initiation — when NSCAD Team establishes main project objectives.

- Planning — NSCAD Team defines product specifications and technology to be adopted. Project

environment is prepared as well as templates, standards and schedule to be adopted during Execution.

- Execution — performed by the complete Analog Team, is the product development phase itself, which
is divided in six design phases, as presented in the next section of the article (section 2.1).

- Monitoring and Control — performed by NSCAD Team, involves all management and quality aspects
that run in parallel with the Execution phase. For instance, schedule control, meetings, milestone
checking, and technical support to the design team and version control.

- Closing — NSCAD Team performs necessary adjustments to close the project.

2.1. Execution Phases

In order to synchronize efforts, organize and facilitate tracking, the project execution is divided into six
phases that implement the analog design flow. The design flow is slightly different when it refers to block-level
design (Fig. 1) or top-level (Fig. 2). The steps that are part of the design flows are described during the
execution phases presented below. The top-level design (Fig. 2) is in charge of integration of the blocks, power
distribution, ESD protection and routing of the connections at top level. The block-level design (Fig. 1) focus
on the individual blocks that are part of the top-level architecture.

142 SIM 2011 — 26" South Symposium on Microelectronics

1 System
Level
——
(12

Flooplan

1 Project/PDK
stu

<11
Simulations
Specs OK2,

Testbench/Hierarchy:
10 Correction

Block
Integration

8 Askfor Block
Changes

Fig. 1 — Block-Level Analog Design Flow Fig. 2 — Top-Level Analog Design Flow

‘ 10 calibrated
\ Models
pecs 0K’

8 Testbench
Complete
. Yes l

3]
Schematics

During the entire design process all design files, like models, testbenches, simulation states, schematics,
layouts, abstracts and extracted layouts must be saved in a specific repository respecting naming conventions.
Fig. 3 presents the preliminary schedule adopted to give a better understanding of the design effort in time.
2011-1 | 2011-2 | 2011-3 | 2011-4 | 2011-5 | 2011-6 | 2011-7 | 2011-8 | 2011-

g 2ip02-802.15.4 # aip02-802.15/4
1 Project Kickoff @b Project Kickoff 100%5
) Functional Definition el Functional Difinition 100%
) Circuit Design : & Circuit Design 54%
.l Physical Design H Ay Physical Design 0%
"4l Design Verification H ey Diesign Verification 0%
31 Post Martem : @ Post Mortem 0%

Fig. 3 - Preliminallry Schedule

2.1.1. Project Kickoff

Project Kickoff is the first phase of the Execution when designers are prepared to start the project. Design
Team is divided according to the blocks in order to develop circuit hierarchy (step 1 in Fig. 2). Team Leader is
also selected among the students according to his technical background, leadership and communication skills.

During this phase, designers should understand project structure (standards, templates, conventions,
communication lines, directory structure, repositories, etc) and study the adopted Process Design Kit (PADs,
devices, design rules, ESD protections, etc).

2.1.2. Functional Definition

During the Functional Definition phase, designers begin to understand their assigned circuits and research
circuit topologies to reach specifications. Preliminary floorplans, preliminary verification and testability
approach, as well as noise minimization and ESD protection strategies are also developed (steps 2 to 6 in Fig. 1
and Fig. 2). Main objectives of the phase are listed below:

- Understand product specifications, system architecture and identify top-level operating modes;

- Perform system level simulations to verify system functionality and establish block specifications

using spreadsheets, behavioral models or system-level simulation tools. (step 1 in Fig. 2);

- Develop and test detailed behavioral models and testbenches to simulate block specifications and to be

used in mixed-level simulations during schematic developments.

2.1.3. Circuit Design

In the Circuit Design phase, designers must complete specifications at transistor level and update
floorplans. At the end of the phase, block and top-level should pass specifications over process, voltage and
temperature (PVT) corners and Monte Carlo process mismatch analysis whenever proved necessary (steps 7 to
10 in Fig. 1). Due to the difficult to achieve circuit specifications this is the longest phase in the Execution
Process. During this time designers should:

- Develop transistor-level block schematics considering mismatch, mainly in differential circuits;

- Update testbenches to verify block level specifications and top-level functionality (steps 8 to 11 in Fig.

2). Simulate all specifications over corners and Monte Carlo and fix circuits when necessary;

- Calibrate behavioral models to match schematics behavior.

SIM 2011 — 26" South Symposium on Microelectronics 143

2.1.4. Physical Design

Physical implementation is performed in this phase according to foundry design rules. Parasitic
components are extracted and circuits are simulated again using the same testbenches (item 11 to 15 in Fig. 1).
The main phase objectives are presented below.

- Develop circuit physical implementation and generate abstract views with layout dimensions and pin

positions to be used at top-level floorplan;

- Verify that circuit functionality is achieved over PVT corners is still valid after layout using preferably

the same testbenches used in Circuit Design Phase;

- Perform block-level physical verification: Design Rules Check (DRC), Layout Versus Schematic

(LVS), electromigration (EM), IR drop, latch-up, etc.

2.1.5. Design Verification

This is the time reserved for necessary block adjustments and top-level functional and physical verification
(steps 13 to 16 in Fig. 2). At the end of the phase GDS2 standard format file is created. GDS2 is the final output
of the design flow and is delivered to IC foundries for fabrication.

Physical verification (DRC/LVS/Parasitic Extraction) and Layout Versus Layout (LVL) is also performed
on top-level, therefore on the complete IC design.

2.1.6. Post Mortem

During Post Mortem, technical meetings are realized to collect lessons learned during project and to better
understand future improvements necessary in the design flow and management or IT infrastructure.

3. Technical Characteristics of the Design

The design developed in Phase 2 is the analog part of the PHY interface of IEEE 802.15.4 wireless
protocol designed to support a future Zigbee implementation.

IEEE 802.15.4 standard addresses casy, low-cost power-friendly and flexible implementations of a
virtually unlimited number of wireless low data rate monitoring and control applications. It is targeted towards
wireless personal area network (WPAN) technology ranges and support industrial monitoring and control,
home automation, sensor networks for gaming, medical and automotive solutions [4].

This design focuses on the 2.4 GHz PHY implementation since it is the frequency designated for Zigbee in
Brazil. The basic characteristics of the selected IEEE 802.15.4 PHY implementation are presented in tab. 1.

Tab.1 — IEEE 802.15.4 Standard Characteristics [4] [5]

Parameter 2.4 GHz PHY
Sensitivity @ 1% PER -85 dBm
Receiver Maximum Input Level -20 dBm
Signal Bandwith 3 MHz
Output Power (Lowest Maximum) -3 dBm
Operating channels 12 channels, from 2405 MHz to 2480 MHz
Data Rate 250 kb/s
Chip Rate (DSSS operation) 2 Mchip/s
Chip Modulation 0-QPSK with half-sine pulse shaping

As presented in tab. 1, PHY standard uses Direct Sequence Spread Spectrum (DSSS) with a chip rate of 2
Mchip/s and a data rate of 250 kb/s. Chip modulation is O-QPSK with half-sine pulse shaping (MSK), so
quadrature modulation is used in the transceiver as can be directly observed in fig. 4.

Transceiver operates in a Time Division Duplex (TDD) basis, receiver and transmitter are alternatively
turned on and off during communication using one of the programmed channels. Transceiver architecture is
divided in top-level subsections to simplify design management and assigned to Block Leader Designers.

- Receiver Section — Receiver is formed basically by LNA, Receiver Downconverter and Receiver
Buffer with offset correction and programmable gain. It implements an IF quadrature architecture with
intermediate frequency equals to 2 MHz. Synthesizer clock is divided by two using CML logic for
quadrature generation and phase noise reduction.

- Transmitter Section — composed by Power Amplifier, Modulator using quadrature architecture and
Buffer. Direct conversion topology is adopted in order to avoid external filtering.

- Synthesizer Section — implements an integer programmable second order — type II PLL. Synthesizer is
composed by the following basic blocks: Phase/Frequency Detector, Charge Pump, Loop Filter,
Voltage Control Oscillator, VCO Buffer, Programmable Divider and Voltage Regulator. Reference
clock comes from on-chip crystal oscillator. Due to the high frequency generated by the synthesizer, a
hybrid CML/CMOS programmable divider is used. Frequency output from VCO Block is provided to

144 SIM 2011 — 26" South Symposium on Microelectronics

receiver and transmitter section through buffers to reduce LO pulling. VCO circuit operates with a
separate regulation to improve power supply noise immunity.

- AMS Section — is composed by sub-blocks identified as ADC, DAC and PLL which are used in the

analog baseband before signals are delivered to digital baseband. The Dual ADC is a two 8-bit 20
MHz Analog-to-digital converter with differential input stage and parallel output. The dual DAC
consists of two 8-bit 20 MHz digital-to-analog converters (DAC). A Phase-locked Loop (PLL) is in
charge of generating low jitter clocks for the ADCs, DACs and digital IF processing. Stable reference
currents are provided by the Bandgap/Bias block using an external resistor.

The control block is in charge of VCO calibration and Analog Test Bus selection during test mode. Analog
Test Bus provides testability function to each one of the blocks, allowing for the observation of DC Bias points
and verification of block-level functionality. Control block also turns on and off blocks individually using
digital registers during transmit, receive and testing operation to reduce power consumption in the transceiver.

Q RX i out
@ RXqout < RX in

RX iq Buffer

Receiver

Loop Divider4~—<1

AMS Section Transmitter

Fig. 4 — AMS-RF Proposed Architecture

4. Conclusions

The article presented the methodology and organizational structure developed to support the analog design
phase in the Brazilian IC design training program at CT1. The methodology provides students with a real
design experience and emphasizes project management processes. Design scope was also briefly presented as
well as top-level characteristics.

S. References
[1] http://www.mct.gov.br/index.php/content/view/24595.html, accessed on March 20, 2011.

[2] http://www.nscad.org.br, accessed on March 20, 2011.

[3] “A Guide to the Project Management Body of Knowledge: (Pmbok Guide)”, 4™ Ed, Project
Management Institute, 2008.

[4] “IEEE std. 802.15.4 - 2003: Wireless Medium Access Control (MAC) and Physical Layer (PHY)
specifications for Low Rate Wireless Personal Area Networks (LR-WPANSs)”, available at
<http://standards.iece.org/getieee802/download/802.15.4-2003.pdf>, accessed on January 20, 2011.

[5] Khanh Tuan Le, “Designing a ZigBee-ready IEEE 802.15.4- compliant radio transceiver”, available at
<http://mobiledevdesign.com/hardware_design/radio_designing_zigbeeready ieee/>, accessed on
January 20, 2011.

SIM 2011 — 26" South Symposium on Microelectronics 145

Energy-efficient Cache Coherence Protocol for NoC-based
MPSoCs

"Tales M. Chaves, 'Fernando G. Moraes
tales.chaves@acad.pucrs.br, fernando.moraes@pucrs.br

"PUCRS - FACIN - Av. Ipiranga 6681 — Porto Alegre — 90619-900 — Brazil

Abstract

System-on-Chip designs benefit from the advances in the semiconductor industry, integrating several
processors, specialized hardware units and memory modules on a single chip. As the number of functionalities
offered by embedded devices increases, the amount of memory used by these devices also increases. This fact
Justifies the development of memory architectures that present scalability, low energy consumption and low
latency. Most designs, which adopt a Network-on-Chip (NoC) as the interconnection mean, do not explore the
physical services of the NoC in the cache coherence protocol. Multicast, for instance, can be used to optimize
these protocols, leading to both traffic and energy consumption reduction. The goal of this work is to optimize a
directory-based cache coherence protocol exploiting specific NoC services, such as multicast and priorities. To
demonstrate our proposal an MPSoC described at the RTL level is used, enabling accurate performance and
energy evaluation. Results show a reduction of 17% in the number of clock cycles and an average reduction of
39% in energy consumption for memory transactions.

1. Introduction

Multiprocessor System-on-Chip (MPSoCs) integrates multiple processing elements (PEs) on a single chip to
exploit task level parallelism. In addition to PEs, MPSoCs also integrate memory elements and specialized
hardware units. Nowadays, most designs employ a NoC to interconnect these elements due to the scalability,
high bandwidth and parallel communication offered by NoCs [1].

The increasing number of functionalities and applications of current embedded systems raise the demand for
processing, high-speed communication and memory. According to Wolf et al. [2], one of the most critical
components that determine the success of an MPSoC architecture is its memory architecture. This is justified by
the fact that applications might spend several cycles waiting for the conclusion of read/write memory
operations. The use of cache memories is a simple and efficient way to increase software performance [3].
According to [4] caches are and will be one of the best solutions to achieve low latency accesses to data and
instructions. The introduction of cache memories in MPSoCs might reduce the average access latency, since
most memory accesses are local, and the amount of memory transactions issued by processors to the
communication infrastructure is reduced.

The cache coherence protocol may have a huge impact in energy consumption and latency. Most MPSoCs
which adopt a Network-on-Chip (NoC) as the interconnection mean do not explore the physical services of the
NoC to implement the cache coherence protocol. Multicast, for instance, can be used to optimize these
protocols, leading to both traffic and energy consumption reduction. Jarger et al. [5] propose a novel protocol,
named Virtual Tree Coherence (VTC), which is based on a virtual ordered interconnection tree and explores the
multicast service provided by the NoC. Each tree keeps a history of nodes sharing a common region of
memory. Bolotin et al. [6] attributes different priorities to packets transmitted by the cache coherence protocol.
Operations such as read and exclusivity request (short data packets) are transmitted using high priority. Long
packets, such as packets containing data to be written in the memory or a block just read from the memory are
transmitted using low priority. Barroso et al. [7] propose an invalidation-based directory protocol which
exploits priority to differentiate packets. A low priority lane is used by request sent to a home node, while the
high priority lane is used by forwarded requests and all replies. Also, to decrease the traffic in the network, a
technique called cuise-missile-invalidates is used for sending a unique invalidation message to several nodes.

In this work, we propose the optimization of the MSI directory-based cache coherence protocol, which
explores two physical channels and the dual-path multicast algorithm [9]. Also, multicast is used to reduce
traffic generated by the cache coherence protocol, and priority services increase performance. Multicast
messages can be used by cache coherence protocols when invalidation messages must be sent to all processors
that are caching a given block. Without multicast, an invalidation message would have to be sent individually to
all processors in the system, increasing the number of transactions in the network, as well as energy
consumption and congestion. Priorities may be used to differentiate memory transactions, decreasing the
response time to higher priority messages, as block invalidation.

Despite longer simulation times, this work adopts RTL modeling, since it enables accurate performance
evaluation. The rest of this paper is organized as follows. Section II presents the architecture of the MPSoC

146 SIM 2011 — 26" South Symposium on Microelectronics

adopted by this work. Section III details the proposed optimizations in the cache coherence protocol. Section IV
presents the experiments and results. Finally, Section VI concludes this paper.

2. MPSoC Architecture

This work adopts as reference a homogeneous NoC-based MPSoC [8], described in synthesizable VHDL.
Each PE contains a MIPS-like processor (Plasma), a local memory (RAM), a DMA controller, a Network
Interface and, optionally, a L1 cache memory and a shared L2 cache memory. A general view of a 2x2 instance
of the MPSoC architecture is illustrated in Figure 3. Tasks communicate through message passing or through a
shared L2 cache memory (when it exists).

PEs can be categorized in two types: slave and master. Slave-PEs are responsible for executing application
tasks, while the Master-PE is responsible for mapping the tasks into the Slaves-PEs, task management and
system debug. Each Slave-PE runs a tiny operating system, named microkernel, responsible for managing task
execution and task communication. The network interface and DMA modules are responsible for sending and
receiving packets. The 2-D mesh NoC used has the following features to support QoS: packet and circuit
switching, priorities, duplicated physical channels (two 16-bit bidirectional links), and multicast.

A L1 cache can be used only when there is at least one shared L2 cache module in the MPSoC. These
memories are used only for storing data. The local memory (RAM) stores the microkernel, application tasks
and private data of each PE. The cache L1 memory stores private copies of blocks from the L2 cache, and it is
managed by the cache controller. The L2 cache is shared among all PEs and is composed of: (i) a memory
controller; (i7) a directory memory; (iii) a network interface (NI) and; (iv) a memory bank. Note that more than
one L2 cache bank can be used in the system, resulting in a distributed shared memory (DSM) organization. In
the scope of this work, only one L2 cache is used. All necessary instructions to execute a given task are stored
in the local memory.

MPSoC Slave-PE
m Table 3 - Number of clock cycles and energy
X
g consumption of invalidate messages depending on the
= NoC 3} .
3 £8 = number of caches sharing a block.
e
tE g g 8 Platform 3 caches 5 caches 8 caches
= = Energy NO-OPT 1635 2584 3798
(nJ) OPT 685 2073 2916
Slave.PE -><_> L2 Cache oPT g(a)ilg v NO- 58.07% 19.76% 23.20%
Clock NO-OPT 141 154 147
Cycles OPT 129 127 129
Figure 3 - MPSoC with a two level memory hierarchy oPT GS’F’ZT"S NO- 8.51% 17.53% 12.24%

— shared memory and caches (only Slave-PEs may contain
caches).

3. Cache Coherence Protocol

Cache coherence protocols are commonly divided in two classes: directory-based and snoopy-based
protocols. The MSI cache coherence protocol is a directory-based protocol, where the directory keeps the
current state of each block shared between PEs. Each shared block may be in one of the following states:
shared, exclusive or invalid. In NoC—based systems, where the NoC offers physical services such as multicast,
priority, and two physical channels, the MSI protocol can be optimized. To decrease the amount of traffic
generated by the cache coherence protocol, this work identified four situations where the protocol can be
optimized. Most of these optimizations are allowed by the physical services available in the NoC.

3.1. The Transition State

We propose the addition of a new state in the MSI protocol, named transition state (T). A block enters
this state when the L2 cache controller receives a read request on a given block in exclusive state. The block
stays in this state until it is updated in the L2 memory. Any additional read request arriving at the L2 cache
controller when the block is in the T state is mirrored to the processor which is writing the block back to the L2
cache.

3.2. Invalidating cache lines

Before writing to a given block, a PE must acquire exclusivity on it. In order to do so, a request must
be sent to the L2 cache controller. An exclusivity request on a shared block triggers the dispatch of invalidation
messages to all PEs currently sharing the block. Most implementations of MSI protocol dispatch a unicast
message for each PE sharing the block, which might represent a significant increase on the traffic in the NoC.
In this case, multicast messages can be explored. Instead of sending several unicast messages, in the HeMPS
MPSoC, in the worst scenario, at most two multicast messages are sent, independent of the number of PEs
sharing the block. This is allowed by the Hamiltonian multicast algorithm implemented by the NoC.

SIM 2011 — 26" South Symposium on Microelectronics 147

3.3. Read request optimization

The use of multicast messages might optimize read operations on modified blocks. In the standard MSI
protocol, read operations on modified blocks require the issue of a write-back request from the L2 cache
controller to the PE holding the modified copy of the block. The cache controller only responds the read request
after receiving and updating the block locally. Multicast messages can be exploited in this scenario, both to
reduce the number of packets transmitted and increase performance of read operations.

Upon receiving a write-back request, the processor holding the modified copy of the block might send a
multicast message to the L2 cache memory and also, to the PE which is trying to read the block. In some
situations, it is not possible to send only one multicast message due to the limitations of the Hamiltonian
routing algorithm and the labeling of the PEs/SM.

3.4. Write request optimization

To write on a shared block, a PE must read it beforehand (copy the block to its local cache). If the block to
written is in modified state, a write-back operation must be performed by the PE holding the modified copy.
Instead of sending the write-back response to the L2 cache controller, the PE might send its local copy of the
block directly to the processor which wants to write on it. In this case, the L2 cache can be bypassed because
the block will be modified right after. This optimization does not rely on any specific characteristic of the NoC.

3.5. Priority exploitation

The HeMPs platform allows two levels of priority for messages at the NoC level: high and low priority.
High priority messages are routed first than low priority ones. Memory requests, such as read, read-with-
exclusivty and exclusivity requests, are sent using high priority. These requests are short. Write-back responses
are transmitted using low priority. This choice is based on the fact that if requests are transmitted using high
priority, they will be attended earlier, decreasing latency of memory operations.

4. Experiments and Results

To evaluate the gains of the optimized MSI protocol, two different implementations of an MPSoC platform
were simulated in RTL-level using the ModelSim simulator. The platform used as a case study is configured as
follows: 5x5 NoC mesh topology, containing 24 PEs (1 master and 23 slaves) and 1 SM. The performed
experiments analyze each proposed optimization separately against the non-optimized protocol. By doing this,
it is possible to verify the gains individually. In all experiments, the results show the number of clock cycles,
and the energy spent in communication between the PEs and the SM. This is justified by the fact that we focus
mainly on the services offered by the NoC to optimize cache-coherence actions, therefore gains are obtained by
decreasing communication cycles and energy consumption. The packets containing memory operations are
triggered by application tasks. To evaluate the consumed energy per memory transaction, the present work
adopts the volume-based energy model proposed by Hu et al. [9].

4.1. Invalidating cache lines

To evaluate the benefits of using multicast to propagate these messages, the number of caches sharing a copy
of the same block of the SM varies. We evaluated three different scenarios, where a shared block is cached in:
3, 5 and 8 caches, respectively. The number of cycles and energy consumption are summarized in Table 3.
Although with a smaller number of targets to invalidate, the first scenario (3 caches sharing a block) presents
the best gain relative to the non-optimized implementation. This is due to the task mapping on the platform
which allowed the sending of only one multicast message, which significantly reduces the amount of data
transmitted on the NoC. For the other scenarios (5 and 8 caches sharing a block), the use of multicast messages
saves energy and improves performance by at most 17.53%.

4.2. Other optimizations

The read request optimization showed for all experimented scenarios that the energy consumed is reduced up
t012% in comparison with the NO-OPT implementation.

Figure 4 shows the energy spent during the operation varying the distance of the PE which requests the read
and the L2 cache. For this optimization, particularly, the NO-OPT implementation takes, in average, 30 clock
cycles less than the OPT to complete the read request, due to the higher complexity to treat multicast packets at
each router, and the non-minimal path taken by these packets.

Figure 5 shows the results for the write request optimization. Results show that there is an average reduction
of 17% in the number of cycles required to finish the write operation. Also, Figure 6 shows that there is a
reduction of up to 86.8% on the energy spent during this operation by the OPT implementation over the NO-
OPT. This reason of this significant reduction is that long messages, containing data blocks, are transmitted
only once, from PE to PE.

The transition state optimization results show that the gains against the standard MSI protocol are really
sensitive to the task and SM mapping. In scenarios where the PE that issues the second read request is closer to

148 SIM 2011 — 26" South Symposium on Microelectronics

the PE previously holding the modified copy of the block, there are gains both in performance of the protocol
(decrease in clock cycles) and also a save on the energy spent during the operation.

Figure 4 — Energy consumption of the read Figure 5 - Number of cycles required to execute a read Figure 6 - Energy consumed to execute a read
operation on a modified block as the operation on a modified block varying the location of the ~ operation on a modified block varying the
number of hops increases. modified block. location of the modified block.

5. Conclusions

This work attempts to explore the benefits NoCs can bring to cache-coherence protocols, evaluating a
complete system at the RTL level (PEs and the NoC), including the software (microkernel and applications)
running on top of it. By using the proposed protocol optimizations, results show that it is possible to reduce the
energy consumed by the operations up to 86.8% (average reduction: 39%) and to achieve an improvement of
17.53% in the execution time (clock cycles). All optimizations, except the Transitions state, always reported
energy reduction. The Transition state optimization is sensible to the task mapping. This fact points to several
future works, as couple the proposed techniques to mapping heuristics that consider the memory position in the
MPSoC, and data migration policies to optimize the memory performance.

Future work also includes: (i) use of parallel benchmarks to characterize performance; (if) extend the number
of memory-IPs in the memory hierarchy, resulting in a DSM architecture; (iif) study and implement a way to
distribute (or to hierarchize) the directory used by the cache coherence protocol; (iv) evaluation and
implementation of a memory consistency model at the software level.

6. Referéncias

[1] Millberg, M.; Nilsson, E.; Thid, R.; Kumar, S.; Jantsch, A. The Nostrum backbone-a communication
protocol stack for Networks on Chip. 17th International Conference on VLSI Design, 2004. Page(s): 693 —
696.

[2] Wolf, W.; Jerraya, A. A.; Martin, G.; Multiprocessor System-on-Chip (MPSoC) Technology. Computer-
Aided Design of Integrated Circuits and Systems. vol.27, n0.10, pp.1701-1713, Oct. 2008.

[3] Petrot, F.; Greiner, A.; and Gomez, P. On Cache Coherency and Memory Consistency Issues in NoC Based
Shared Memory Multiprocessor SoC Architectures. In: EUROMICRO, pp. 53-60, 2006.

[4] Leverich, J.; Arakida, H.; Solomatnikov, A.; Firoozshahian, A.; Horowitz, M.; Kozyrakis, C. Comparing
memory systems for chip multiprocessors. SIGARCH Comput. Archit. News 35, 2 (June 2007), 358-368.
2007.

[5] Jerger, E. N. D.; Peh, L.; Lipasti, M. H. Virtual tree coherence: Leveraging regions and in-network
multicast trees for scalable cache coherence. In Proceedings of the 2008 41st IEEE/ACM international
Symposium on Microarchitecture, November 08 - 12, 2008, pp. 35-46.

[6] Bolotin, E.; Guz, Z.; Cidon, 1.; et al. The Power of Priority: NoC Based Distributed Cache Coherency. In
International Symposium on Networks-on-Chip (NOCS'07), pp.117-126. 2007.

[7] Barroso, L. A.; et al. Piranha: a scalable architecture based on single-chip multiprocessing. In Proceedings
of the 27th annual international symposium on Computer architecture (ISCA '00), pp 282-29. 2000.

[8] Carara, E., Oliveira, R., Calazans, N., Moraes, F. "HeMPS - a Framework for NoC-based MPSoC
Generation". In: ISCAS, pp.1345-1348, 20009.

[9] Carara, E.; Moraes, F.; “Deadlock-Free Multicast Routing Algorithm for Wormhole-Switched Networks-
on-Chip”. In: ISVLSI, pp. 341-346, 2008.

[10]Hu, J.; at al. Energy-aware mapping for tile-based NoC architectures under performance constraints. In:
ASP-DAC’03, 2003, pp. 233-239.

SIM 2011 — 26" South Symposium on Microelectronics 149

Digital Logic Cancellation Block for a Cascade Feed-Forward
Sigma-Delta Analog-to-Digital Converter

Paulo César C. de Aguirre, Felipe C. Lucchese, Lucas Teixeira, Cristian Miiller and
César Augusto Prior
{paulocomassetto, felipelucchese, lucasteixeira, cristian.muller} @mail.ufsm.br,
cesar.prior(@ieee.org

Grupo de Microeletronica — Gmicro
Universidade Federal de Santa Maria - UFSM

Abstract

This paper presents the characterization and synthesis results for a hardware implementation of a
reconfigurable digital logic cancellation circuit auxiliary for multi-mode XA modulator that is capable to
perform the analog-to-digital conversion for GSM, CDMA and WLAN standards. The XA modulator
reconfigures its mash topology and building blocks in order to adapt the performance to the diverse standard
specifications. The necessary integration and cancellation at three modulators output for baseband signal
processing was designed in high level Matlab/Simulink and coded with VHDL for synthesis intended to
prototyping in CMOS process.

1. Introduction

The evolution of band-base analog-digital conversion in telecommunications systems and signal
processing lead with multi-mode capability of standards, comes from the 2G systems with high quality services
for 3G systems, which include global system for mobile communications (GSM) and a wide-band code division
multiple access system (WCDMA) to wireless systems that incorporate both Wireless Local Area Networks
(WLAN) and cellular capability. Typical triple-mode base-band architecture and the required bandwidth to deal
with GSM, CDMA and WLAN signals are shown in Fig.1 and Tab.1, respectively. In this context a multi-mode
cascaded ZA architecture have been reported in [1] whose wide programmability range of input frequency and
dynamic range descends from modulator order programmability. Another reconfigurable XA modulator for a
triple standard receiver has been introduced in [2] where a feedback path from the last to the third stages is done
in order to further suppress the quantization noise power. Yet another multi-standard sigma-delta ADC has been
explored in [3].

To allow the multi-mode cascade XA architecture a reconfigurable digital logic cancellation circuit is
needed. This circuit is responsible for the modulators output signal processing in order to adapt the cascade
architecture performance to diverse standard specifications. The development, hardware implementation and
synthesis results of this reconfigurable architecture using two different technologies are presented.

The paper is organized as follows. Section 1 is the introduction. Section 2 focuses on selecting the
appropriate architecture for the multi-standard specifications. Section 3 describes a logic cancellation function.
Section 4 provides the implementation and simulation results. Finally, Section 5 concludes the paper.

2G/3G RF SIGNAL BASEBAND SIGNAL

GSM BAND FILTER GSM I Low - IF
LNA I

Q.

WCDMA BAND FILTER WCDMAI Zero - IF

—

"

—»
. WLAN
Triple

Standard WCDMA

GSM

o/ ol

Wideband

T
!

AD Baseband

Transmitter

Signal
Signal WLAN BAND FILTER WLAN | __Zero - IF

Convertor

Processor

¢

v
W
!
B

Fig. 1 — Typical Triple-mode base-band Architecture.

150 SIM 2011 — 26" South Symposium on Microelectronics

Tab.1 - Requirements for baseband

Standard Frequency (MHz) Chanel Banwidth | Dynamic Range
GSM 890-915(Tx) - 935-960(Rx) 200kHz 80dB
WCDMA 1850-1910(Tx) - 1920-1980(Rx) SMHz 60dB
WLAN 2401-2473 20MHz 50dB

2. The overall circuit topology

A proposed cascaded second order single bit ZA modulator 2-2-2 structure is shown in Fig. 2. In order to
adapt the system modulator performance to GSM, CDMA and WLAN standard specifications the cascade
topology and the logic cancellation block can be reconfigured to provide a second, fourth and sixth order
system modulator. A Matlab/Simulink whole system simulation was performed and the simulation results
shown that these bandwidth requirements, presented in Tab. 1, can be achieved at a frequency of 160 MHz and
with the coefficients showed in Tab. 2.

E SN I

X(2) i
(2] Quantizer
h G1 + ! f ‘ G2 1 f G3 ¢
U = z-1 ‘ z -1
Jittered SineWave Discrete-Time Discrete-Time

I Integrator Integrator1

LOGIC
[- j$c Y4 CANCELATION | OUTPUT.
\ + BLOCK
Quantizer
1 f \ 1 f Q2(2)
w2 w3
z -1 ‘ z -1
Discrete-Time Discrete-Time
Integrator3 Integrator4

‘ + Y6
‘ o’ & j$D

Quantizer
Q3(2)
1 ‘ s2 1
z -1 ‘ z -1
Discrete-Time Discrete-Time
Integrator5 Integratoré

Fig. 2 — Mash Triple-mode SD modulator Architecture.

The system is composed for three second-order £A analog-to-digital converters based in a low distortion
topology that was presented in [5]. The GSM output mode is directly obtained at the first stage output and the
Eq. (1) presents the system transfer function:

1(2) = Yesu (2) = X(2) + (1 — 220, (2) M

The CDMA mode, Eq. (4), is obtained with a fourth order system modulator. The system second stage
output is given by:

Y4(Z) . IZ(Z) + (1~ Zil)ZQZ(Z) (2)

Where,
L(@) = —g19,2 ?Q:(2) 3)

SIM 2011 — 26" South Symposium on Microelectronics 151

Tab. 2 — Coefficients of XA mash 2-2-2 architecture

Coefficients 81/€1/W1/81/€2/W2lsy 83/84/W3/Wy/S3/84
GSM 0.5 4
WCDMA 0.5 4
WLAN 0.5 4
Then,
- 52 4
Yopma(2) = 272X (2) + gs(1— 2 1)*Qx(2) @)

To cancel this output and obtain the transfer function for a fourth order modulator based in 2-2 cascade
structure, Eq. (5):

Yeoua (@) = X(2) + (1— 279*Qx(2))

The logic cancellation block must perform the transfer functions Eq. (6) and Eq. (7):

Hi(z) = z7? (6)

Hy(z) = g5(1 — z7')? (7

Similarly, for the WLAN mode, a sixth order system modulator is needed. The third stage output (Eq. (8)),
the transfer function for a sixth order modulator (Eq. (8)) and the operations to be performed by the logic
cancellation block (Eq. (10) and Eq. (11)) are, respectively:

Yo = 27X(2) + go(1—271)°Q5(2) ®)
Ywray = X(2) + (1-271°Q3(2) ©)
Hy(z) = z7* (10)

(1)

Hy(2z) = ge(1 - z71)?

The digital logic cancellation architecture block diagram is shown in Fig. 3 and its functionalities are
explained in Section 3.

3. The Logic Cancellation Circuit

The logic cancellation circuit operates at a 160 MHz frequency, 6.25 ns period, and it is composed for three
kinds of functions: Gain, Delay and Differentiator. This block, illustrated previously in Fig. 2, is simplified in
Fig. 3. The Y2, Y4, and Y6 are single bit inputs and the Y(OUT) is a ten bit array output.

Y2

I [L)z % >f.i,\ Y(GSM)

veoma)| mux |Yeoun

|
| 211 .
z—1 H3(2) 31
Y4 — b i 13
‘ [Z j ‘ -
L |

-

I
| Y 1 R 2BITS
Y6 ——>‘t [?] } \"_’/

Fig. 3 — Logic Cancellation Circuit.

The H1(z) function implements a two clock cycle delay in the Y2 signal. The H2(z) function executes in a
single clock cycle one gain and two differential operations. In the first operation a gain of 4 is applied at the Y2

152 SIM 2011 — 26" South Symposium on Microelectronics

input and this signal is the input of the first of two differentiators where the previous signal is subtracted from
the actual signal in each differentiator operation. Adding the outputs of H1(z) and H2(z) the CDMA bandwidth
output is achieved.

The additional blocks H3(z) and H4(z) are necessary for the WLAN bandwidth output. The H3(z) block
implements a two clock cycles delay in the CDMA signal and the H4(z) implements a gain of 16 at the input
Y3 and executes four differentiator operations, all in the same clock cycle. Hence, to reach the WLAN
bandwidth the H3(z) and H4(z) functions must be added.

To choose the modulator order output needed by the user a simple multiplexer is presented at the digital
cancellation block output.

4. Implementation and Simulation Results

The designed digital architecture was described in VDHL and synthesized for two different technologies:
Altera Stratix II EP2S60F672C3N FPGA and X-FAB XC06 5V CMOS Process, using Quartus II and Synopsys
Design Compiler tools, respectively.

Tab. 3 shows the synthesis results for the entire developed module considering maximum frequency
operation and hardware consumption (number of DLRs and ALUTs for FPGA and logic cell number for
standard cells).

Tab. 3 — Synthesis Results

Stratix I EP2S60F672C3N X-FAB XC06 (0.6pm)
Frequency #ALUTs #DLRs Frequency #Logic Cells | # NAND2 Equivalent Gates
575.04 MHz 35 36 195.7 MHz 254 604

In order to compare the architecture in high level (Matlab/Simulink) and hardware design (VHDL design)
the stimulus injected by the testbench in the DUT were the same applied in the high level block. The same
verification environment was used to validate the synthesized circuits. These stimulus were obtained from the
three outputs of a mash sigma-delta AD converter structure simulated in Simulink, see Fig. 2.

s. Conclusions

This paper showed the design, validation and synthesis results of a digital logic cancellation architecture
for a cascade XA AD converter. To achieve the CDMA and WLAN standard modes operation the quantization
noise in the operation frequency range must be reduced. It is provided by the increment of the system
modulator order.

The frequency requirement of the digital architecture, 160 MHz, was achieved for X-FAB XCO06 standard
cells technology.

It was observed that the circuit power consumption can be reduced both in the analog and digital circuits
disabling modules when not needed.

The future works in the project will be the creation of a digital reconfigurable filter that will cover the three
standard operation modes of the proposed system modulator and the power consumption reduced disabling
analog and digital blocks when they are not being used.

6. References

[1] B. R. Jose, J. Mathew, P.Mythili and D. K. Pradhan, “A Multi-Mode Sigma-Delta ADC for
GSM/WCDMA/WLAN Applications”, J Sign Process Syst (2011) 62:117-130, DOI 10.1007/s11265-
008-0326-z.

[2] Andrea Xotta, Andrea Gerosa and Andrea Neviani, “A Multi-Mode ZA Analog-to-Digital Converter for
GSM, UMTS and WLAN,” IEEE International Symposium on Circuits and Systems (ISCAS 2005),
May 2005, vol.3, pp. 2551-2554.

[3] Ling Zhang, Vinay Nadig and Mohammed Ismail, “A High Order Multi-Bit XA Modulator for Multi-
Standard Wireless Receiver”, IEEE International Midwest Symposium on Circuits and Systems
(MWSCAS 2004.) June , vol.3, pp. 379-382.

[4] B. Jalali-Farahani, and M. Ismail, “A Low Power Multi-Standard Sigma-delta ADC for
WCDMA/GSM/Bluetooth Applications,” IEEE Northeast Workshop on Circuits and Systems (NEWCAS
2004), June 2004, pp.241-243.

[5] J. Silva, U. Moon, J. Steensgaard, and G. C. Temes, “Wideband low-distortion delta-sigma ADC
topology,” Electronics Letters , June 2001, vol. 37, no. 12, pp. 737-738.

SIM 2011 — 26" South Symposium on Microelectronics 153

Efficient Processing Element Unit for MPSoC NoC-based

2paulo Santos, !Jonathan Martinelli, !Cezar Reinbrecht,
'Débora Matos, 'Altamiro Susin
paulo-junior@uergs.edu.br, {jrmartinelli, cezar.reinbrecht, debora.matos} @inf.ufrgs.br,
altamiro.susin@ufrgs.br.

! Universidade Federal do Rio Grande do Sul
2 Universidade Estadual do Rio Grande do Sul

Abstract

The evolution of the VLSI technologies allowed the development of more dense integrated circuits and
complex designs resulting in Multi Processors Systems on Chip (MPSoCs). An MPSoC may consist of several
of Intellectual Properties (IP) such as CPU or DSP cores, high-bandwidth 1/O, memory subsystem, etc. This
great number of resources became this architecture very popular in embedded systems. On the other hand, it
offers several challenges to integrate these elements. The solution widely accepted and established for the
interconnection is the Network on Chip (NoC). However, NoC imply in design the interface for each IP, where
in many cases results in wrappers. In this context, we propose a generic processing element capable to supply
all requirements of the several applications and allow better time to market, reducing the design effort. The
main goal of this paper is to present the concept and the proposed design of a generic interface for processing
element in order to compose an MPSoC NoC-based.

1. Introduction

The advance of deep-submicron technology and the increasing in the microelectronic systems complexity
allowed the development of SoC designs. This idea allows building in a single integrated circuit a complete
computational system, with a higher number of functionalities and complexity level [1, 2]. Furthermore, the
trend for the processing parallel brought the concept of Multi-Processor Systems on Chip. This new paradigm
may comprehend a great heterogeneity of devices, like RISC, VLIW, DSP and ASIP processors or even
dedicated IPs. On the other hand, the intercommunication method becomes a new challenge, due to the
increasing of nodes in the communication. In the last years, the common solution adopted for this issue is the
network on chip.

In a near future, the systems will be composed by hundreds of IPs and the performance required for these
systems will be elevated. As the NoCs allow connecting several and heterogeneous IPs [3, 4], they have been
considered a scalable solution [1, 2] and for this reason, many related proposals have been presented in the
literature. However, in order to integrate any IP with a NoC it is necessary to design wrappers and considering
hundreds of heterogeneous IPs, the design costs could be prohibitive. Therefore, the processing elements have
to be generic and customizable enough to “plug” in any design and “play” any application supporting its
requirements, with minimum rework. Our idea is that this generality can be achieved with an architecture that
provides a generic NI (Network Interface) and IP management unit where all communication issues are hidden
from application.

In the state of the art, it can be observed several proposals of network interfaces to allow the integration
between IP and Network on Chip. Nevertheless, these ideas use the concept of wrapper or resources sharing,
increasing area or decreasing performance. Our proposal differs from the others because our goal is to avoid
wrappers for each new IP architecture, using an element common in any IP, the memory.

This paper is organized as follows. In section 2 we present some related works. The proposed interface
architecture is described in section 3. The tests and results are showed in section 4 and the conclusions at
section 5.

2. Related Works

Singh [5] proposed an architecture of a network interface in which most of the interfacing functionality is
incorporated in the generic part of the interface. In this manner, different cores can be attached in the nodes of a
NoC with minimum redesign. This proposal guarantees a plug and play feature with a generic logic allied with
specific wrappers. The generic logic is responsible for making transparent the network protocol and packet
managing, and the specific wrapper is responsible to adapt the generic protocol to a specific IP interface.
However, this design effort is concentrated in the wrapper development, which is a weakness point of the
proposal since, as the wrapper is embedded to NI, it is always used to connect a module even when it has a
simple interface.

154 SIM 2011 — 26" South Symposium on Microelectronics

Another approach of network interface was presented in [6], where the authors proposed techniques to share
hardware resources to save area. Its network interface uses the Open Core Protocol (OCP) integrated on the IPs.
The trade-off is a timing cost once an application with hard communication rates requirements could imply in
loss of performance and possible functional problems. It can occur because more than one IP can be connected
in a single NI and thus, it requires the use of others control circuits like an arbiter to define the IP that can send
a data word to the interface.

Following the idea of sharing resources, in [7] the authors proposed a network interface with shared-memory
abstraction including a transaction based protocol to connect the IPs. The proposed NI configuration requires a
very complex logic, which implies in development time. Besides, IPs with simplified protocols needs a great
effort to connect in this architecture.

3. Generic Processing Element Architecture

Generic Processing Element (GPE) is a conceptual architecture which offers mechanisms to allow a
suitable integration between IPs, even when they are heterogeneous. With the aim to compose a GPE, four
basic modules are needed: an IP, a local memory, a network interface and an integrator manager.

In order to provide an appropriate communication with different IPs, it was developed an integrator
manager based in memory mapping interface. This module is called as MMI (Memory Mapped Interface) and
can be used for different processing elements, since the majority of them use external local memories.

3.1. Proposed Architecture Design

Fig.1 shows a blocks diagram with the structure of the proposed processing element (PE) with the MMI
used as interface between NI and IP.

T
7

NI

A /
___ Processing Element Unit

Fig.1: Proposed processing element with the NI connected by a general purpose processor by the MMI

As shown in fig.1, the MMI manages the communication inside the PE Unit (IP, RAM and NI), selecting
and activating the module responsible by transferring data according to the need of the system. MMI manages
the access to RAM by the data bus and by the address bus (in this case, are considered separated buses) as well
as the control flags used for the reading and writing in the RAM.

Considering that the RAM will be accessed directly by the MMI and the IP, and that the NI will
communicate only with the MMI, the memory mapped interface will be able to read and write in the RAM. In
this case, the access to RAM will be made by the MMI only for reading and writing, according to the direction
of the communication. To avoid conflicts, the MMI uses a hold enable in the IP.

3.1.1. Memory-mapped

With the purpose to save resources, the implementation and the transfer control between IP and MMI were
made using a memory mapping where some addresses were reserved. This memory mapping allows the
communication managing to be made by software, as shown in fig.2.

O=EFFFFFFF 0xE006 001E | ADDR_SOURCE_NI_TP
0xE006001A | ADDR_TAG NI_IP
0xE0060016 | ADDR_DATA_NI_IP
VPE PERIPHERALS 0xE0060012 | ADDR_FLAG_WRITE
0xE006 0008 | ADDR_TARGET_IP NI

0xE0060004 [ADDR_DATA IP NI
0xEQ06 0000 [ADDR_FLAG READ

0xE000 0000

Fig.2: Reserved Addresses on IP for the control used by the MMI.

The reserved addresses correspond to the addresses available in VPB (VLSI Peripheral Bus) area in the IP
core. As there are several addresses for sending and receiving of data, the defined protocol uses addresses for
data, for target/source information and for the control flags.

The developed MMI presents two internal modules, MMI_IP NI and MMI_NI_IP: one responsible to
management the data for IP to NI and the other, in the contrary direction: for NI to IP, respectively. The top
module is responsible for managing the multiplexers and demultiplexers changing the addresses and the RAM
signal bus.

SIM 2011 — 26" South Symposium on Microelectronics 155

3.1.2. IP to NI module

The monitoring of the IP address bus is made to define the direction of the communication. When the IP
writes at address ADDR_FLAG READ, the MMI _IP_NI module is informed that a new data is available. In
this case, MMI IP NI module reads the data and target from addresses ADDR DATA IP NI and
ADDR TARGET IP_NI. The module checks if there is some available NI FIFO slot and this information is
indicate by FIFO_FULL control. When some slot in the FIFO is available, the MMI_IP NI writes the data in
the FIFO and update the ADDR _FLAG READ of the RAM, informing to IP that it can write another data.
While the MMI _IP_NI module communicates with the NI or waits for the available NI FIFOs, the RAM is
available for the use of the IP, and while ADDR FLAG READ was not checked updated by the MMI, the IP
will not write a new data. In fig.3a the flowchart of the MMI _IP_NI is showed.

3.1.3. NI to IP module

When the monitoring recognizes the ADDR FLAG WRITE address in the address bus, the module
MMI NI IP identifies that the IP is waiting for a new data from NI. However, there is data available on the NI
to be written on the IP. In this case, the MMI NI IP reads the data, the source and the tag from NI and it writes
this information in the ADDR DATA NI IP, ADDR SOURCE NI IP and ADDR TAG NI IP addresses,
respectively. Once the MMI NI [P writes the data, the MMI NI IP writes in the ADDR FLAG WRITE
address indicating to the IP that new data is available. Otherwise, the RAM remains available to the IP while
the MMI_NI_IP reads data from NI.

When the MMI modules access the RAM at any time, the IP is put in hold mode. When the RAM is
returned to IP, it resumes the execution of instructions without RAM data loss. The use of the sold mode is an
important step for the MMI, since the RAM can only be written or read by a module at a time. A solution for
that problem would be to use of a Dual Port RAM. Although the use of Dual Port RAM would avoid the use of
hold mode, it would increase the area, which is not the focus in this work. The flowchart of MMI NI IP as
described above is showed in fig.3b.

el (smmr

o IP = Normal Mode / { IP = Normal Mode

NO |

_—ADDR_FLAG_READ = 0xE0060000 ~—— ADDR_FLAG_WRITE = 0xEQ060012 ~——— __

and —
. RAM_WR_EN =1 o

e YES
vES k

N e NO
in = read_ram (ADDR_DATA_IP. u)f < NI_NEW_| 1
1F = Hold Mode |
| YES

1P = Hold source_in = NI_SOURCE ’(
tag_in = NI_TAG

write_ram (ADDR_DA'I’A NI |_IP) = data_in f{

= Hold Mod .'

/&rgu_m = ead._ram (ADDR_TARGET_IP_ u}/ / data_in = NI_DATA i

d

IP = Normal Mode /

/«iu_r-m (ADDR_SOURCE_NI_IP) = source_in/
IP = Hold Mode /

|_FIFO = target & data_i m
IP = Normal Mode "“"" 0 (UDRTSOURCETNTIE) Seciice m.f
DD| ;ue oxF | write_ram (ADDR_FLAG_WRITE) = OxF
te | _
/MI e %-E’old Moﬁl:m' NI_READY_DATA =1
A B 1P = Hoid Mode

|
Fig.3: a) Flowchart of the MMI IP NI. b) Flowchart of the MMI_ NI [P

4. Experimental Results

4.1. Setup Description

The experiment consists of an MPSoC running an application, where it contains four PE interconnected
through a NoC, as shown in fig.4.

Fig.4: Tested system - MPSoC with NoC used on tested system

156 SIM 2011 — 26" South Symposium on Microelectronics

The PE consists of an IP, a RAM memory module, an MMI and an NI as shown in fig. 1. The IP used is an
ARMT7TDMI core with ROM memory. The RAM is modeled with a register bank. The NoC used is the SOCIN
NoC [8]. The NI used is a generic network interface [9] that translates IP data to NoC protocol and vice-versa.
This experiment was implemented in VHDL and simulated using the Modelsim simulator. In addition, this
design was synthesized for standard cells in a 65nm technology using Cadence Synthesis tools.

4.2. Experiment Description

The application consists in a multiplication between two square matrices 3x3, whose elements are integers.
The first matrix has each column distributed among the PE1, PE2 and PE3. The second matrix was fully
initiated in PE4. The algorithm used was simpler algorithm known, multiplication and summing between the
row elements of the first matrix and the column elements of the second matrix.

The PE4 starts forwarding the elements of its column to PEl, PE2 and PE3, which performs the
multiplications and sums. After these calculations, the PEs returns the results to PE4. All data are 32 bits and
the links inside of the PE are 32 bits too. To maintain a 32bits data and instructions, the compiler and the IP
ARM has the Thumb mode disabled.

For comparison, a matrix multiplication program was written using the same algorithm and same matrices
and run on a single ARM core. In the tab.1, a comparison with the single core and quad-core with NoC is
shown.

Tab.1 — Comparison between single core and multi core.

DESIGN Module Latency (ns) Area (um?) Power @100MHz (mW)
Single Core ARM 11495 40731 1.553
ARM 40731 1.553
MMI 933 0.05
. NI 934 0.06
Multi-Core NoC GPE 468445 42508 1562
NOC 15733 1.433
MPSoC 186125 7.689

5. Conclusions

In this work we have presented a proposal of a PE unit. We have run a matrix multiplication using four
nodes connected in a mesh NoC, validating the proposal. However, a single 3x3 matrix multiplication is not the
proper application to demonstrate the potentiality of the parallelism of this system. Hence, the costs of
communication latency through a NoC were higher than the execution in a single core, shown in Tab 1. The
GPE implemented has 4.5% increase in area and only 0,7% increase in power consumption at 100MHz
compared with the IP, which means a low cost for a mechanism that enables a construction of a generic
MPSoC.

6. References

[1] Benini L. and De Micheli G. “Powering Networks on Chips”. International Symposium on Systems
Synthesis, Montreal, pp. 33-38, 2001.

[2] Kumar, S. et al. “A Network-on-Chip Architecture and Design Methodology”. Symposium on Very Large
Integration Scale, pp. 117-124, 2002.

[3] Benini L. and De Micheli G. “Networks on Chips: a New SoC Paradigm”, IEEE Computer, pp. 70-78,
2002.

[4] Guerrier P and Greiner, A. “A Generic Architecture for On-Chip Packet-Switched Interconnections”.
Design Automation and Test in Europe - DATE, pp. 250-256, 2000.

[5] Singh S. et al. “Generic Network Interfaces for Plug and Play NoC Based Architecture”. ARC, pp. 287-
298, 2006.

[6] Ferrante, A., et al. “Network Interface Sharing Techniques for Area Optimized NoC Architecture”.
EUROMICRO Conference on Digital System Design Architectures, pp. 10-17, 2008.

[7] Radulescu, A. et al. “An Efficient On-Chip Network Interface Offering Guaranteed Services, Shared-
Memory Abstraction, and Flexible Network Configuration”. Design, Automation, and Test in Europe —
DATE, pp. 20878 — 29883, 2004.

[8] Zeferino, C. “Redes-em-Chip: Arquiteturas e Modelos para Avaliagdo e Area e Desempenho”. 2003. Tese
(Doutorado em Ciéncia da Computagdo) — Instituto de Informatica, UFRGS, Porto Alegre.

Matos, D. “Interfaces Parametrizaveis para Aplicagdes Interconectadas por uma Rede-em-Chip”. 2010.
Dissertacao (Mestrado em Ciéncia da Computacdo) — Instituto de Informatica, UFRGS, Porto Alegre.

SIM 2011 — 26" South Symposium on Microelectronics 157

DIGITAL DESIGN AND
EMBEDDED SYSTEMS

158 SIM 2011 — 26" South Symposium on Microelectronics

SIM 2011 — 26" South Symposium on Microelectronics 159

Design and Verification of a Layer-2 Ethernet MAC Classification Engine
for a Gigabit Ethernet Switch

Jorge Tonfat, Ricardo Reis
jorgetonfat@ieee.org, reis@inf.ufrgs.br

Grupo de Microeletronica (GME) - PGMICRO - UFRGS, Porto Alegre, RS, Brasil

Abstract

This work presents the design and verification of the main block of a Gigabit Ethernet switch for an ASIC
based on the NetFPGA platform [1]. The main function of the Layer-2 classification engine is to forward
Ethernet frames to their corresponding output ports. To accomplish this task the block stores the source MAC
address from frames in a SRAM memory and associates it to one of the input ports. This classification engine
uses a hashing scheme that has been proven to be effective in terms of performance and implementation costs.
It can lookup constantly 62.5 million frames per second, which is enough to work at wire-speed rate in a 42-
port Gigabit switch. The main challenge was to achieve wire-speed rate during the learning process using
external SRAM memory. This means that the bandwidth will not be reduced when new flows appear. This block
was synthesized with an 180nm process and verified using System Verilog. A constrained random stimulus
approach is used in a layered testbench environment with self-checking capability.

1. Introduction

Ethernet is the most popular layer-2(L2) protocol (data link layer according to the OSI model). It is widely
used in Local Area Networks or LANs and also in Metropolitan Area Networks or MANS. Its popularity is
mainly due to the low cost and high performance characteristics and also its fast standardizations: 10 Mbps in
1983, 100 Mbps in 1995, 1 Gbps in 1998, and 10 Gbps in 2002.

At the beginning, LANs were designed using one shared communication channel. During late 80s and early
90s, two main factors changed the way LANs were designed [2]: the LAN topology that change to a structured
wiring system using central hubs and the improvement of computing systems and applications, which exceed
the capacity of shared LANSs, limiting the overall performance.

These factors together with the advances in microelectronics technology, allow the development of LAN
switches that use the wiring structure already installed to create a micro segmented network. These changes
have the following advantages: first, the possibility to eliminate collisions, if the full-duplex operation mode is
used and the fact that each device has dedicated bandwidth and independent data rate.

Gigabit Ethernet switches are deployed in different kind of scenarios. Depending of it, some characteristics
are different such as the lookup table size. This work focuses on scenarios where the L2 table size is large
(more than 100k entries) like in an enterprise core. In the present work, we propose a layer-2 classification
engine for a Gigabit Ethernet Switch. This paper is organized as follows: Section 2 presents a description of the
NetFPGA Platform. Section 3 presents related previous works. Section 4 describes the design and
implementation of our L2 classification engine. Section 5 presents the verification methodology. Section 6
shows the results for an ASIC implementation, and in Section 7 the conclusions and future work are presented.

2. The NetFPGA Platform

The NetFPGA platform [1] was developed by a research group at Stanford to enable fast prototyping of
networking hardware. It basically contains an FPGA, four 1GigE port and buffer memory. The core clock of the
board runs at 125 MHz. NetFPGA offers a basic hardware modular structure implemented in the FPGA as
shown in Figure 1. Frames inside the data pipeline have their own header format as shown in Figure 2. The
NetFPGA header contains information about the frame being processed such as frame size, source port and the
destination port that is calculated by the classification engine. New modules can also add more headers. This
pipelined structure allows us the implementation of specific functions on modules and integrate them quickly.

3. L2 Lookup Architectures

The L2 switching task needs three fields from the MAC layer header: the MAC address, the port related to
that address and the VLAN (Virtual LAN) id (if present) for flow identification. This information needs to be
stored in some kind of data structure. Previous works has shown different approaches. Solutions using binary
and ternary CAMs (Content-addressable memory) were used but the cost per bit and power consumption as
shown in [3] make them unviable for switches deployed at the enterprise core or metro edge where the lookup
table’s size is around the hundreds of thousands of entries. Another proposal could be the use of a software-
only switch. Tests done in [4] confirm that the switching task needs to be implemented in hardware. One
popular solution is the use of hashing functions to store MAC addresses in a SRAM. It uses simple hardware

160 SIM 2011 — 26" South Symposium on Microelectronics

compared with others, but has some disadvantages like hash collisions and a decreased table capacity. To deal
with hash collisions, the table is organized in buckets that contain multiple entries. Since buckets are smaller
than the table, the lookup is accelerated. Carefully chosen hash functions with relatively uniform distribution of
output values (memory indexes) for an arbitrary set of input values (MAC addresses) will reduce the hash
collisions and improve the table capacity as well [5]. This work uses a hashing scheme using the MAC address
and the VLAN id to generate indexes to the SRAM.

| --=-- Register Bus A
—— Packet Bus Register 1/0 over PCI

¥ ,Ctrl Bus, Data Bus :
NetFPGA 17 0:63 g
_______________________ Register Bus | _____ OxFF | Dest Port One-Hot Word Length Src Port Binary Byte Length
i Wiy E 0xXX Other Module Header
f 1 0xYY Other Module Header
- et > .. -fmt} :
Module, Module, | ... | Module, 0x00 First Packet Word
DMA DMA 0x00 Second Packet Word
from Packet Packet Packet to \ T T
Hiost R Processing Processing Processing host i : 3 ;
—_— RxQ TxQ ' . =
_, —’:D:D]]]}" e __’:D:I:I_— | 5 | 0x40 | o e | Last Byte I Example last word with two valid bytes
From To b
Ethernet thernet : ;
Fig. 1 — The NetFPGA Framework. [1]. Fig. 2 — The NetFPGA packet format. [1]

4. L2 Classification Engine Architecture

The L2 classification engine is the block that implements the main function in a Gigabit Ethernet switch,
the frame forwarding and learning, and is part of the data path as shown in Figure 3. It uses the MAC
destination address (MACDA) and the MAC source address (MACSA) of frames to forward them to their
proper destination port. In order to achieve this task, it will be needed to create a table entry with the MACSA
and the input port in a process called learning. When the MACDA is not found on the table (miss), the frame
will be sent to all ports except the source port (flooding). According to the IEEE 802.1D standard [6], it is
necessary to age out all the entries that are not accessed for a programmable amount of time; this is not a
priority task and should not interrupt the main learning/forwarding process. VLAN tags should also be
considered during the frame learning/forwarding to be compliant with the IEEE 802.1Q [7] standard.

VLAN
tagged VLAN

FOR AN 8-PORT SWITCH: members members
110 . .
T 72 bit 8 bits | 8 bits
1 s
1
JNeur | Zfé%; || rrave | [ou recorved| 16 bits [16bits | 16bits | 16 bits
m VLAN 4095| VLAN 4094 | VLAN 4093 | VLAN 4092
T 1024
% addresses
Resomeg] 16Dits [16bits [16bits | 16 bits
VLAN3 | VLAN2 | VLAN1 | VLANO
Fig. 3 — Gigabit Ethernet switch diagram Fig. 4 — VLAN information memory format.

block based on the NetFPGA platform.

Every frame needs at least two read accesses from the lookup table, one for the MACDA (forwarding) and
another for the MACSA (learning). If the MACSA is not found or the source port associated is different, then a
third access (write) should be necessary to update the input port number or create a new entry in the table. In
our design, four read and two write accesses are needed because a two-entry bucket mechanism is used, so each
bucket is stored in two consecutives memory addresses. One extra read access is needed when a VLAN frame
is processed. In the same SRAM where the lookup table is stored, VLAN information is stored as shown in
Figure 4. The 4096 VLANSs information are mapped directly into the SRAM, four ids for each memory entry.
In that Figure is shown the organization for an 8-Gigabit port switch as an example. The 16 bits assigned for
each VLAN id are divided in two groups: the tagged members and only members. It is important to know if a
port is a tagged member or not. Tagged members should pass the VLAN tag in the frame header. This
information is dispatched to the output ports module inserted into the NetFPGA header showed in Figure 2.

SIM 2011 — 26" South Symposium on Microelectronics 161

The lookup table is stored in a 72-bit wide SRAM. Each table entry is composed of a MAC address (48-
bit), the input port(8-bit), the VLAN id(12-bit), and three status bits. These status bits are: the valid bit, the
static bit and the age bit. When a new MAC address is learned, the valid and the age bit are set. If this MAC
address is found later, the age bit is refreshed. In the aging process, the age bit of each valid entry will be

Cycle 0 Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10 Cycle 11 Cycle 12 Cycle 13 Cycle 14 Cycle 15
Fo Fo FO RD FO RD FORD FO RD FO RD Fo FOWR FOWR Fo Fo
REQ REQ REQ REQ REQ REQ REQ
F1WR F1WR F1RD F1RD F1RD F1RD F1RD
| REQ REQ F1 F1 F1 F1 REQ REQ REQ REQ REQ 7l

cleared. If the age bit is not set, then the valid bit is cleared and the entry is aged out. The aging process will not
modify the entries with the static bit set. This bit denotes an entry programmed by external access.

Fig. 5 — 16 cycles SRAM arbiter FSM, showing only the memory requests.

EXTERNAL
ACCESS ENVIRONMENT

P — 71} — CONFIG NETFPGA SYSTEM LOG A,D

FRAME General Detailed
DATA BUS HEADER ‘ GENERATOR constraints constraints Report

AGENT/]
TRANSACTOR SCOREBOARD CLECRER

DRIVER

i PARSER

EXACT |

MATCH& |
LEARNING

|

‘ I

\ -

‘ REGISTER BUS | . OUTPUT REGISTER BUS
| ¥ 7| LOOKUP REGS

| |

\

\

\

MONITOR

[
RESULT |
FIFO | |

EUGEED L ourur —T-yDATA . > INTERFACE ouT INTERFAGE
LOOKUP FSM 5 ReelsTER [FUNCTIONAL
L2 CLAES’\‘S(;‘F&%AT\ON | INTERFACE COVERAGE
77777777777777777 - CLK GEN T - coverage groups
Fig. 6 — L2 classification engine block diagram. Fig. 7 — Classification Engine Testbench architecture.

The block diagram is presented in Figure 6. The header parser module will extract the MACSA, MACDA
and the VLAN id from the frame and send this information to the Exact Match and Learning block. The frame
will wait for the lookup using the input FIFO as a buffer. Considering the worst case (MACSA not found), the
module have a constant latency of 12 clock cycles. This classification engine should be able to support 42 GigE
ports at wire-speed or to process 62.5 million frames per second in the worst case. The worst case scenario
appears when the switch deals with minimum frame length (64 bytes), minimum interframe gap and negligible
propagation delays as explained in [2]. Considering this, a frame should be processed at least in 16 ns (672 ns
for a single GigE port) or 8 clock cycles for a 500 MHz clock. To achieve this goal, this block needs to be
tightly-coupled with the external SRAM memory controller. Considering that for each frame is needed 12
cycles (including read and write requests, header data fetch, hash mac addresses), the FSM from both modules
(SRAM arbiter and Exact Match & Learning) have 16 cycles and are able to process 2 frames. Figure 5 shows
how two frames are processed interleaved, using 14 of the 16 cycles to memory accesses. The two left cycles
are used to external access and for the aging module. Since the SRAM is accessed by three different sources
(the forwarding/learning module, the aging module and the external access through the register bus) an arbiter
is needed. It can accept one request (read or write) per clock cycle and have a latency of five cycles due to the
pipeline structure and the ZBT (zerobus turnaround) SRAM.

5. Verification Methodology

For the verification stage, we use System Verilog and Modelsim to create the testbench environment. The
testbench architecture is better explained in Figure 7.

A testcase have been developed with particular constraints that will limit the random stimulus generation.
With these constraints the generator will create a programmable amount of random frames that will be inserted
in the DUT (Design under Test). The agent or transactor will take these frames (described in a high level
variable) and will transform them into signals (bytes) and will send them through the interface (driver). The
scoreboard will predict the expected result from each block and this result will be used by the checker to
compare them with the received data from the DUT. During this process tens of bugs were found in the design
and corrected. It is always preferable that the testbench and the design be designed by different persons; this
will add some redundancy to the interpretation process of the specification.

6. Implementation Results

Table 1 shows a comparison between different classification engines. The work from [8] doesn’t mention
the operation frequency. [9] has better bandwidth results but is important to note that the bandwidth they show
is an average that depends on the number of collisions and the size of the table. There is shown the results for a
64K table. If compared to the results obtained with a 32K table, the bandwidth is reduced by 25% while the
results presented in this work are constant relative to the table size. This module was synthesized with different
table sizes: 4K, 32K, 64K and 128K all of them obtain an operation frequency of 500 MHz and a bandwidth of
42 Gbps.

162 SIM 2011 — 26" South Symposium on Microelectronics

Tab.1 - Comparison with related works.

Solution Op. Freq. (MHz) | Bandwidth (Gbps) | Technology Process
Our 500 42 TSMC 180nm
[10] 125 22 180nm

[8] n/a 10 180nm
[9] 400 103.5 UMC 130nm

7. Conclusions and Future Work

A classification engine for a Gigabit Ethernet switch was presented. The verification stage is very
important to find bugs that will only appear with random stimulus. The random constrained approach is more
time-efficient to reach the coverage goal than other simpler methods such as direct-test.

The architecture presented in this work achieves the necessary throughput for a 42-port GigE. The next
step is to work in order to be able to process layer-3 protocols such as IP. To accomplish this, some sort of
search algorithm should be needed such as LPM (Longest Prefix Match).

8. References

[1] Jad Naous, Glen Gibb, Sara Bolouki, and Nick McKeown, “NetFPGA: reusable router architecture for
experimental research,” in PRESTO '08: Proceedings of the ACM workshop on Programmable routers
for extensible services of tomorrow, New York, NY, USA, 2008, pp.

[2] Rich Seifert and James Edwards, The All-New Switch Book: The Complete Guide to LAN Switching
Technology, Wiley, Hoboken, NJ, 2008.

[3] A.J. McAuley and P. Francis, “Fast routing table lookup using cams,” in INFOCOM ’93. Proceedings.
Twelfth Annual Joint Conference of the IEEE Computer and Communications Societies. Networking:
Foundation for the Future. IEEE, 1993, pp. 1382 —1391 vol 3.

[4] J Luo, J. Pettit, M. Casado, J. Lockwood, and N. McKeown, “Prototyping fast, simple, secure switches
for ethane,” in High-Performance Interconnects, 2007. HOTI 2007. 15th Annual IEEE Symposium on,
22-24 2007, pp. 73 —82.

[5] C. Huntley, G. Antonova, and P. Guinand, “Effect of hash collisions on the performance of lan
switching devices and networks,” in Local Computer Networks, Proceedings 2006 31st IEEE
Conference on, 14-16 2006, pp. 280 —284.

[6] IEEE Std 802.1D-2004, “IEEE standard for local and metropolitan area networks media access control
(MAC) bridges,” p. 269, 2004.

[71 IEEE Std 802.1Q-2005, “IEEE standard for local and metropolitan area networks virtual bridged local
area networks,” p. 285, 2006.

[8] S.M. Mishra, A. Guruprasad, Chun Feng Hu, P.K. Pandey, and Ming Hung, “Wire-speed traffic
management in ethernet switches,” in Circuits and Systems, 2003. ISCAS ’03. Proceedings of the 2003
International Symposium on, 25-28 2003, vol. 2, pp. [I-105 — II-108 vol.2.

[9] V. Papaefstathiou and I. Papaefstathiou, “A hardwareengine for layer-2 classification in low-storage,
ultra high bandwidth environments,” in Design, Automation and Test in Europe, 2006. DATE ’06.
Proceedings, 6-10 2006, vol. 2, pp. 1 —6.

[10] M.V. Lau, S. Shieh, Pei-Feng Wang, B. Smith, D. Lee, J. Chao, B. Shung, and Cheng-Chung Shih,
“Gigabit ethernet switches using a shared buffer architecture,” Communications Magazine, IEEE, vol.
41, no. 12, pp. 76 — 84, dec. 2003.

SIM 2011 — 26" South Symposium on Microelectronics 163

Functional Verification of logic modules for a Gigabit Ethernet Switch

Jorge Tonfat, Gustavo Neuberger, Ricardo Reis
jorgetonfat@ieee.org, {neuberg,reis}@inf.ufrgs.br

Grupo de Microeletronica (GME) - PGMICRO - UFRGS, Porto Alegre, RS, Brasil

Abstract

This work presents the functional verification of logic modules for a Gigabit Ethernet (GigE) Switch for an
ASIC based on the NetFPGA platform. A coverage-driven constrained random stimulus approach is used. It is
implemented in a layered-testbench environment with self-checking capability. This environment implements
the methodology presented by the Verification Methodology Manual (VMM) using SystemVerilog. The main
advantage of this methodology is its reusability. This characteristic enables the development of a common
testbench environment for our modules with minimum changes for each particular module. The four logic
modules presented in this work implement functions of a Gigabit Ethernet switch. The common characteristic of
these circuits is the close dependency between the time and its functionality. These modules need time
information to deal with problems such as rate limiting, quality of service (QoS) or aging lookup tables in
classification engines. As described in the literature, the transaction-level models used to predict the circuit
behavior are time-independent when the implementation details are not relevant. But when time information
influences the circuit functionality, the model needs to replicate the circuit latency to be functionally equivalent.
We propose a simple solution to the synchronization process between the model and the design under
verification (DUV). This solution preserves the main advantage of transaction-level models (faster simulation
time than the RTL model) and generates the result data with the same circuit latency. These features made
possible to run a considerable amount of testcases that helps to find and correct bugs in the circuit with a high
confidence measured by the functional and code coverage results.

1. Introduction

The improvement in the semiconductor manufacturing processes and design methodologies led to the
possibility of bigger and complex digital designs. This scenario along with tighter time-to-market budgets
reduces the possibility of success within the first attempt. To mitigate this situation, industry drives to the
development of new design methodologies such as the reuse of Intellectual Property (IP) cores design. In this
context, the design verification acquires relevant attention from the academic and industrial environments. High
confidence design verification means high quality designs and less circuit functional bugs transferred to the end
user.

Design verification is the process to certify if the design functionality is according to the design
specification. It is the inverse process of design as shown in Figure 1. Two methods are commonly used:
functional and formal verification.

Functional verification or simulation-based verification is the most used technique for industrial
applications. This technique is easy to deal with, but almost always the most resource and “bottleneck” phase of
the design flow. Formal verification methods were also proposed but only applied to low complexity circuits. In
this scenario, few functional verification experiences of communications systems were reported [3]. Most of
them were applied to processors designs [4] [5]. This work presents the functional verification of four modules
of the datapath of a Gigabit Ethernet switch.

This paper is organized as follows: Section II presents a description of the modules verified in this work.
Section III presents the verification environment implemented. Section IV presents the technique used to
synchronize the DUV and the reference model. Section V shows the results from the verification of these
modules, and in Section VI the conclusions and future work are presented.

—---- Register Bus A
—— Packet Bus Register 1/0 over PCI

12

Design Process NetFPGA
Register Bus
—_— T R Master [1
/// ‘-\\\ E E
, |
r A CEEE b Registers |+ [Regsters | ... -p{ Registers }+-
Specification Implementation
N) Module, Module, e Module,
N DMA DMA
~ / from Packet Packet Packet to
~ — o — host Processing Processing Processing host
TTe— - —¥| ixQ TxQ EE—
B H IO e -]
Verification Process From To

Ethernet Ethernet

Fig. 1 — The verification process vs. the design process. [6] Fig. 2 — The NetFPGA Platform modular structure. [1]

164 SIM 2011 — 26" South Symposium on Microelectronics

2. Designs Under Verification

The NetFPGA platform [1] was developed by a research group at Stanford to enable fast prototyping of
networking hardware. NetFPGA offers a basic hardware modular structure implemented in the FPGA as shown
in Figure 2. Due to the modular structure, these modules have the same input/output interface and the same
register interface because they are connected in a ring topology.

The designs chosen to be verified in this work are part of the user datapath of a Gigabit Ethernet switch.
These modules implement the functionality of the switch such as the frame forwarding, frame classifying or
output queuing. These modules are shown in Figure 3. The four modules are functionally verified.

The first of them is the module Input Arbiter. This module decides, based on a scheduler algorithm, which
Rx queue to service next. We propose an improvement from original NetFPGA design changing it from Round-
Robin to Deficit Round Robin. DRR, as described in [7], it provides a credit based quantum per queue that
avoids an unfair behavior between queues. As the old scheduler, this one has a state machine cycling between
each queue. This time, each FIFO has a credit counter, indicating the number of words to be copied.

Instead of serving one packet of each queue, the scheduler server packets as the queue credits allow. The
next one is the module Output Port Lookup. The main function of this module is to forward Ethernet frames to
their corresponding output ports. To accomplish this task the block stores the source MAC address from frames
in a SRAM memory and associates it to one of the input ports. This module uses a hashing scheme to search the
address in the lookup table. A background process erases unused addresses in the lookup table. This process is
done at a programmable time. The frames can be unicast, multicast and broadcast. Due to its implementation,
the time needed to process one frame is not constant. This feature increases the complexity of the reference
model to predict the expected output.

The third module is the Frame Color Marker. This module is part of the QoS mechanism. It should mark
each frame with a color that represents the frame priority. It is based on the following request for comments:
RFC2697, RFC4115 and RFC2698. The last module is the Output Queues. This module looks which output
queue to store the frame in, until the Tx queue is available to accept the frame for transmission.

ENVIRONMENT SYSTEM L0 %D
TEST FUNCTIONAL & CODE
TESTCASES II COVERAGE Report
]]]] CONFIG NETFPGA
FRAME
1 MAC SCENARIO GENERATOR Beneral Detailed
]]]] ™Q constraints | | constraints
Ry 110 CPU HIGH-LEVEL DATA
0 #a INPUT OoTRIT || Frame || outPuT 10 %a FUNCTIONAL
ARBITER LOOKUP MARKER QuUewes | | S N s sy SRR L
REGISTER SYNC
DRIVER DRIVER EVENT MONITOR
COMNAND
]]]] REGISTER
SIGNAL — INTERFACE
DATA OUT
I Duv INTERFACE
CLK GEN
Fig. 3 — The User Datapath diagram block. Fig. 4 — The testbench architecture.

3. The Verification Environment

The testbench environment is shown in Figure 4. This environment is organized in a hierarchical layered
structure. This structure helps to maintain and reuse it with different Designs Under Verification or DUVs. It
was implemented following the recommendations shown in [2]. The following subsections explain the
functionality of each layer in the testbench environment.

3.1. The Signal and Command Layer

The signal layer implements the interface between the testbench and the DUV. Since all modules have the
same interface, these interfaces are shared among all the verification environments. Minimal modifications are
needed to the modules “Input Arbiter” and “Output Queues” because they multiplex and demultiplex
respectively the frames from the Ethernet ports. In the case of the Input Arbiter module, the input interfaces are
expanded to number of input ports of the GigE Switch. And in the case of the Output Queues module, the
output interfaces are also expanded.

The command layer implements the driver and monitor functions. The driver receives high-level data and
breaks into signals that are sent to the DUV through the interfaces. Another driver (register driver) receives the
register configuration of the module and creates the register transactions to configure the DUV. The monitor
implements the complementary function. It receives the signals generated by the DUV and composes a high-
level data that will be used to compare against the results from the reference model.

SIM 2011 — 26" South Symposium on Microelectronics 165

3.2. The Functional Layer

The functional layer implements the scoreboard. In the literature are different definitions for the
scoreboard. In this work the scoreboard includes the reference model, the data structure that holds the results
from the DUV, and the output comparison function. The reference model receives high-level data and computes
the expected output of the circuit. This output is stored in a data structure of results. When the monitor receives
a result generated by the DUV, this will be compared against the results stored from the reference model. If the
comparison succeeds, the circuit produced the expected result; otherwise an error report is generated.

3.3. The Scenario Layer

The scenario layer creates the configuration of each of the modules in the verification environment. This
configuration sets the parameters of the DUV such as aging time in the output lookup module or the data rate in
the Frame Color Marker module. This configuration is also sent to the reference model to compute the expected
output. Based on the parameters created for this testcase, the generator will created constrained random data
(Ethernet frames) that will stimulate the DUV. Depending on the module that is verified, the generator will
create different kind of frames. For example, in the environment created for the Input Arbiter module, the
frames generated have different input ports. In the case of the Output Queues module, the output port field is
more interesting so frames with different output ports are generated.

3.4. The Test Layer

The test layer includes the testcases that will be applied to the DUV. Most of them will be generated
randomly and some directed cases were added such as bad register configurations. These directed cases are
needed to verify the module response under uncommon situations that are possible. This layer will control the
execution of the current simulation and will manage the reports of each of function in the testbench
environment. This layer sets the error tolerance, and classifies the unexpected behavior with different levels of
events. The events are classified into six different categories, starting with the information or verbose events,
going through debug, normal, warning and error events, finishing with fatal events. A maximum number of
errors is defined for each testcase, this feature will let the simulation to continue running in the presence of
errors and will help to find more bugs in the DUV. One fatal event will necessary stop the simulation because
this kind of events makes unviable the execution of the current testcase.

4. The Circuit Reference Model

In this section, the mechanism used to synchronize the reference model with the DUV is presented. When
is mentioned the use of transaction-level models, the tendency is to relate them with the high-level hardware
modeling language SystemC as shown in [8]. In this work all transaction-level models were written in
SystemVerilog. As explained in [9], there is no technical reason for a model written at the same level of
abstraction to run faster if it is described in other language.

In a first approach to model the circuit behavior, a simple transaction-level model was created for each of
the modules. This approach showed that if the latency of the circuit is not taken into account, some expected
results are different from the actual RTL model results. These differences appear because these circuits have a
close relationship between the time and functionality, so the classic reference model cannot be used.

In a second approach the circuit latency was tried to be modeled without changing the transaction-level
characteristic of the reference model. But the complexity and the variety of operation modes in these modules
lead to a complex reference modeling that reduce the reliability of the reference model.

The final approach to model the circuit functionality was to synchronize the computation of the expected
output with some key points (states) in the RTL model. This synchronization was done with one of the features
of the SystemVerilog language. SystemVerilog “Event” objects are used to trigger the reference model
computation when certain conditions are met in the RTL model. The observation of the DUV is done without
modifying the original code of the RTL model. The reference model continues being a simple transaction level
model and the expected result is computed at the same execution time of the RTL model.

5. Verification Results

In table 1 are shown the results from the functional verification of the four modules. The ModelSim 6.6b
simulation tool is used on a server with an Intel Xeon processor @ 2.5 GHz with 32GB of RAM. Some
common characteristics can be extracted such as the high percentage of functional coverage on each module.
These results are mostly due to the specification of constrained random stimulus directed to meet the functional
coverage objective. It is important to mention that the functional coverage defined for each module is
configured according to their respective specifications. The results from the code coverage show that the
testcases could be improved to obtain a higher confidence of the functional verification process.

The most important information is found in the simulation time columns. In the first simulation time
column the reference model is replaced with the same RTL model of the circuit. The second simulation time

166 SIM 2011 — 26" South Symposium on Microelectronics

column shows the time simulation for the proposed reference model with time synchronization with the RTL
model. It is shown a clear run time improvement with an average of 23,37% for this experience. These results
demonstrated that due to transaction-level of the model, the run time is smaller.

Tab.1 - Detailed results from the functional verification of the four modules.

Stimuii Simuiation Time I Simuiaiion Time 2 Funciional Code
Module # TestCases
per testcase (hours) (hours) Coverage (96) Coverage (%)
Input Arbiter 1600 1000 10.28% 8.8 9444 91.70
Output Port Lookup 10000 1000 03.83* 76.66 99.60 90.18
Frame Color Marker 10000 1000 54.8 35.18 99.21 85.71
Cutput Queues 10000 1000 54.68% 48.52 21.74 86.57

* = These values were approximated taking as reference the average run time of 1 testcase repeated 10 times.

6. Conclusions and Future Works

The functional verification of the modules of the datapath of a Gigabit Ethernet switch was presented.
These experiences shown that using classic timeless reference models are not suitable for this kind of circuits
where the time influences in the circuit response. A simple method to synchronize the reference model with the
DUV was proposed. This method maintains the benefits of transaction-level models as well as correctly
predicts the circuit output.

Future improvements to the functional verification process should be the use of a mechanism to eliminate
testcases that do not increase the functional coverage in order to reduce more the simulation run time. Some
solutions are shown in [3] and [10].

7. References

[1] J. Naous, G. Gibb, S. Bolouki, and N. McKeown, “NetFPGA: reusable router architecture for
experimental research,” in PRESTO °'08: Proceedings of the ACM workshop on Programmable routers
for extensible services of tomorrow. New York, NY, USA: ACM, 2008, pp. 1-7.

[2] C. Spear, SystemVerilog for Verification, Second Edition: A Guide to Learning the Testbench Language
Features. Springer Publishing Company, Incorporated, 2008.

[3] M. Strum, W. J. Chau, and E. Romero, “Comparing two testbench methods for hierarchical functional
verification of a bluetooth baseband adaptor,” in Hardware/Software Codesign and System Synthesis,
2005. CODES+ISSS °05. Third IEEE/ACM/IFIP International Conference on, 2005, pp. 327 —332.

[4] Y. Wu, L. Yu, W. Zhuang, and J. Wang, “A coverage-driven constraint random-based functional
verification method of pipeline unit,” in Computer and Information Science, 2009. ICIS 2009. Eighth
IEEE/ACIS International Conference on, 2009, pp. 1049 —1054.

[5] Z. Gu, Z. Yu, B. Shen, and Q. Zhang, “Functional verification methodology of a 32-bit risc
microprocessor,” in Communications, Circuits and Systems and West Sino Expositions, IEEE 2002
International Conference on, 2002.

[6] S. Vasudevan, Effective Functional Verification. Springer, 2006.

[71 M. Shreedhar and G. Varghese, “Efficient fair queuing using deficit round-robin,” Networking,
IEEE/ACM Transactions on, vol. 4, no. 3, pp. 375 =385, Jun. 1996.

[8] M.-K. You, Y.-J. Oh, and G.-Y. Song, “Implementation of a hardware functional verification system
using systemc infrastructure,” in TENCON 2009 - 2009 IEEE Region 10 Conference, 2009, pp. 1 —5.

[9] J. Bergeron, Writing Testbenches using SystemVerilog. Secaucus, NJ, USA: Springer-Verlag New York,
Inc., 2006.

[10] M. Bose, J. Shin, E. Rudnick, T. Dukes, and M. Abadir, “A genetic approach to automatic bias
generation for biased random instruction generation,” in Evolutionary Computation, 2001. Proceedings
of the 2001 Congress on, 2001.

SIM 2011 — 26" South Symposium on Microelectronics 167

A Direct Memory Access Controller (DMAC) IP-Core using the AMBA
AXI protocol

Tlan Correa, 2José Luis Giintzel, 'Aldebaro Klautau and 'Jodio Criséstomo Costa
{ilan, aldebaro, jweyl} @ufpa.br, guntzel @inf.ufsc.br

'Sensors and Embedded Systems Laboratory (LASSE)
Federal University of Para, Belém, Brazil
’Embedded Computing Lab. (LCE)

Federal University of Santa Catarina, Florianépolis, Brazil

Abstract

This work presents the design of a hardware controller that allows a peripheral of an embedded computer
system to directly access the memory, known as direct memory access controller (DMAC). This DMAC is
inspired in the Dalton Project DMAC, also being compatible with the widely used Intel 18237. In order to make
it suitable for current embedded applications, its communication pattern follows the AMBA AXI protocol,
which allows more flexibility such as fewer timing restrictions and data transfer in the system with minimum
CPU load.

1. Introduction

The tremendous advances in integrated circuit fabrication technology have allowed a myriad of new
products that are present in everyday. Most of these products fall into the embedded systems class. Particularly,
personal mobile devices (PMDs), such as smatphones, tablets etc, became very popular, currently responding
for a significant part of the consumer electronics market. New electronic products, mainly PMDs, present very
stringent design requirements in terms of energy consumption, reliability, cost and performance (speed).

Currently, the major challenge in embedded systems design concerns energy efficiency, which corresponds
to achieve the performance required by the application with as low power consumption as possible.
Unfortunately, those are conflicting targets. Thereby, new solutions in terms of hardware, embedded software
or both are greatly demanded, as those presented in [1], [2].

To meet performance requirements of embedded systems, a widely used design technique is the adoption
of blocks that are designed to efficiently perform a particular task or a critical part of a larger algorithm. Those
blocks are generally referred to as Intellectual Property (IP) blocks.

This paper presents the design of an IP block that acts as a direct memory access controller (DMAC). It is
based on the widely used Intel 18237 DMAC [3], as well as on Dalton Project's DMAC [4]. But unlike those
DMACs, ours follows the AMBA AXI [5] protocol, which provides ways to achieve those requirement
aforementioned and is becoming widely used in industry.

As basic design requirement, it was assumed that this DMAC should allow data transfer between a
peripheral and the memory consuming the least amount of CPU cycles possible. The DMAC design is the result
of a partnership in the context of NAMITEC Project [6], involving two research groups, one from the Federal
University of Santa Catarina and another from the Federal University of Para.

2. AMBA AXI overview

The Advanced Microcontroller Bus Architecture (AMBA) was developed by ARM Ltd in 1996 and has
several versions. In 2003 a new AMBA with many features was released, looking for achieving better
performance. In this new version there are five communication channels which are defined as: Read address
channel, Write address channel, Read data channel, Write data channel and Write response channel. The
channels Read/Write address channel carry information needed to begin a transfer, Read/Write data channel
carry data after handshake in any address channel and Write response channel is used with Write data channel
to indicate how a write operation ended or whether there was an error during handshake in a transfer or address
channel.

The AMBA AXI architecture was conceived to allow only two devices to be directly connected. In a given
transfer, one device is the "Master", while the other is the "Slave". Since in the DMAC there might exist
various devices, an "interconnect block" must be used, as the one available from ARM [7]. The topology of the
interconnect block is such that for each Master there is a Slave, and for each Slave there is a Master (shown in
Fig. 1). Hence, the interconnect block acts as a data multiplexer, allowing a Master to connect with any other
Slave by using the information provided through Read or Write address channel [7].

A transfer is always started by a Master. Initially, it releases control information in Read or Write address
channel, such as word length, number of words and addresses. After control information has been transferred

168 SIM 2011 — 26" South Symposium on Microelectronics

(and Slaves have answered), data transfer starts through Write or Read data channel. Finally, in the case of
write operation the response is sent by Write response channel, from Slave to Master.

In order to allow an energy-efficient operation, in this work the simplest AXI protocol was adopted, which
only manages the handshaking and data transfer as specified in version two. However, may be interesting to
add some of the features of newer versions, (mainly from version four), whenever they contribute to save
power.

Master 0 Master 1 Master 2 Master 3

Slave interface 0 Slave interface 1 Slave interface 2 Slave interface 3

AXl interconnect (Exampledx5)

Master interface 0 Master interface 1 Master interface 2 Master interface 3 Master interface 4

Slave 0 Slave 1 Slave 2 Slave 3 Slave 4

Fig. 1 — Interconnect block (taken from [7]).

3. Inside the controller

The direct memory access controller (DMAC) acts as a bridge, where it receives an amount of data, stores
the data in its internal buffer and forwards the data to the destination. This operation is repeated until all data
has been transferred. The DMAC also handles the priority between all devices requesting memory access.

For the operation to be performed the DMAC should have a set of components that assists it in the job (e.g.
Registers, buffers, multiplexers, etc), in addition to the interfaces of the protocol, two Masters and a Slave. Fig.
2 shows the internal organization of the designed DMAC.

These components keep and forward information concerning transfer direction, number of words to be
transferred, size of each word, priority of a transfer, which device will transfer, temporary information about
current transfer and a memory to store the data to be forwarded.

Fig. 2 shows the set of components that performs all data manipulation inside the DMAC. This set consists
of simple components, what makes this controller less power hungry, causing less impact in the overall system
consumption. Registers, multiplexers, comparators, a buffer and adders (not shown) compose its datapath. The
datapath is coordinated by the control block. The DMAC components are described in the following sub-
sections.

M D
E E
Vv
M| PN
O - ~ l
C

R
y E
S
D
E
Vv
¢ S
bl - PN
b /

U
C
P
U

<—> BIDIRECTIONAL CONTROL
——> UNIDIRECTIONAL DATA
<> BOTH

Fig. 2 — DMAC internal structure and its interfaces to the system.

3.1. Registers

The registers store information coming from CPU, information that CPU should read to know which
device will transfer, temporary information generated performing the transfer and priority control.

SIM 2011 — 26" South Symposium on Microelectronics 169

Information coming from CPU corresponds to the direction of transfer, number of words to be transferred
and addresses.

3.2. Multiplexers

A DMA transfer can occur from memory to a device, from device to memory or from memory to memory.
In the first type of transfer the device is referred to as Receiver, whereas in the second type of transfer, it is
referred to as the Provider.

In each transfer the DMAC reads a block of words from the Provider and forwards to the Receiver. To
properly accomplish this, extern signal should be selected among those signals coming from memory or from
devices. This is the role of multiplexers: they generate internal signal from external signals, and thereby the
control block deals only with internal signals, which make its design easy. For instance, in the case of a transfer
operation from memory to a device, the controller generates control information concerning Read address
channel connected to memory and waits the response coming from it. After memory response, it starts the
transfer putting words on Read data channel, thus informing the controller that data is on this channel by
selecting its signals through the multiplexers. After internal buffer is full the controller generates signals on
Write address channel connected to device and starts forwarding the buffer contents. Such operation is similar
to the first transfer previously described.

3.3. Buffer

This component provides a way to store a block of words and then forwards when it is full. It avoids
excessive handshakes.

34. Control block

This component provides the control signals to the datapath, being highly dependent on how datapath
components are organized. The control block consists of two state machines: the "priority machine" and the
"transfer machine". The former manages priority between devices and controls the beginning of the operation,
whereas the latter manages internal signals used to control the datapath and external signals, used in
interruptions and in the AXI protocol. Fig. 3 depicts these state machines.

(a) (b)
Fig. 3 — State machines of DMAC control block: priority machine (a) and transfer machine (b).

The priority machine (Fig. 3 (a)) controls priority of accessing memory for two or more devices (it can be
casily adapted for more devices). While there is no request on interruption interface, it stays in the NOP state.
Whenever there is a request the machine goes either to state DO or D1, depending on the device requesting
access. In DO and D1 a signal is generated and the transfer machine (Fig. 3 (b)) starts its operation.

The transfer machine generates control signals to the datapath and externals signals. It performs four tasks:
waits request (IDLE), waits for permission from the CPU (S0), read data from the Provider and write data to the
Receiver. While waiting for request, the transfer machine is basically waiting for the signal coming from the
priority machine. This signal changes its state from IDLE to SO. In SO it writes data from the CPU in its internal
register (information about transfer) and waits for the signal from CPU that indicates that the bus is free. In S1,
S2 and S3 the controller reads data from the Provider and writes these data to the Receiver in S4, S5 and S6.

170 SIM 2011 — 26" South Symposium on Microelectronics

These states are triggered by signals of AXI (they are properly selected on the multiplexers). They generate
output signal of AXI too. For instance, in a read operation from memory, S1, S2 and S3 generate signals on
Read address channel and Read data channel. In the second part of the transfer, the controller forwards the data
using Write address channel, Write data channel and Write Response channel.

4. DMA operation

This section presents a simplified description of the DMAC operation when two devices disp0 and displ
request a transfer at the same time, supposing that device disp0 has higher priority and therefore, will transfer
first. In this examples memory is the Provider and a device is the Receiver.

Initially, the DMAC waits for request and the two state machines are in NOP and IDLE states,
respectively. Then, devices disp0 and displ request a transfer at the same time. The priority machine goes to
state DO, writes on proper register which device should transfer and generates a signal that makes the operation
machine goes from IDLE to SO.

In SO the DMAC interrupts the CPU and the signals coming from Slave interface connected to CPU are
selected. The CPU reads some internal registers and with these data writes on other register information about
the transfer. After that, it releases a signal indicating that the bus is free and the operation machine goes to S1.

In S1 the Read address channel of Master connected to Provider is used. When Provider is complete it
sends a signal and the transfer machine progresses to S2. In S2 Read data channel is used to transfer data, with
each received data goes to S3, stores data, and verifies if buffer is full. If the buffer is not full, the machine
proceeds to S2. Else, it goes to S4.

S4 and S5 are similar to S2 and S3, respectively, except that the controller writes using Write address
channel and Write data channel. S6 verifies if all data has been transferred. If not, the machine goes to S2. Else,
it goes to IDLE states.. State S6 also verifies the Write response channel, looking for errors.

5. Synthesis Results

In order to validate the DMAC architecture, its datapath was described in VHDL and synthesized for
Stratix II and Stratix III Altera FPGAs by using Quartus II software. We estimate that the impact of the control
block on the DMAC performance and FPGA resources is not as relevant as that of the datapath.

The obtained results, in terms of resources and critical delay, are showed in Table 1. The small difference
of delay for these FPGA families may indicate that the DMAC performance is bounded by the internal FPGA
wire connections and by capacitive load represented by the chip pads. Therefore, for a more accurate
evaluation, an ASIC synthesis is demanded.

Table 1. Synthesis results of DMAC datapath for Altera FPGAs

family/device # of ALUTs # of flip-flops logest delay (ns)
Stratix I - EP2S15F484C4 269 573 9.296
stratix 111 - EP3SE50F484C4 268 573 9.172

6. Conclusion

This paper presented the design of an AMBA AXI based direct memory access controller (DMAC). The
internal structure of DMAC was showed, highlighting the simplicity of design which reduces power
consumption, a critical subject in embedded systems. The DMAC operation also allows for CPU time savings,
due to the small number of cycles for preparing each transfer. A device can be easily adapted to the designed
DMAC because AMBA AXI does not have hard timing constraints. The DMAC was designed in such a way
that the number of devices can be easily expanded.

The compatibility with commercial IPs and systems is ensured by the use of AMBA AXI protocol.
Although such protocol requires a significant number of signals, it is not a relevant problem since the DMAC is
to be used in systems-on-a-chip (SoCs).

The DMAC is currently being described in VHDL. For the final version of this paper, we intend to add
synthesis results targeting Altera FPGA devices.

7. References

[1] Mutlu, O.; Hyesoon Kim; Patt, Y.N.; "Address-Value Delta (AVD) Prediction: A Hardware Technique
for Efficiently Parallelizing Dependent Cache Misses," Computers, IEEE Transactions on, vol.55, no.12,
pp.1491-1508, Dec. 2006.

[2] Jonmes, R.B.; Allan, V.H.; , "Software pipelining: a comparison and improvement," Microprogramming
and Microarchitecture. Micro 23. Proceedings of the 23rd Annual Workshop and Symposium.
Workshop on, pp.46-56, 27-29 Nov 1990.

SIM 2011 — 26" South Symposium on Microelectronics 171

(3]
[4]
[3]
(6]

(7]

8237A High Performance Programmable DMA Controller Datasheet, Intel Corporation, 1993.
“The UCR Dalton Project - IP-Based Embedded System Design”, 2010; http://www.cs.ucr.edu/~dalton/.
AMBA AXI Protocol Specification ver 2.0, ARM Ltd., 2003.

“Instituto Nacional de Ciéncia e Tecnologia de Sistemas Micro e Nanoeletronicos”, 2010;
http://namitec.cti.gov.br/.

PrimeCell® AXI Configurable Interconnect, ARM Ltd., 2004

172 SIM 2011 — 26" South Symposium on Microelectronics

SIM 2011 — 26" South Symposium on Microelectronics 173

GenCode: A tool for generation of Java code from UML class models

Abilio G. Parada, Eliane Siegert, Lisane B. de Brisolara
{agparada,esiegert,lisane } @inf.ufpel.edu.br

Universidade Federal de Pelotas

Abstract

The development of embedded software differs from the development of traditional software, mainly due to
hard constrains related to the embedded platform and the tiny time-to-market. Allied to the high complexity
found on emergent embedded systems, these difficulties motivate for the use of Model-driven Engineering
(MDE) approaches to provide abstraction and automation for embedded software design process. To enable
the effective use of the MDE paradigm, tools are required to capture models, transform models, and to
generate code. This paper presents the development of a tool to support the use of MDE in the embedded
software development, which reads a UML model, capturing its elements and generating code from them. The
developed tool prototype is able to generate skeleton of Java code from UML class diagrams.

1. Introduction

Embedded software differs from traditional software, since engineers should take into consideration
the hardware platform in order to develop efficient algorithms to run on it, considering memory size,
performance and power constrains. Besides, engineers should worry about the speed of product delivery (time-
to-market), while producing good quality software at small costs and, consequently, competitive products.

At the same time, the complexity of embedded applications grows up following advances in
processing power of embedded devices. Usually models are used to deal with high complexity [1] because
model-based approaches offer several benefits. Firstly, models have fewer details so are easiest to build, thus
facilitating the understanding and detection of a problem. The Unified Modeling Language (UML) [2] has
become the standard modeling language for object-oriented software development and has also been used in the
embedded domain [1][3].

To automate the process of embedded software development and deal with the complexity of emergent
embedded software, a new paradigm promises automation and abstraction. This paradigm is known as Model-
Driven Engineering — MDE [4], because it considers the model as a primitive artifact of the software project.
Several authors advocate its use in embedded systems design [5][6]. With MDE models are not only used in the
software documentation, the software models are used for all software engineering phases (analysis, design,
implementation, and testing). Following this paradigm, models evolved and are transformed until to be able to
obtain an implementation from it, speeding the process of software development and offers abstraction for
engineers.

To allow the effective use of the MDE paradigm, tools are required to capture models, transform
models, and generate code. This paper presents the development of a tool to support the embedded software
development process, which reads a UML model, capturing its elements and generating code. The tool
prototype is able to generate skeleton of Java code from UML class diagrams.

This paper is organized as following. Concepts of the MDE, including used standards and tools are
presented in Section 2. Section 3 presents the proposed tool, presenting its structure, describing the model
capturing and code generation approaches, and illustrating its functionality. Finally, Section 4, presents
conclusions and future works.

2. Background

The Model-Driven Engineering — MDE considers the models as part of the software production
process, differing from the other software engineering paradigms that use the models only for documentation.
In MDE approaches, models are considered as important as the code, because they can be transformed into
other models or codes. This way, automation is supported, speeding up processes, and facilitating errors
detection.

Several MDE approaches are based on UML models, which are stored using the XMI [7] model
interchange standard, which is based on XML (eXtensible Markup Language). Thus, the first functionality
required for a MDE supporting tool is the model capturing. After capturing the model, it must be transformed
into code in the target language. This process typically uses a template engine to transform model into code,
given the format specified by the template. Templates are a flexible approach to convert models to text. The
most popular template engine is named Velocity [7]. Other methods to generate source code include the use of
rules, writing programs that generate programs (code generators), as used in this work.

174 SIM 2011 — 26" South Symposium on Microelectronics

3. The code generator

This section discusses the development of a prototype of a code generation tool. This prototype is able
to generate Java code from UML class diagrams. The proposed tool is divided in two main steps: XML file
capturing and Java code generation. The next subsections describe these steps, discuss the tool developing and
demonstrate its functionality.

3.1. Capturing information from XML file

The first step consists in capturing information from UML diagrams, represented using the XMI standard.
This step is divided in two substeps. The first substep is the reading of “xmi:id” that consists in an identification
of the diagram components (class, attribute, operation, association and properties of UML tool). This
information is captured and stored into a trie (retrieval tree) to facilitate and accelerate the search. This is
required because in the file has references forwards, for example, the class X has a attribute that is a reference
to the class Y, and the information of the class Y is next the information of the class X. The last substep is
responsible for storing and organizing information captured using an object-oriented approach like a UML
structure, which contains the information of the model, and sub divide on components of UML like, for
example, classes, packages, associations, attributes, methods, and parameters.

3.2. Code generation from UML class model

After capturing the model, it must be transformed in Java code. This process uses the structure generated at
first step. The method used to generate code is a simple conversion from information of the model captured in
first step to text. This is the usual approach and it is used by [8].

Using object-oriented approach, each element of structure is responsible to its code generation that is
performed by the method named GenCode. For example, the Class element, which represents a UML class, is
responsible to generate code for an instance of the relative class found at the model

The code generated by the tool includes specification of package, specification of super class (if there is a
specialization/generation relationship between classes), declaration of attributes (defined explicitly in the
model) considering its type, and method signatures generation. Beside of the methods declared into the model,
constructor methods, and get and set methods to access private and protected attributes are also generated. The
constructor method generation includes the superclass constructor invocation, if necessary, and initialization of
the class attributes. When the attributes are of primitive type, these are defined and comments are generated to
remember the programmer to initialize them.

Besides the attributes explicitly defined in the class model, other attributes are generated to represent return
parameters of methods or relationship between classes (association, aggregation or composition). When one
attribute represents a relationship and its multiplicity is “*”, this attribute is declared as an Array of objects of
the associated class, otherwise the attribute is declared as a reference for one object of the related class.

Methods in a UML model have parameters that can be set as in, out, inout or return. The method signature
generation includes definition of method visibility, and type for all parameters including return. The method
return type is defined according to the type of output parameter. A method can have more than one output
parameter, if this is defined with another type, a comment is generated to warn the designer. The declarations of
out parameters are into the scope of the method and declaration of the return is in the class scope.

When there is an inheritance hierarchy including an abstract class, abstract methods defined in the abstract
class are generated as concrete methods into the code of its immediate concrete subclass. Beside the code itself,
the tool generates also clarifying comments and warning comments into a local of code.

3.3. Tool developing

The tool prototype was implemented using the Java language. Fig. 1 illustrates the UML class diagram of
the tool prototype built using Papyrus [9], an open source tool for UML2 modeling. The tool input is a XML
file and for the output, a directory with the name of model is created where the generated Java code is enclosed.

SIM 2011 — 26" South Symposium on Microelectronics

175

Parser Model
E_trielD: Strin.... £ name: Stri...
[1-est 1 dir: String [1]
& loadXMI(in ... # printProp()
@ loadOperati... @ genCode()
@ _nnParser(in...
i ParserPack...
@ parserclass...]
@ paserairib. # listPackage #“SI[E!IW
& parserOper..
@ parserpara..
Package Class
-uie&]emhs =1 visibility: St... = name: Strin...
=1 general: Stri...
DateModel & printPropQ £l visibility: St...
=l abstrat: Boo...
E} name: String... = active: Boal...
L upperValue: ...
EL lowervalue: ... @ printProp()
£ visibility: Stri... 4 genCode(in ...
printProp(): <
rl rl
- listMethods - listAtribute
Parameter Method Attribute
1
El type: String... '|IS1EE1UWI = isAbstract: B...
5 direction: S... @ printPropQ)
o] @ printProp() # genCode(...
& printPropg) - listParameters | & genCode(in S... @ genCodeG...
& genCode(in... % genCodeMet... @ gencodes...
genCodeSup... @ genCodeC...

Figure 7: Class diagram — Structural view of tool prototype

3.4. Tool validation

Fig. 2 illustrates a fragment of the code generated by the tool using as input the UML class diagram
depicted in Fig. 1. Although code was generated for all classes, the Fig. 2 depicted code generated for the class
“Parser”. In the generated code, firstly there are the class definition (line 3) and the list of attributes (line 5 to
13), in which is possible to observe attributes generated as an Array because of the multiplicity of the classes
relationship. In line 17 is declared a variable to store the value returned by the method named “manipulate”
(line 65). Method "get" and "set" are found from line 30 until line 60 and class methods from line 62 until 91.

1import java.util.ArraylList; 29
30
3 public class Parser{ =
4 32
33
B /* 34
6 *Attributes 35
7 */ 36
8 private ArraylList<Model> est; 37
9 38
10 private ArraylList<String> trieID; 3:
11
12 private ArrayList<Operation> trie0pe; pis
13 43
14 ~ 44
15 *Attribute of Return Method manipulate 45
16 */ 46
17 private String str; 47
i :
=) I 50
20 *Constructor 51
21 * 52
22 public Parser(){ 53
23 this.est = new ArraylList<Model>(); 54
24 this.trieID = new Arraylist<String>(); 55
25 this.trieOpe = new ArrayList<Operations(); Z-‘;
26 this.trieMetAbs = new Arraylist<DataModel>(); g4
27} 58
28 60

I
*Get
*/

public Model getEst(){
return this.est;

public String getTrieID(){
return this.trielId;

¥

public Operation getTrieOpe(){
return this.trieOpe;

}

7
*Set
x

this.est = est;

}

85
public void setTrieID(String trieID){ 86

this.trieID = trieID;

¥

/
public void setEst(Model est){

=
63 *Methods

64 sy
65 private String manipulate(String str, String Key){
66 return str;

67

68

69 public void loadXMI(String inputFileName){
7}

7

72 private void loadOperation(String bf, String key){
el }

74

75 public void runParser(String input FileName){
)

8 private void parserPackage(string bf, string Key){
}

81 private void parserClass(String bf, String key){
}

84 private void parserAttribute(String bf, String Key){
}

87 private void parseroOperation(String bf, string key){
}

public void setTrieOpe(Operation trieOpe){ 98 private void parserParameter(String bf, String key){
this.trieOpe = trieOpe; }

}

Figure 2: Code generated from the model loaded in the tool — class “Parser”

1
2 public class Attribute extends DataModel{
3

4 ’*

5 *Attributes

6

7 private String name;

8

9 -

10 *Constructor

11 */

12 public Attribute(){

13 super();

14 this.name = new String();
15 3

16

17

18 ’*

19 *Get

20 */

21 public String getName(){

22 return this.name;

23 T

24

25

26 =

27 *Set

28 */

29 public void setName(String name){
30 this.name = name;

£

32

34 /=
/

37 public
}

40 public
}

43 public
}

46 public
}

49 public
}

52 ’~

35 *Method
®

void

void

void

void

void

printProp(){

genCode(void out){

genCodeGet (void out){

genCodeSet (void out){

genCodeConst(void out){

53 *Abstract Method of Super

54 */

55 public void printProp(){
}

Figure 3: Code generated from the model loaded in the tool — class “Attribute

Fig. 3 illustrates the generated code from the class “Attribute” of UML class diagram from Fig. 1. In this
code is possible to note the declaration of this class as subclass of the superclass named "DataModel", and the

176 SIM 2011 — 26" South Symposium on Microelectronics

call of the superclass constructor method (line 13) inside of the constructor method of class “Attribute” (from
line 12 until 15), and the declaration of a method early defined as abstract in the superclass (line 53 until 56).

4. Conclusions and Future Work

This paper presented a new tool to generate Java code from UML class diagram. As the generator uses only
class diagrams, only static information are used in the code generation, which limits the code generation
supported by this tool. As future work, we plan to extend the tool in order to support also other diagrams,
enabling a more complete code generation, including the sequence of method calls.

Since UML extensions (profiles) are available for the embedded domain, the capturing of UML models
should be also extended to allow the capturing of stereotypes used for this specific profiles, allowing consider
this information also during the model analysis or code generation.

5. References

[1T SELIC, B. (2003). Models, software models, and UML. UML for real: Design of embedded realtime
systems (pp. 1-16). Boston: Kluwer Academic Publishers.

[2] OMBG. Unified Modeling Language (UML). Available at: http://www.omg.com/.

[3] BRISOLARA, Lisane; KREUTZ, Marcio Eduardo; CARRO, Luigi . UML as front-end language for
embedded systems design. In: Luis Gomes; Joao M. Fernandes. (Org.). Behavioral Modeling for
Embedded Systems and Technologies: Applications for Design and Implementation. Hershey: IGI
Global, 2009, Chapter 1, p. -. ISBN: 978-1-60566-750-8.

[4] SELIC, B. UML 2: A model-driven development tool. Model-Driven Software Development. IBM
Systems Journal, Riverton, v. 45, n. 3, p. 607-620, 2006.

[5] TERRIER, F.; GERARD, S. MDE Benefits for Distributed, Real Time and Embedded Systems. In:
From Model-Driven Design to Resource Management for Distributed Embedded Systems. Springer
Boston v. 225/2006. p. 15-24. Jan, 2007.

[6] ESPINOZA, H.; CANCILA, D.; SELIC, B.; GERARD, S. Challenges in Combining SysML and
MARTE for Model-Based Design of Embedded Systems. In: Proc. of the 5th European Conference on
Model Driven Architecture - Foundations and Applications, 2009.

[717 OMG. XMI 2.1.1: XML Model Interchange. (OMG document formal/2007-12-01). Available at:
<http://www.omg.org>.

[8] Usman, M. and Nadeem, A. (2009). “Automatic generation of Java code from UML diagrams using
UJECTOR”. International Journal of Software Engineering and its applications (IJSEIA), Daegu, vol. 3,
No. 2 (April), pp. 21-37.

[9] Draft Tutorial for Profile usage in Papyrus, Papyrus. http://www.papyrusuml.org

SIM 2011 — 26" South Symposium on Microelectronics 177

Review of Localization Schemes Using Artificial Neural Networks in
Wireless Sensor Networks

'Stephan Hermes Chagas, 'Leonardo Londero de Oliveira, 'Jodio Baptista S.
Martins
{stephan.chagas,leonardo} @mail.ufsm.br, batista@inf.ufsm.br

IGMICRO - Universidade Federal de Santa Maria

Abstract

Wireless sensor networks (WSNs) have been applied in several areas, such as military surveillance,
environmental monitoring, robotics, domotics, animal tracking, and many others. Localization awareness is an
important issue because the collected/transmitted data by network nodes could become meaningless without
correct positioning information. Artificial neural networks (ANNs) are not commonly applied in localization
tasks, even more when we are talking about WSNs. However, this paper corroborates that ANNs could be used
for nodes localization estimation, and with reasonable accuracy. Among the families of ANNs available, the
Multi Layer Perceptron (MLP) is the most suitable to application in WSNs, because it has the best
computational and memory resource requirements. Since the network nodes are embedded devices with several
constraints of energy consumption and computational power, low memory usage and low floating point
operations are desirable. This article shows some advantages of using ANNs in localization issues and does
also some suggestions about future works and further research directions.

1. Introduction

Due to several enhancements on sensing technology, embedded systems and wireless communication
technologies, the wireless sensor networks experienced a reasonable interest growth by the scientific
community.

The sensor nodes are now capable of operating with a 3 Volt DC coin-sized battery that could work for
many years, depending on the sample rate. These tiny sensors are portable, unobtrusive and can be easily
integrated into small devices. There are many applications where these sensor nodes could be used, such as
residential, commercial, industrial, medical and military.

One of the most significant problems to be solved is the localization of network nodes without using GPS
(Global Positioning System) devices. This fact can be easily justified because the sensor nodes, in most cases,
are low-cost small form factor equipment and have several constraints of computational power and energy
consumption.

In order to solve this problem, several localization schemes have been proposed in recent years. However,
there are few related works that uses neural networks as the operating principle of the localization algorithms.
Neural networks have been tested in localizations tasks [1]-[4] with good simulation results. In further sections,
localization schemes and artificial neural networks will be more detailed, as well as the interaction between
them.

The reminder of this paper is organized as follows. In the next section, the localization task and its
relevance will be better described. In section 3, will be introduced the neural networks principles. Section 4
presents some families of artificial neural networks and comments about their performance in localization task,
as well some advantages in using ANNs for localization algorithms. This article is concluded in section 5.

2. Localization Schemes

The goal of a localization scheme (or algorithm) is to estimate the coordinates of network nodes in a
coordinate system. Several sources of information to do a location estimation of the network nodes could be
used. As sources, the schemes can only use connectivity information (content of the message exchanged among
the nodes), only signals measurements obtained by some specific hardware modules (acoustic signal strength,
RF signal strength, and others), or both connectivity and signal measurements data.

The kind of source of the used data to do the localization task generally determines the classification of the
algorithm as range-free or range-based system. The range-free algorithms use only nodes connectivity
information. The range-based type operates using signal measurements. Hybrid systems also could be
implemented. The nodes collected/transmitted data could probably become meaningless if no location
information were supplied within.

178 SIM 2011 — 26" South Symposium on Microelectronics

2.1. Example of a Range-based localization scheme

The RSSI (received signal strength indication) technique uses the radio signal strength to estimate the
distance between two nodes that could communicate to each other. Since the signal strength diminishes with the
square of the distance between transmitter and receiver, the node that receives data from other should be able to
calculate its distance from the signal source.

However, RSSI ranging measurements could contain noise, because radio propagation tends to be highly
uniform due to reflection, diffraction, multipath effects, scattering and possible interferences. Hence, the RSSI
measurements are highly dependent on the characteristics of the propagation channel, as well described in [5].
If the nodes environment changes to another place, same collected data with RSSI measurements must probably
means different distance estimation.

Based on the estimated distance among nodes with unknown positions and some reference nodes (that have
location awareness), the self-localization task could be accomplished by the unknown position nodes using, for
example, lateration.

2.2. Example of a Range-free localization scheme

The Centroid algorithm proposed by Bulusu et al [6] is the one of the most well-known localization
schemes that uses range-free approach. This technique requires low computational power, due to reduced
amount of calculation needed, as well as low power requirements, owing to the receiver-based characteristic,
since the communication needed consists only of receiving packets from the reference nodes (nodes that have
location awareness).

These nodes, that know their own localization, transmit packets in broadcast mode that contains their
coordinates and identification on the network, in a regular period. These packets could be named as beacons.
The unknown nodes select a group of more appropriated reference nodes based on a calculation defined as
Connectivity Metric, and then compute their estimated locations as the intersection of connectivity regions
covered by such anchors, defined as the centroid of these seeds. As shown in fig. 1, as higher the number of
reference nodes, higher the number of intersection of connectivity regions. This fact gives more accuracy for
the localization process.

2 * 2 Grid of reference points 3 * 3 Grid of reference points
Fewer and larger localization regions More and smaller localization regions

The shaded area reflects one localization region

Fig. 1 — Intersection of connectivity regions of reference nodes [6].

3. Artificial Neural Networks

Artificial neural networks (ANNs) are computational and mathematical models based on a simplified
vision of biological nervous system. In the network there are groups of neurons that perform a specific
physiological function. Basically, an ANN is an adaptive system that receives an input, process the data and
provides an output.

3.1. Artificial Neuron

A neuron operates by receiving signals from other neurons through connections, called synapses. The
combination of these signals, in excess of a certain threshold or activation level, will result in the neuron firing,
that is sending a signal on to other neurons connected to it. Some signals act as excitations and others as
inhibitions to a neuron firing.

In nature, a neuron consists basically of three parts: the cell body, the axon and the dendrites.

The signal from other neurons is received by the dendrites and its combination, in excess of a certain

threshold, will lead to a change on the neuron output response through the axon. An artificial neuron, by its
turn, try to model this behavior in a abstract way. The main idea of the artificial neuron in computational
intelligence applications is not to fully model the biological operation but to allow its most basic functionality.
Each artificial neuron consists of multiple inputs, weights and a single output. The neuron combines the
weighted inputs with reference to a threshold value and the activation function to determine its output.

SIM 2011 — 26" South Symposium on Microelectronics 179

3.2. Neural Network Structure

The way the artificial neurons connect to each other determines the neural network structure. There are
several types of structures, although the most common is called backpropagation network.

On this type of structure, there's an input layer with the number of neurons equal to the number of inputs of
the net, a variable number of hidden layers (the ones that are not directly connected to the inputs or the outputs)
and an output layer with a number of neurons equal to the number of outputs of the net. Usually, this structure
is fully connected, which means each neuron from one layer have a weighted connection to each neuron of the
following layer.

3.3. Operation and Training
For operation of each neuron of the neural network follows formula (1), where Wi is the weight of each
input, x; is the input signal of each variable and where m is the number of inputs. The bias input is x() and its

value is arbitrarily equal to +1.

no
Y = (Z W;Tj | 1)
=0 /

The function ¢ is the activation function, which is responsible for combining for giving the output from the
weighted inputs. There are usually three types of activation function: threshold, piecewise-linear and sigmoid.

After all the structure is done, there's still need to train the network before using it. This process is
performed by giving the correct answers for a set of inputs and setting the weights of the ANN until its results
match the given answers. This type of learning process is called supervised learning and it is usually performed
by the Error Back Propagation algorithm.

4. Artificial Neural Networks in Localization

Different types of artificial neural networks can be obtained by varying the activation functions of neurons
and structures of weighted interconnections between them. Examples of these classes are the Multi-Layer
Perceptrons (MLP), Radial Basis Function (RBF), and the Recurrent Neural Networks (RNN).

The way through which the MLP network is trained is by testing the performance of the network to all sets
of inputs and trying to minimize the measured error between the desired output and the network output. The
weights are modified based on this error until it reaches a minimum tolerance.

The weights are obtained by the solution of Green's functions in RBF networks and can be solved, unlike
the case of MLP networks. The major drawback is that it spans the input/output data space of the application
affecting memory and computational requirements. It is possible however to use fewer nodes to approximate
the performance of the network and consequently reducing the requirements. The networks of this type are
called Reduced RBF (RRBF) networks.

The structure of the MLP network is very similar to the RNN networks. The only difference is that MLP
interconnections are straight forward from the inputs to the outputs while in RNN networks it is possible to
have feedbacks to previous layers.

As shown by Shareef et al [1], the use of MLP is more suitable for localization in wireless sensor networks
due to its low computational and memory costs. Its accuracy is slightly lower than the RBF (that shown best
accuracy, but higher computation resources requirement), but the best trade-off between accuracy and resource
requirements is clearly seen.

One advantage of using neural networks to perform localization tasks is that it does not require prior
knowledge about the noise distribution of the network environment. The noisy distance measures can be used
directly as inputs to train the artificial neural network. ANNs are able to characterize the noise and compensates
it for more precision in estimating the location of the node. Other techniques such as Kalman filter, for
example, depend on knowledge about the environment distribution of noise to estimate the node’s location [7].
When the parameters of noise are not changed, the localization using MLP could be a good option.

Simulation results show that neural networks can achieve high level of accuracy in estimating the location,
and requires fewer anchor nodes. This technique is not affected by the NLOS (Non-Line-of-Sight) environment,
neither by the irregularity of the power transmitted by the anchors [3].

Locating people in underground environments is a task where artificial neural networks are employed with
success. Due to the nature of the environment in these situations, the signals suffer from various multipath
effects caused by reflection, refraction, diffraction and collision with humid rough surfaces. In those kinds of
circumstances, where the signals are blocked due to NLOS, the traditional location techniques such ones based
on RSSI, AoA (angle of arrival) and TDOA (time difference of arrival) lead to high rates of error in location
estimate. Dayekh et al [8] proposes a solution based on extracting channel impulse response (CIR) fingerprints
with reference to one or more receivers and then use artificial neural networks as a matching algorithm to
localize.

180 SIM 2011 — 26" South Symposium on Microelectronics

Other localization approach that can be applicable to WLAN (Wireless Local Area Network) is shown in
[9], where Fingerprint technique is integrated with Trilateration. This algorithm has 44% better accuracy
compared to basic Fingerprint technique and 73% better accuracy when compared to basic Trilateration
approaches. Moreover, the algorithm that integrates Trilateration and Fingerprints techniques is independent of
the environmental parameters such as attenuation loss and path loss exponent, and knowledge of transmitted
power is not necessary.

5. Conclusions

In this paper, the basic theory about node localization in wireless sensor networks and the basic principles
of the artificial neural networks were discussed, as well some possibilities of the interaction between them (due
to the small number of related work found by the authors). The ANNs could be applied in localization
algorithms with reasonable accuracy and without the need of prior knowledge about de environment noise,
unlike the techniques that apply Kalman filters. Among the artificial neural networks families mentioned, the
Multi-Layer Perceptron was the most suitable for applications on embedded systems due to its good accuracy
and low computational resource requirements, showing better trade-off between these items than other families.
Another important characteristic of the using of ANNSs is the immunity against errors of localization estimative
due to non-line-of-sight environments and the irregular power transmitted by the anchors. As future work, an
implementation of a wireless sensor network running localization scheme based on MLP family of ANNs
would be made on commercial models of motes, such as the Crossbows’ MicaZ.

6. References

[1] Ali Shareef, Yifeng Zhu, and Mohamad Musavi, “Localization Using Neural Networks in Wireless
Sensor Networks,” Mobilware Proc. Ist international conferenceon MOBILe Wireless middleware,
Operating systems, and Applications, 2007.

[2] Mohammad Shaifur Rahman, Youngil Park, and Ki-Doo Kim, “Localization of Wireless sensor
Network Using Artificial Neural Network,” Proc. 9" international conference on communications and
information technologies,2009.

[3] Jin-Peng TIAN, and Hui-Chang SHI, “Study of Localization Scheme base on Neural Network for
Wireless Sensor Networks,” IET conference on Wireless, mobileand Sensor Networks, Dec. 2007, Pp.
64-67.

[4] Gianni Giorgetti, Sandeep K. S. Gupta, and Gianfranco Manes, “Wireless Localization Using Self-
Organizing Maps,” IPSN, 2007, p. 25-27.

[5] Salvador Jauregui, and Mario Siller, “A Big Picture on Localization Algorithms Considering Sensor
Logic Location,”. Proc. IEEE International Conference on Systems, Man and Cybernetics, 2009.

[6] Nirupama Bulusu, John Heidemann, and Debora Strin, “GPS-less Low-Cost Outdoor Localization for
Very Small Devices ,* IEEE Personal Communications, 2000, p. 28-34.

[7] Ali Shareef, and Yifeng Zhu, “Comparisons of Three Kalman Flter Tracking Models in Wireless Sensor
Network,” Proc. 26th EUROMICRO Conf. (EUROMICRO'00), 2000.

[8] Shehadi Dayekh, Sofiene Affes, Nahi Candil, and Chahé Nerguizian "Cooperative Localization in Mines
Using Fingerprinting and Neural Networks," [EEE Wireless Communications and Networking
Conference, p. 1, 2010.

[9T N.S. Kodippili, and Dileeka Dias "Integration of Fingerprinting and Trilateration Techniques for
Improved Indoor Localization," Seventh International Conference on Wireless and Optical
Communications Networks, p. 1, 2010.

[10] Anthony Taok, Nahi Kandil, and Sofiéne Affes, "Neural Networks for Fingerprinting-Based Indoor
Localization Using Ultra-Wideband," Journal of Communications, v. 4 n. 4, p. 267-275, 2009.

SIM 2011 — 26" South Symposium on Microelectronics 181

Power Analysis of a Floating Point Unit for a Reconfigurable
Architecture

Bruno Hecktheuer, Eduardo Nicola, Mateus Grellert, Julio C. B. Mattos
{bbhecktheuer,enicola.ifm, mgdsilva, julius} @inf.ufpel.edu.br

Grupo de Arquiteturas e Circuitos Integrados — GACI
Centro de Desenvolvimento Tecnoldgico - CDTec
Universidade Federal de Pelotas / Pelotas — Brazil

Abstract

With the complexity of embedded systems growing day by day, there are several electronic devices with
different applications in a single device. To cope with this heterogeneous behavior of these applications it is
necessary embedded architectures providing high performance. Reconfigurable architectures present a
solution based on high performance maintaining low power consumption. This paper presents the power
analysis of a combinational Floating Point Unit (FPU) for a reconfigurable architecture. The FPU are
supports four basic arithmetic (addition, subtraction, multiplication and division). The power results were
generated and analyzed for the three target architectures (sum/subtraction, multiplication and division).

1. Introduction

Currently, the majority of electronic devices available on the market have embedded
computational units. With the growing market for embedded systems, the complexity of these systems is
increasing due to different functionalities in one device, such as mobile handsets. The applications run on these
devices have heterogeneous behaviors, i.e., it is necessary different hardware resources for each application to
perform high performance. The use of general purpose processors can not guarantee an efficient
implementation and produces high consumption int terms of power and energy.

Reconfigurable architectures [1] have the ability to adapt (to reconfigure) according to the type of
application. Moreover, these architectures have been presented as a good solution to increase performance and
provide low power consumption.

Multimedia and communication algorithms applied in the field of embedded systems make heavy
use of floating point arithmetic. Due to the complexity and cost of implementations of floating point arithmetic
in hardware, algorithms often make use of emulation in software or conversion (manually or automatically) of
floating point operations in fixed point.

The target architecture used in this work consists of a Reconfigurable Functional Unit
(reconfigurable array), a unit capable of performing the reconfiguration and a general purpose processor [2].
The basic idea of this approach is to find pieces of code that can be performed more efficiently in the array
during program execution. This unit is implemented in a combinational way and it is composed by functional
units that perform operations on integer data, multipliers and units of memory access.

This reconfigurable array did not use floating point operations in hardware, which produced the
solutions are not adequate in terms of performance in floating point arithmetic. This work uses the Floating
Point Unit (FPU) developed in [3] to insert Reconfigurable Unit at the target architecture. This FPU implements
operations of addition, subtraction, multiplication and division using the hardware description language VHDL.

This work aims to develop a methodology to analyze the power dissipation of four PFU modules.
The paper is organized as follows: section 2 presents the modules used in the paper. Section 3 shows the power
analysis methodology. Section 4 presents the results of power dissipation and finally, section 5 presents the
conclusions and future work.

2. Target Architectures

Three architectures are analyzed: sum/subtraction, multiplication and division to floating point numbers in
single precision, ie, using 32-bit representation in IEEE 754 [4]. This standard defines how to represent floating
point numbers are stored in memory, rounding algorithms, exception handling, etc. The modules were
developed through a fully combinational logic, using the standard algorithms, taking for granted that the entries
are in the format specified by IEEE 754. The modules were implemented using VHDL and synthesized using
Xilinx tool 10.1.

182 SIM 2011 — 26" South Symposium on Microelectronics

o Sum/Subtraction Module
The implementation of the algorithm of sum / subtraction in sequential logic is relatively simple,
but its hardware implementation in combinational way can be considered a challenge. Figure 1 illustrates the
structure of module sum / subtraction used in the workplace. This module contains a sum/subtractor and
normalization steps. The stages of normalization have a complex hardware.

funct

Y

OpA

mantissaA
OpB

*
=SEA00=2

Result

=02

mantissaB

expA

expB

Fig. 4 - Structure Module Sum / Subtraction

e Multiplication Module
The multiplication algorithm performs basically the sum of the exponents of the operands and the
multiplication of mantissas, check overflow / underflow and normalize the result (if necessary). Steps have
been implemented in a way similar to the steps of module sum / subtraction. Figure 2 shows the structure of
module multiplication.

expA

Result

=002

mantissaA

mantissaB

signalA \

signalB _]
/

Fig. 2 - Structure Module of the Multiplication

e Division Module
The division module has been simplified using the architecture of the multiplication module. In
other words, divide X by Y is equivalent to multiplying X by the inverse of Y. The values of 1 /Y is stored in a
ROM memory. Memory size ranges from 1KB to 32MB providing different solutions in terms of area and
accuracy. Larger memories provide greater accuracy, however, require a larger area. Despite occupying a large
area, this procedure presents a low complexity. Figure 3 illustrates the division module.

SIM 2011 — 26" South Symposium on Microelectronics 183

Op1[30..23]
0p2[30..23]

+ | Exponent

Opf
Op2™

Op1[22..0]
Qp2[22 0]

LResylt

o X
0T O Z

M X antiss

Op1[31]
41 Op2[31])E)
Op2 7

Fig. 3 - Structure Module of the Division

£ X O Z

Signal

3. Power Analysis Methodology

The PowerCompiler [5] tool was used to generate power data for the three target architectures. The library
used was the logic cells StandardCell 0.18 [6]. To use the tool PowerCompiler took some procedures. Because
the modules were described in VHDL, it was necessary, through a script, to convert to the Verilog language
each module, since the tool only supports Verilog language. After the generation of the Verilog files for each
architecture, it is necessary to generate input data for each unit separately. A Verilog testbench was used also
described to simulate the inputs of the circuits. Figure 4 illustrates the design flow of power analysis
metodology.

Q>
VHDL > Script Verilog
d
y

) Power

PowerCompiler Results
,;7
Fig. 4 — Power Analysis Diagram
4. Results

This section presents the results of power modules for sum / subtraction, multiplication and
division. The results obtained for power as the technology StandardCell 0.18 TSMC [6]. The Table 1 presents
the results in terms of dynamic power, static power (leakage) and total power (dynamic plus static) provided by
PowerCompiler tool. The module sum / subtraction showed the worst results in terms of power. The results of
the power division of multiplication modules are very close. However, the results of division module did not
consider the power dissipated by ROM memory access, because the sofwtare used can not support analysis of
memories.

Tab. 1. Power Results for FPU components

Modules Dynamic Static Total
Power (mW) Power (nW) Power (mW)
Sum/Subtract 55.6611 71.5245 55.7326
Multiplication 18.4919 168.1223 18.6600
Division 18.6585 170.1281 18. 8286

184 SIM 2011 — 26" South Symposium on Microelectronics

5. Conclusions and Future Works

This paper presented the analysis of power module sum/subtraction, multiplication and division
to a Floating Point Unit to fully combinational for use in a reconfigurable architecture. Data were analyzed
from the static and dynamic power architectures, and can see that the data were quite satisfactory.
As future work we intend to compare the results of FPU power architectures developed entirely with
combinational logic to sequential. In addition, we intend to integrate the modules of the FPU Reconfigurable
Architecture.

6. References

[1] COMPTON, K. AND HAUCK, S. Reconfigurable computing: a survey of systems and software.
ACM Comput. Surv. 34, 2 (Jun. 2002), 171-210.

[2] BECK, A. C., RUTZIG, M. B., GAYDADIJIEV, G. ¢ CARRO, L. Transparent reconfigurable
acceleration for heterogeneous embedded applications. In: DESIGN, AUTOMATION AND TEST IN
EUROPE, New York, 2008. In Proceedings of DATE 2008. New York: ACM, 2008. 1208-1213.

[3] SILVA, Mateus Grellert et al. Implementagdo de uma Unidade de Ponto Flutuante para uma
Arquitetura Reconfiguravel. In: XVI IBERCHIP Workshop, 2010, Foz do Iguagu, Brazil. Proceedings
of XVI IBERCHIP Workshop. Foz do Iguacu : IBERCHIP, 2010.

[4] IEEE Standards Committee 754. IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE
Standard 754-1985. New York: IEEE, 1985.

[5] SYNOPSYS. Synopsys Power Compiler;
http://www.synopsys.com/products/logic/design_compiler.html

[6] ARTISAN COMPONENTS. TSMC 0.18 um 1.8-Volt SAGE-XTM Standard Cell Library Databook.
2001.

SIM 2011 — 26" South Symposium on Microelectronics 185

ARITHMETIC AND DIGITAL
SIGNAL PROCESSING

186 SIM 2011 — 26" South Symposium on Microelectronics

SIM 2011 — 26" South Symposium on Microelectronics 187

Impact of Process Variability considering Transistor Networks Delay
Jerson Paulo Guex, Cristina Meinhardt, Ricardo Reis
{jpguex, cmeinhardt, reis } @inf.ufrgs.br

PGMICRO, PPGC, Instituto de Informatica
UFRGS

Abstract

This paper presents an analysis of process variability considering the use of extracted layouts with their
respective capacitance and parasitic resistance. The effects on PullDown and PullUp networks of transistors are
verified separately. The performed experiments aimed to analyze the variability when using serial and/or
parallel transistors. Also it analyzes the influence of process variability in fall delay, rise delay. Preliminary
results demonstrated that both networks could be less sensitive to process variability if the network is composed
by more than 2 transistors in parallel. The use of larger transistors than the minimum possible size for the used
technology node also reduces the effects of variability [10].

1. Introduction

The continuous shrinking of devices adds new challenges to integrated circuit design due to variability of
transistor’s technology parameters and dimensions. Variability can provide power consumption outside the
design specifications, which can allow faster circuit degradation. In some cases, it can occur erroneous circuit
functionality, that makes it unsuitable or with use restrictions. Prediction of such variability in the design phase
can increase the success rate in the circuit development.

In nanometer scale, decreasing parasitic capacitances increase the transistor speed. On the other hand, there
is an increase of the current mismatch, especially if device geometries vary in the manufacturing process [1].
The mismatch of parameters occurs in various steps of manufacturing process and the main parameters affected
are transistor dimensions, mobility of electrons or holes and oxide thickness of the transistor gate [2].

According to [4], the variability may be classified by environment factor, commonly understood by
variations in power supply and temperature; reliability factor, related to aging of the transistors and their effects
like negative bias instability temperature (NBTI), Hot Carries and electromigration; and physical factors related
to variations in parameters that induce a mismatch in transistor performance.

These parameters variations turn the circuits less predictable and demand a great effort to create suitable
techniques to deal with this uncertain performance. Design for Manufacturability (DFM) is an effort to deal
with this issue. DFM has a set of techniques that can be used to improve the manufacturability. According to
[5], a regular layout is one of DFM techniques that can improve predictability in the physical implementation of
a circuit. Thus, it can be obtained more accuracy in delay estimates.

Parameters like oxide thickness (Tox), width (W), length (L), threshold voltage (Vth), effective channel
length (Leff), and change in resistance values of metals after CMP and mobility of transistor’s charges
(electrons or holes) are the most important parameters affected by process variability [7]. In Fig. 1, it is possible
to see some trends on parameter variability.

50 T T
pcrcent

07 99 01 03 05 o7
Fig.1-Estimates on Parameters Variation [7]

Hierarchical or spatial mechanism can classify the variability mechanisms in physical factor. These
mechanisms can be systematic or random [3] or design dependent according to [4]. The systematic mechanism
can be found in many dies or wafers like a rapid annealing. The random mechanisms are related to doping the
transistor channel and correction of threshold voltage (Vth).

188 SIM 2011 — 26" South Symposium on Microelectronics

This paper is focused on physical factors that are imposed in each stage of manufacturing. In this
experiment, variability effects over extracted layouts are analyzed considering the parasitic capacitances and
resistances. All layouts explore regular patterns on poly layers.

The remainder of this paper is as follow. In section 2 we describe the experimental work and the applied
methodology. Results are explained in section 3 and conclusions are presented in section 4.

2. Methodology of the Experiments

The main objective of this work is to analyze the behavior of circuits designed using a 65nm technology
considering the effects of process variability in rise and fall signal transitions. It was taken into account the
effects in PullUp and PullDown networks. This allows evaluating the influence on delay of stacked transistors,
parallel transistors and mixed arranges. The layouts of the experiments consider the logical effort, method used
to estimate delay in CMOS circuits [11], to determine the transistor sizing for each layout. The experiments
were done as following:

1. Choosing of 18 circuits to test;

2. Layout Design of selected circuits in a 65nm technology;

3. Verification of layouts versus schematics and extraction;

4. Modification the technology model files to reflect the variability effects;

5. Running of Monte Carlo simulations using HSPICE;

6. Analysis of the results.

Each transistor network was considered separately. For PullDown network was designed 9 layout versions:
three layouts to represent schematic diagrams with 2, 3 and 4 transistors in series; three layouts that represent
schematic diagrams with 2, 3 and 4 transistors in parallel; and three layouts that represent the union of 2, 3 and
4 transistors in series/parallel. For PullUp network 9 layouts were also designed in the same conditions and
specifications that PullDown.

Fig. 2 and 3 show the schematic diagram for some of the layouts. All layouts designed for this experiment
were built aiming to be as regular as possible. The layouts were implemented using Cadence Virtuoso. After
design rule check (DRC) of the layouts, they were compared with the schematic (LVS) to ensure the
correctness of the layout. Following, the layout was passed through the extraction tool to obtain the parasitic
capacitances and parasitic resistances.

In order to simulate the process variability, transistors parameters like width (W), length (L), oxide
thickness (Tox), effective channel length (Leff) and threshold voltage (Vth) were varied by 10% of their
nominal values. The correlations between these parameters is considered. All parameters are changed in the
model and this model employs these basic parameters to determine all the others parameters values. The
variability adopts a Gaussian distribution with three sigmas around the default values.

The Monte Carlo technique was adopted with a Gaussian distribution to deal with simulation. Even though
this method is very expensive interms of computing power and is not suitable for complex circuits with
over one hundred transistors [6], in this work the method works efficiently because only small circuits are
explored. These small circuits reflect blocks often found in complex circuits. Each of the extracted layouts was
simulated using Hspice with the Monte Carlo method and doing 10.000 iterations per simulation.

The transistor model used for those experiments is a Low Power Typical model from the same foundry that
provides the design kit of 65nm. A load capacitance of 10fF was placed in each extracted circuit output to avoid
floating terminals to emulate a real situation of operation. Each input was fed with the same signal with a 1ns of
period.

VoD VoD
VoD

i
>
»
o g
kg
T
=
B

@) {b) fe) @ ®))

Fig. 2 -Schematic diagram of pulldown network with: Fig. 3 - PullUP network with: (a) 2 transistors in
(a) 2 transistors in series, (b) 2 in parallel and (c) 2 series, (b) 2 transistors in parallel and (c) 2
transistor in parallel and 1 in series transistors in parallel with 1 in series.

SIM 2011 — 26" South Symposium on Microelectronics 189

3. Experimental Results

The simulation experiments run over HSpice, performing Monte Carlo method with 10000 iterations using
the BSIM4 model. For PullDown networks (series/parallel and mixed with 2, 3 and 4 transistors) were observed
the mean values for fall delay, fall time of the analyzed network and their respective standard deviations. In the
same way, the results for mean value and standard deviations of rise delay, rise time and power estimation of
PullUP network were acquired.

The results for the PullDown network show that the normalized fall delay deviation tends to decrease in
function of the number of stacked transistors and their respective width. The normalized fall delay deviation
decay approximately by 9% comparing the scenarios with 2 and 4 stacked transistors.

Looking to the result of normalized fall delay deviations it is possible to conclude that parallel
arrangements with 3 or 4 transistors could be a good strategy for the design of circuits more tolerant to process
variability. The junction of series and parallel transistor shows that this combination could be more sensitive to
the process variability. This experiment shows a linear trend in increasing of normalized fall delay deviation
when both parallel and series arrangement are put together with 3 or 4 transistors. According to the obtained
data, the implementation with 2 transistors in both parallel and stacked seems to be a good strategy to cope with
process and to deal with fall delay constraints. Tab. I show the results of normalized fall delay deviation during
the simulations. The results are normalized dividing the standard deviation by its mean value. This normalized
process was made to provide a fare comparison between the experiments.

Tab.1 — Normalized Fall Delay Deviation

Transistors Series Parallel Both
2 0.03263 0.03140 0.02917
3 0.03016 0.02358 0.03244
4 0.02987 0.02016 0.03458

The PullUP network results show that the rise delay deviation tends to decay according to the number of
stacked transistors. This effect is noticed because of the continuous increment of transistors width according to
the number of transistors in series observing the relation of W,/W,=2 mentioned in Section II and the position
of transistors according to the Figure 2. Parallel transistors arrangements have also the rise delay deviation
decay in all the situations, which include 2, 3 and 4 transistors.

With the arrangements to perform this experiment for the PullUP network, it is possible to compare the
decrease of the rise delay deviation in function of the number of transistors in series or parallel and with both
topologies. The decay of rise delay deviation in paralle and series arrangements is a direct product of the area of
each transistor, as showed in Tab 2. As greater is the transistor, less is the rise delay deviations Adopting a
mixed arrangement, in the booth columm, the experiments show a tendency of stability in rise delay deviation
with 2, 3 and 4 transistors. Taking in account all the aspects related above, the best solution to implement a
PullUP network regarding the effects of process variability is by using a parallel structure that guarantee a
minor effect on rise delay deviation. This consideration is only valid if the transistors are not using minimal
dimensions for the technology used.

Tab.2 — Normalized Rise Delay Deviation

Transistors Series Parallel Both
2 0.03039 0.02546 0.02805
3 0.02642 0.01965 0.02761
4 0.02164 0.01563 0.02887

4. Conclusion

The experiments performed over the PullDown and PullUp networks show the dependence of variability in
relation to the size of transistors. It can be verified in Figure 4, that the normalized fall and rise delays have the
same behavior for variability decay when the number of transistors and their sizes in serial and parallel
arrangements is increased. This indicates that the use of the minimum possible dimensions of the technology
could be avoided to decrease the effects of process variability. Other conclusion highlights regarding the use of
more parallel arrangements in PullDown and PullUp networks when the target is minimize the fall and rise
delay deviation fluctuations under influence of process variability.

190 SIM 2011 — 26" South Symposium on Microelectronics

- - 2
w3
lelay 4
ation
‘nts

Fig. 4 — Comparison between rise and fall delay deviation.

S. Acknowledgment

The authors would like to thank the CAPES, Brazilian Funding Agency and also to the Walter E. C. Bartra
for his help and collaboration.

6. References

[1] G. Tulunay,; G. Dundar,; A. Ataman,; , "A new approach to modeling statistical variations in MOS
transistors,". ISCAS 2002. IEEE Int. Symp. on Circuits and Systems, vol.1, pp. [-757-1-760 vol.1, 2002.

[2] M. J. M. Pelgron, A. C. J. Duinmaijer, A. P. G. Welbers,Matching Properties of MOS Transistor, IEEE
Journal of solid state circuits, October 1989.

[3] A J Strojwas, Conquering Process Variability :A Key Enabler for Profitable Manufacturing in Advanced
Technology Nodes,. IEEE International Symposium on Semiconductor Manufacturing, ISSM 2006, San
Jose, USA. pp xxiii "a xxxii

[4] S. R Nassif, Process variability at the 65nm node and beyond,. IEEE Custom Integrated Circuits
Conference 2008. San Jose, USA, pp 1-8

[5] C. Menezes,; C. Meinhardt,; R. Reis,.; R. Tavares,; , "Design of Regular Layouts to Improve
Predictability,", 6th Int. Caribbean Conference on Devices, Circuits and Systems, pp.67-72, April 2006.

[6] J. A. Power, B. Donnellan, A. Mathewson, W. A. Lane, Relating Statistical MOS-FET Model Parameter
Variabilities to IC manufacturing Process Fluctuations Enabling Realistic Worst Case Design. IEEE
Trans. on Semiconductor Manufacturing, August 1994.

[71 S.R. Nassif,; , "Design for variability in DSM technologies [deep submicron technologies],"
ISQED.IEEE 2000 First Int. Symp. on Quality Electronic Design,, pp.451-454, 2000.

[8] D. da Silva, A. I. Reis, R. P. Ribas, ”Gate delay variability estimation method for parametric yield
improvement in nanometer CMOS technology”, Microelectronics Reliability, vol. 50, no. 9-11, 21st
European Symposium on the Reliability of Electron Devices, Failure Physics and Analysis, 2010, pp
1223-1229.

[9] Singh A, Mani M, Orshansky M. “Statistical technology mapping for parametric yield” IEEE/ACM Int,
Conf. on Computer-Aided Design (ICCAD), November 2005, pp 511-8 [12] R. Bartle, “Early MUD
History,” Nov. 1990; http://www.ludd.luth.se/aber/mud-history.html.

[10] Kheterpal, V., Rovner, V. et al. “Design Methodology for IC Manufacturability Based on Regular
Logic-Bricks”Design Automation Conference (DAC), June 2005, Anaheim, California, USA.

[11] Sutherland, 1. E., “Logical Effort: designing fast CMOS circuits”, Morgam Kaufmann, Sao Francisco,
USA, 1999.

SIM 2011 — 26" South Symposium on Microelectronics 191

Area and power Optimization of Radix-2 Decimation in Time (DIT) FFT
Implementation Using MCM Approach Along the Stages

2Sidinei Ghissoni, *Eduardo Costa, 'Ricardo Reis
{sghissoni,reis } @inf.ufrgs.br, ecosta@ucpel.tche.br

! Universidade Federal do Rio Grande do Sul - UFRGS
? Universidade Federal do Pampa - UNIPAMPA
3 Universidade Catolica de Pelotas - UCPEL

Abstract

This paper proposes the optimization of area and power of architecture radix-2 Decimation in Time (DIT)
FFT using the Multiple Constant Multiplication (MCM) approach along the stages. The MCM problem has
been largely applied to the reduction of the multipliers in digital filters. In MCMs, the operations over the
constants are implemented by using addition/subtractions and shifts rather than the use of general multipliers.
In FFT filters, the butterfly algorithm plays a central role in the complex multiplications by constants. Thus, the
use of the MCM in the butterflies can reduce significantly the number of real and imaginary multiplications by
constants. It can be obtained by sharing the twiddle factors of the butterflies as much as possible. In this work,
we have implemented two and three stages of 16 bit-width butterfly radix-2 with decimation in time for 4 and 8-
point FFT respectively, using both the MCM and gate level approaches. For each stage of the real and
imaginary parts of the butterflies we are able to apply the sharing of partial coefficients using MCM. The
results were obtained by synthesizing the circuits in the CADENCE Encounter RTL Compiler tool for the
UMC130nm technology. The results show that reductions of 10% in area, and 7% in power are achievable
when compared with the synthesis logic of the implemented behavioral unrestricted architecture.

1. Introduction

Fast Fourier Transform is an important tool which is largely used in Digital Signal Processing (DSP)
applications, such as audio and video process, wireless communication. The various existing FFT algorithms
use the partitioning of the set of input samples into sequences of half of the length of the original sequence.
This is done recursively until there are only sequences of length 2, where the input samples cannot be more
partitioned. This algorithm is named radix-2 FFT [1]. Partitioning the input sequence into more than two
subsequences leads to higher radices of the FFT algorithm, what leads to the increase of the number of
arithmetic operations. The complexity of the FFT architecture design is mainly given by the multiplication of
the inputs by a large number of coefficients.

A large amount of researches has concentrated the implementation of efficient multipliers, in order to
optimize area and power consumption of this arithmetic operator. However, in the case of the FFT circuit,
where a large amount of complex multiplications are performed by the butterflies, even the use of these
efficient multipliers has not enabled optimizations in fully-parallel FFT architectures.

The Multiple Constant Multiplication (MCM), i.e., the use of multiplication of a set of constants by a
variable, approach has enabled significant impact on the design of Digital Signal Processing (DSP) area. In the
MCM operation, each constant is implemented using only addition/subtraction and shift operations rather than
using a general multiplier for each constant. A large amount of algorithms has been proposed to optimize the
multiplier block in digital filters by using the MCM approach [2]. However, only a few of them has been
applied to FFT in matrix form, as in this work. Thus, we propose to optimize a radix-2 DIT butterfly by using
the MCM approach along the stages, in order to allow for further implementation of an efficient FFT
architecture. We have used the algorithm of [2] for the generation of the tree of adder/subtraction and shift
operations. After, the algorithm presented in [12] was used for the optimization of the circuits by considering
the use of the efficient metric gate-level.

This paper is organized as follows: in Section 2, we present an overview of Multiple Constant
Multiplications with FFTs algorithms. In section 3 it is presented the application of the MCM approach in a
butterfly, as matrix. In Section 4 some result comparisons between butterflies using MCM and gate level are
presented. Finally in Section 5, we present the conclusions of this work and some ideas for future works.

2. Application of the MCM Problem in the FFT Architecture

The Fast Fourier Transform (FFT) algorithm is a simpler form to calculate the Discrete Fourier Transform
(DFT) efficiently. In the last years, many algorithms have been proposed for the improvement of performance
of the FFT butterflies. Equation 1 presents the radix-2 butterfly with decimation in time [1], where the N
multiplications obtained in the direct DFT are reduced to log,N multiplications. This aspect enables a real
increase of computational performance in the solution of the Fourier transform. The FFT can reduce the

192 SIM 2011 — 26" South Symposium on Microelectronics

computational complexity of the DFT, because its butterfly can process the calculation of two samples at a
time.

Several other algorithms were developed to further reduce the computational complexity of the butterfly, such
as radix-4, split-radix, radix-2%, radix-2/4/8, and higher radix versions. However, all of them are based on the
butterfly of [1].

N-1
X(K)=Y x(mW, ,K=0,1,N-1)
n=0
2
W o=e N
where " is the twiddle factor.
2.1 Related Work
In the last years several works have been proposed for the optimization of FFT architectures. As an
example, in [3] it is proposed a new radix-2/4/8 algorithm, which can effectively minimize the number of
complex multiplications in pipelined FFTs. In [4], an optimization of FFT architecture based on multirate signal
processing and asynchronous circuit technology is proposed. In [5], solutions based on parallel architectures for
high throughput and power efficient FFT cores are presented. In the work of [5], different combinations of
hybrid low-power techniques are exploited, such as 1) the use of multiplierless units, which replace the complex
multipliers in the FFTs, ii) the use of low-power commutators, which is based on advanced interconnection, and
iii) the use of parallel-pipelined architecture. The proposed methods also use MCM for the sharing of various
multipliers that are located in the same stage of the hybrid architectures. Although this methodology is efficient,
in some cases area has been increased.

In [6] it is proposed the optimization of the twiddle factors using trigonometric identity for few points of
FFT architecture. The presented methodology proposes the replacement of the adders of the circuits by the use
of multiplexers. Based on the same idea, the work of [10] proposes a Low-Complexity Reconfigurable
Complex Constant Multiplication for FFTs for the reduction of area for a larger number of points (32 points).
This new methodology proposed by [6] and [10] was compared against the works [7-9], where reductions in
terms of the number of adders could be achievable. Although the authors of [6] and [10] do not present power
and delay results in their work, they comment that probably these metrics may lead to large circuits, due to the
limitation of the proposed architecture, where only FFT computation in serial form is performed. In [11] it is
presented methods for designing multiplierless implementations of fixed-point rotators and FFTs, in which
multiplications are replaced by additions, subtractions, and shifts. These methods minimize the adder-cost (the
number of additions and subtractions), while achieving a specified level of accuracy, but it takes much more
processing time, with increasing the width of the bits.

Recently Aksoy [12] proposed the implementation of the MCM parts of FIR filters by determining the cost
of each operation in terms of HAs, FAs and logic gates in a given technology library under two inputs. Thus,
the cost function of an operation at the gate-level depends on: i) the type of operation (addition or subtraction);
ii) the shifted input in a subtraction (minuend or subtrahend); iii) the number of shifts at the inputs; iv) the
position of the operation in the architecture (influences the number of bits); and v) the range and type of
numbers considered (unsigned or signed). Since the shifts are free in terms of hardware, the filter coefficients
and partial terms are considered as odd numbers.

Although there are several techniques to reduce the complexity of the FFT architectures, only a few of
them uses the MCM approach for the sharing of the real and imaginary twiddle factors in the butterflies. In our
work, we have presented the use of Matrix-MCM algorithm based on the proposed algorithm of [2] associated
to the gate level metric of [12] in order to reduce the complexity of the radix2 butterfly of the FFT with
decimation in time.

3. Implementation of the Radix-2 DIT FFT by Using MCM Along the
Stages

In this method each output of the DIT FFT was represented as a vector composed by the association of
their respective twiddle factors multiplied by each respective input. Firstly, each matrix is divided into real and
imaginary parts in order to achieve maximum optimization. After that, the matrices results are optimized by the
algorithm based on [2], where the results are now composed by adder/subtrators and shifts. In the resultant
terms of each butterfly the gate level metric is applied. As an example, figure 1, suppose we have the following
matrix representation:and their linear transform representation:

SIM 2011 — 26" South Symposium on Microelectronics 193

x x ¥ ¥ Z_10:X+X<<3

z 11=y+y<<l

¢ Y

z 12=z 10+x<<3

z1=z 10+z 11<<4

17x+24y 9x+3y Z22212+Z—11

Fig. 1 —Linear transforms representation using subexpresion sharing:

In fig. 2, it is presented the flow for the fully-parallel 8-point radix-2 FFT architecture with decimation in
time. The FFT is divided into three stages and each one of them is composed by for butterflies. The butterflies
allow the calculation of complex terms, where one complex addition, one complex subtraction and one complex
multiplication are involved in the butterfly block. The blank rectangles shown in fig. 2 represent circuit
registers. The multipliers present in the butterflies were implemented by using adders and subtractors with gate
level metric and MCM approach.

Fig. 1 — 8-point radix-2 DIT FFT architecture.

In an 8-point Fully-parallel FFT implementation, 12 real and 12 imaginary terms are performed in the
butterflies (3 stages with 4 butterflies). Thus, the architecture presents large hardware requirements in terms of
arithmetic operators. In order to reduce the number of operators, we have applied the MCM approach to the
twiddle factors of the butterflies. Particularly, we have used the algorithms of [2], which enable the
optimization of the number of operations under a delay constraint. Firstly, the algorithm removes the repeated
twiddle factors at each stage. After the initial checking, it is possible to observe that, in fact, in the 8-point
radix-2 DIT algorithm, only three different coefficients are generated (by considering that the negatives
coefficients are easily obtained by the positive ones using the 2’s complement operation). With the coefficients
the matrix is generated and then, finally the gate level metric [12] is applied.

4. Results

This section shows the obtained results of 4 and 8-points, 16-bit radix-2 DIT FFT implemented in hardware
description language - VHDL. Table 1 presents area and delay results obtained from the implementation of
fully-combinational and optimized multipliers (using adder/subtractors), that are guided from the MCM
algorithm of [2] and gate level metric[12] approaches. The logic synthesis was performed with the CADENCE
Encounter RTL Compiler tool for the UMC 130nm technology. In the behavioral implementations the FFTs are
described in VHDL language and the Compiler tool optimizes the arithmetic operators automatically. All the
simulations are limited by the path delay of the circuits.

194 SIM 2011 — 26" South Symposium on Microelectronics

Tab.1 — Architecture Radix-2 DIT FFT results

Circuits Cells (‘;;‘3) Power(w) | Path delay(ps)
FFT 4P,16b- CMM 7132 18760 20,12 8814
(2 stages)
FFT 4P,16b- CMM
(2 stages and gate 6981 18519 19,85 8792
level)
Behavioral 7448 19746 20,01 8753
FFT 8P,16b- CMM 12515 35198 35,0 12689
(3 stages)
FFT 8P,16b- CMM
(3 stages and gate 11734 34211 333 12494
level)
Behavioral 12741 36127 35.2 12439

In table 1, except for the 4-point FFT, there is a reduction of up to 5% in power consumption for the
architectures implemented with MCM and using Ripple Carry adders (RCA) compared with the architectures
described in behavioral form and synthesized by the commercial tool automatically. Another point to be
emphasized it that with the increase in the number of points, area has been reduced in the FFTs with the use of
CMM (Constant Matrix Multiplication) approach, mainly when the gate level approach is used. Area reduction
occurs because the use of MCM enables a greater sharing of subexpressions. Moreover, the replacement of
multipliers in the butterflies at the stages of the FFTs for adders/subtractors results in the reduction of power
consumption of the circuit, when compared with the behavioral description, where the arithmetic operators
form the tool are used. The 4-point FFT implemented with Ripple Carry adder does not reduce power
consumption directly, because the reduced possibility of sharing the coefficients between the stages. However,
the use of MCM and gate level together, allows for the reduction of power consumption, even for the 4-point
FFT, as can be seen in Table 1.

Observing the reduction of area, when the adders are implemented with gate, and when the MCM method
is applied between the stages of the FFTs, it is clear that the larger number of points allows for a higher
reduction of area and power consumption under the same delay restrictions imposed for the synthesis of
behavioral descriptions obtained by the commercial tool Encounter RTL.

5. Conclusions and Future Works

In this study we have applied the MCM approach in the stages of of 4 and 8-point radix-2 DIT FFT. The
obtained results show that the use of the MCM and gate level approaches simultaneously, can reduce area and
power of the fully-parallel FFTs, when compared with the implementations done in behavioral description. It
occurred due to the fact that the multipliers of the butterflies are replaced by adders/subtractors and shifts, when
using the MCM approach. We have used the algorithm proposed in [2] and [12] for the implementations with
MCM and gate level. Since the MCM algorithm reduces the number of operations under a delay constraint, we
were able to reduce area and power of the FFTs simultaneously.

With obtained results, we are convinced that the large impact on area and power reductions provided by the
MCM and gate-level can allow a low power FFT implementation. Thus, as future work, we intend to verify the
low power aspect that can be obtained by the use of the MCM and gate-level approaches in FFTs with larger
number of points.

6. References

[1T J. W.Cooley, J. W. Tukey, “An Algorithm for the Machine Calculation of Complex Fourier Series.
Mathematics of Computation”, [S.L.], v.19, n.90, p.297-301, 1965.

[2] Aksoy, L., Costa, E., Flores, P. and Monteiro J., 2008. Exact and Approximate Algorithms for the
Optimization of Area and Delay in Multiple Constant Multiplications, IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 27(6), 1013-1026.

[3] L. Jia, Y. Gao, J. Isoaho, and H. Tenhunen, “A New VLSI-Oriented FFT Algorithm and
Implementation,” Proc. of Eleventh Annual IEEE Int’l ASIC Conference, 1998, pp. 337-341.

[4] K. Stevens and B. Suter, “A Mathematical Approach to a Low Power FFT Architecture,” IEEE Int’l
Symp. on Circuits and Systems, vol. 2, 1998, pp. 21-24.

[5] W. Han, T. Arslan, A. T. Erdogan and M. Hasan, “High-performance low-power FFT cores,” ETRI
Journal, vol. 30, no. 3, pp. 451-460, June 2008.

[6] J.-E. Oh and M.-S. Lim, “New radix-2 to the 4th power pipeline FFT processor,”]EICE Trans. Electron,
vol. E88-C, no. 8, pp. 1740-1764, Aug. 2005.

SIM 2011 — 26" South Symposium on Microelectronics 195

[7] O. Gustafsson, A. G. Dempster, K. Johansson, M. D. Macleod, and L. Wanhammar, “Simplified design
of constant coefficient multipliers,” Circuits, Systems and Signal Processing, vol. 25, no. 2, pp. 225—
251, Apr. 2006.

[8] O. Gustafsson, A. G. Dempster, K. Johansson, M. D. Macleod, and L. Wanhammar, “Simplified design
of constant coefficient multipliers,” Circuits, Systems and Signal Processing, vol. 25, no. 2, pp. 225—
251, Apr. 2006.

[91 Y. Voronenko and M. P"uschel, “Multiplierless multiple constant multiplication,” ACM Trans.
Algorithms, vol. 3, no. 2, May 2007.

[10] F. Qureshi, Gustafsson, F. O.” Low-complexity reconfigurable complex constant multiplication for
FFTs ” Circuits and Systems. ISCAS 2009. IEEE International Symposium on, pp. 1137-1140 May
2009.

[11] M D Macleod, " Multiplierless Implementation of Rotators and FFTs ", EURASIP Journal on Applied
Signal Processing, 2005:17 (2005) pp 2903-2910, Sept 2005.

[12] L. Aksoy, E. Costa, , Flores, P. and J. Monteiro “Optimization of Area in Digital FIR Filters using Gate-
Level Metrics”DAC 2007.

196 SIM 2011 — 26" South Symposium on Microelectronics

SIM 2011 — 26" South Symposium on Microelectronics

197

Development of the Overlap and Add Block for SoC-SBTVD

Audio MPEG4-AAC Decoder and Hardware Interface with the

wm8731 CoDec

'René A. Benvenuti, ?Adriano Renner, 3 Altamiro A. Susin
'augusto.benvenuti@ufrgs.br, *adriano.renner@ufrgs.br, *susin@eletro.ufrgs.br

Universidade Federal do Rio Grande do Sul

Abstract

SoC-SBTVD is a complex project that involves a few Brazilian universities focused on development
of the Brazilian digital television Set Top Box (STB). In the LaPSI laboratory at UFRGS we are
developing the hardware of the STB in the System-on-Chip (SoC) approach. The architecture of the SoC
will contain a CPU and memory, the audio and video decoders and peripherals. The SoC is described in
VHDL and synthesized to FPGA as a validation process to be afterwards mapped to silicon. This paper
presents a way to test the audio MPEG4—AAC decoder enabling to play a decoded audio stream. The
focus is the creation of the overlap and add part of the decoder and also the creation of an interface
between the decoder and the codec wm8731, which will permit to appreciate the recovered sound in the
audience room.

Key words: Overlap and Add, codec wn8731, audio output.

1. Introduction

When we talk about audio measurements many times we are interested both in a quantitative and in
a qualitative point of view. Referring to audio coding and decoding, the quantitative measure may be the
difference of the original stream and the recovered one. Here we are mainly interested in a qualitative
measure, which means that we want to reproduce the audio signal and to have a feeling about how good
it "sounds".

Looking for one way to qualitative assessment of the decoded stream, was proposed an interface
which could connect the output of the MPEG-4 AAC audio decoder to the wm8731 codec chip included
in the development kit used for design, and allow to play the decoded data.

Overlap and add is a computational low cost method to calculate the discrete convolution between
an extensive signal and a finite impulse response filter. The overlap and add block was developed to be
part of the audio decoder and to be connected to the audio output interface.

2. Development Environment

It was used in this project the Altera’s DE2 development kit, which includes the Ciclone II FPGA
and the Wolfson wm8731 audio codec.
The codec uses the following standard protocols to communicate itself:
o 12C interface: Used for sending command data and to set the desirable functionalities. Will
be denominated as control interface;
e 12S interface: Used to exchange data and clocks such as bit rate clock and the left right
selection clock. Will be denominated as data interface.
For simulation and synthesis of the code were used Quartus Il and ModelSim development tools.
For validation of the blocks is used a C++ source code developed at Universidade de Brasilia
(UnB).

3. Audio Output Interface

The goal of this work is, therefore, to create an interface as shown in figure 1:

, Codec
MPEG4-AAC Audio Output
Audio Decoder| | Interface = \\,’erﬂgigq

Fig. 5 — Proposed audio output interface

198 SIM 2011 — 26" South Symposium on Microelectronics

To create such interface was proposed one blocks architecture, allowing individual blocks synthesis
and simulation.
Figure 2 shows the established design for the audio output interface of the decoder.

Command 12C
ROM Control
Wolfson

Wm8731
Codec

12S

FiIFo < » Data + "

Fig. 2 — Audio Output Interface main blocks

The functions of the blocks in figure 2 are:

e Command ROM: The command ROM block is used to store the commands, to initialize
the wm8731 codec and also to manage the sending order.

e 12C Control: The 12C control block has the function to create the standard 12C message,
generate the needed clocks and serialize the data within the command ROM.

e 12S Data: The I2S data block is used to manage the data transmission to the wm8731
codec, depending on the sample rate established before by commands. It uses a left/right
select signal to choose the left/right channel, when a stereo audio stream is played.

e FIFO: It is a queue that is needed to match the decoder and wm8731 rates. It was
developed to let the written data available to read on the very first read clock rising edge, to
avoid breaks on playing the audio stream.

Synthesizing the structure described in figure 2 the following resources were used (table 1):

Tab. 1 Ciclone II FPGA used resources

Resource Used Total Available
Logic Elements 240 33,216
RAM Block [bits] 32,768 483,840

4. Overlap and Add Block

The Overlap and Add Block (OAB) composes the final step of the audio stream and FIR filter
convolution, being responsible, basically, by the sum and storage of the data from IMDCT [1].

At this moment, the OAB is synthesizable and at validation stage. To validate the hardware
implementation we get the input and output streams from the C++ code, developed by Universidade de
Brasilia (UnB) team, of the OAB structure, and then, using test benches, we generate the same input
vector in our hardware OAB design to compare the output streams. Therefore we can see and adjust
possible fails on the design.

Figure 3 illustrates the test and validation structure.

SIM 2011 — 26" South Symposium on Microelectronics 199

C++
Reference
Code

y

Output Data

h J

Input Data Comparison | » Results
A

Overlap
And
Add
(Under Tests)

y

Output Data

Fig. 3 — Overlap and Add Block validation structure

Although yet in validation stage, the OAB structure and the audio output interface might be
incorporated to the rest of the decoder project, allowing an easy way to qualitative measurement of the
audio decoder.

Figure 4 shows how it is organized the audio output interface with OAB layout.

Command | 12C |
ROM | Control o
MPEG-4
AAC Wolfson
Audio Wm8731
Decoder Codec
Overlap
- And - FiFo - [I)i?a -
Add

Fig. 4 — OAB and Audio Output interface layout

Until now, the entire structure of the OAB and the audio output interface, built to allow stereo
sound, was synthesized using the resources described on table 2.

Tab. 2 — Ciclone II FPGA resources used to the structure

Resource Used Total Available
Logic Elements 358 33,216
RAM Block [bits] 65,536 483,840

Both structures, OAB and audio output interface, are totally developed in hardware description
language, and may be used in the final project.

5. Conclusion and Future Works

Once integrated to decoder, the audio output interface might be helpful to qualitative measurement
of the audio decoder, accomplishing the main goal of this work.

The audio output interface could be used with any codec that communicates using I12C and 12S
protocols, in our case the Wolfson wm§8731.

The synthesized audio output interface and the OAB use a small amount of the total FPGA
resources, around 1 % of the total logic elements and around 13.5 % of the total internal RAM bits, and
it is an interesting alternative to the use of a processor dedicated to this function.

200 SIM 2011 — 26" South Symposium on Microelectronics

Using an own developed HDL code avoids the need of purchase some kind of intellectual property
(IP) to do such task.

Properly tested the overlap and add block may be incorporated into the audio decoder, comprising
part of the SoC-SBTVD audio decoder.

The next steps to complete this work are the on board validation of the structure and the integration
to the audio decoder, after that we will be able to “hear” the decoder.

6. References

[1] ISO/IEC 14496, “Informational Technology — Coding of Audio Visual Objects” part 3: audio, 3
ed., Dec 2005.

SIM 2011 — 26" South Symposium on Microelectronics 201

Cell-Based VLSI Implementations of the Add One Carry Select Adder

'Jucemar Monteiro, "Pedro V. Campos, !'José Luis Giintzel, ’Luciano Agostini
{jucemar, pedropaulovc, guntzel } @inf.ufsc.br, agostini@inf.ufpel.edu.br

"Embedded Computing Lab. (LCE) - UFSC - Florianépolis, Brazil
2Group of Architectures and Integrated Circuits (GACI) - UFPel - Pelotas, Brazil

Abstract

This paper proposes an add-one carry-select adder architecture optimized for cell-based VLSI generation.
This architecture is compared to a previously proposed A1CSA architecture, as well as, to Carry-Select Adder
(CSA) and Carry-Ripple Adder (CRA) architectures. Synthesis results for 45nm technology showed that, for
higher order adders (32 to 256 bits), the proposed AICSAS architecture is, on average, 13% faster than the
investigated “select adders”. Power and area estimates showed that, for the same range, the AICSAS is
smaller and consumes less power than the others “select adders”. Power-delay results reveals that, for a bit
range between 16 and 256, the A1CSAS is the most energy-efficient architecture among all investigated adders.

1. Introduction

Addition is the most commonly used arithmetic operation within contemporary electronic systems. It has
great importance not only in general purpose CPUs, but also in acceleration blocks, as part of arithmetic
circuits. Besides used as a proper operation, it serves as the basis to many other arithmetic operations.

The choice of which adder architecture to use is of utmost importance, since the performance of adders
may determine the whole system performance [1]. Area and power consumption are also relevant figures of
merit to be considered, especially when the design targets VLSI realization. Recently, energy-efficiency has
also become an important metric due to the growth of battery-powered portable device marked.

Most works addressing adder architectures are focused on critical delay reduction by optimizing the carry
propagation chain [1-3]. Such optimization can be accomplished at the logic-level, at transistor-level or at both.
Transistor-level optimizations may use pass transistors, dynamic logic, etc. On the other hand, conventional
physical design flow relies on standard-cells for layout generation. Although typical standard-cells libraries
contain up to hundreds of cells, they are all designed using static CMOS style. The inclusion of user-created
cells with other styles, as pass transistor or dynamic logic, is generally not allowed due to limitations of the
design flow itself. Therefore, when designing high performance addition-based arithmetic circuits using cell-
based VLSI design, designers must rely on logic-level optimized fast adder architectures.

The Add-One Carry-Select Adder (A1CSA) [4-5] has originally been proposed as a low-cost version of the
Carry-Select Adder (CSA) [6]. Later, a low power version of the AICSA was also proposed [7]. However, in
order to achieve area/transistor reduction, those A1CSA circuits, and a few others as well, explore pass
transistor logic, which prevents their implementation in a standard-cells design flow. Recently, Mesquita et al.
proposed a logic-level only A1CSA architecture, targeting FPGA-based design [8].

The main contribution of this paper relies on a new logic-level A1CSA architecture, hereinafter referred to
as A1CSAS, specially tailored for standard-cells based design. The AICSAS was compared to Carry-Ripple
Adder (CRA), CSA and Mesquita's AICSA (for the sake of simplicity, referred to as A1CSA). Synthesis
results, obtained with Synopsys Design Compiler (DC) [9], reveal that, for bit-widths ranging from 32 to 256,
the A1CSAS is the fastest adder architecture among the investigated ones. They also show that, for bit-widths
between 16 and 256, the AICSAS is the most energy-efficient adder architecture. Finally, the synthesis results
pointed out that, for the considered range of bit-widths (8 to 256), the AICSAS occupies less area and
consumes less power than both the AICSA and the CSA.

The remaining of this paper is organized as follows. Section 2 presents both AICSA and AICSAS
architectures and gives a brief review on related works, concerning the A1CSA. Synthesis results are presented
and discussed in section 3. Section 4 presents the most relevant conclusions of this work.

2. Add One Carry Select Adders (A1CSA) for Cell-Based Design

The Carry-Ripple Adder (CRA) is known as the most area efficient, and at the same time, the slowest
adder architecture [2]. It has both time and area complexities O(n) [3]. In the CSA, addition is divided into m
modules of & bits each. Each module has two k-bit wide adders (generally, CRAs), which perform two additions
at the same time: one with CIN=0 (CIN means carry-in) and another with CIN=1. Such degree of parallelism
makes the CSA one of the fastest adder architectures. On the other hand, the CSA area is about as twice as that
of the CRA, for a given bit-width. The time and area complexities of the CSA are O(sqrt(n)) and O(2n),
respectively.

The philosophy behind the A1CSA relies on optimizing the CSA by replacing the adder with CIN=1 by a
less expensive logic, known as "add-one logic". Most works on the AICSA architecture perform transistor-

202 SIM 2011 — 26" South Symposium on Microelectronics

level optimization on the "add-one logic" by using pass transistors [4,5,7]. However, the design at the
transistor-level prevents the standard-cells based A1CSA realization. On the other hand, the AI1CSA
architecture proposed by Mesquita et al. was designed at the logic-level only [8], to allow FPGA-based
synthesis. In this work we consider an adapted version of Mesquita's AICSA (referred to as AICSA, simply)
which block diagram is showed in Fig. 1. In this diagram, the box labeled with "A1" represents the "add-one
logic". An explicit multiplexer is responsible for choosing the correct result for each module, except for the
least significant one.

A=ﬁ 14 =BI1,, 1 AE],,,H =BB M '?4 ‘ =54 i AD, Aa BD 3
-] |
C c ¢ —
CHocra 9 MH o crA M MH crA Y Ca i
- CRA "
—
|5
S Sel, s S
ProP I | Propz | l Plopll t
Sy © Se.n Salr S Ces
. P

Props

C

(G LY

Fig. 1 — 16-bit AICSA.

The add-one logic can be implemented based on the following properties of the binary addition [5] [8].

Property 1: In an addition of two n-bit numbers with the least significant bit being “0” for both numbers,
if the carry-in bit is changed from one value to another, the LSB of the addition is complemented and the other
bits remain unchanged.

Property 2: If the addition of two n-bit numbers with a carry-in of “0” has m “ls” before the first
occurrence of a “0” (starting from the LSB), then the least significant m+1 bits of the addition with a carry-in
of “1” will have values complementary to the first m+1 bits of the addition with carry-in “0".

Cin 0 Cin 1
A 1100 (12) A 1100 (12)
B 0100 (4) B 0100 (4)
Output 10000 (16) Output 10001 (17)
(a)
Cin 0 Cin 1
A 0001 (1) A 0001 (1)
B 0110 (6) B 0110 (6)
Output 0111 (7) Output 1000 (8)
(b)

Fig. 2 — Example of Property 1 (a) and Property 2 (b).

The properties showed the Fig. 2 were used to derive the circuit for the "add-one logic". Fig. 3(a) shows the
designed circuit for the "A1" block in Fig. 1. (i.e., for the "add-one logic" of the AICSA).

Analyzing the equations of the Al block, one can notice that it is possible to incorporate the result selection
into the Al existing XOR gates, therefore eliminating the multiplexer. By doing so, the logic depth of an
A1CSA module is reduced, resulting in delay reduction. It also contributes to reduce circuit area, and thus, to
improve energy-efficiency. The modified "add-one logic", called A1S, is showed in Fig. 3(b). It was used to
replace both the Al block and the multiplexer in the AICSA of Fig. 1, given rise to a new A1CSA, named
A1CSAS.

B, A, 3,4 A A,
I B. A, B.A B A B A,
L1 L1 L1l 1] Ny
CD3 £
- Cos 10
| CRA
S\J SL SLJ Sd
s, s] s s,
P\uphi_ { T = ‘e Cm
r
me jdl|

[—

fal =]
8,88, 8,

(a) (b)

Fig. 3 — Al block (a) and A1S block (b)

SIM 2011 — 26" South Symposium on Microelectronics 203

3. Results and Discussion

The analyzed adder architectures AICSAS and A1CSA were evaluated and compared against CRA and
CSA, which is fast “carry select” adder architectures that may be adopted in a cell-based design flow. The CRA
was also included in the study to serving as reference.

In order to obtain reliable estimates for area, critical delay and power, 8, 16, 32, 64, 128 and 256-bit wide
adders were described in Verilog and synthesized for TSMC 45nm standard-cells library using Synopsys
Design Compiler (DC) [8] in Topographical mode. The DC mapped the CRAs by using the full adder (FA) cell
available from the standard-cells library, thus providing the best possible CRA realizations within the
automated design flow.

The fast adder architectures were designed by splitting the total bit width into 4-bit wide modules (i.e.,
m=4). Each output function of block Al was described in a separated Verilog module, in order to prevent DC
from sharing logic. The same strategy was used to describe block A1S. The CRA adder was also described in a
separate Verilog file. The modules were joined in another Verilog module called basic block. Fig. 1 shows the
16-bit wide A1CSA composed by three basic blocks and one 4-bit wide CRA. A1CSAS were described in
Verilog in a similar manner. Such Verilog organization allows to restrict logic optimization and mapping to the
bounds of each sub-circuit, thus preventing DC from transforming an AICSA into a CRA.

Tab. 1 shows critical delays (in ps) as estimated by Synopsys DC. As it would be expected, the CRA
exhibits the worst delay for all bit widths. On the other hand, for 8 and 16 bit wide adders the CSA exhibits the
shortest delays, whereas for 32 to 256 bit wide adders the AICSAS exhibits the shortest delays. The delay
comparison reveals that the AICSAS is, on average, 3% faster than CSA and it is, on average, 5% faster than
AI1CSA, respectively. For adder with bit width larger than 64 bits, AICSAS become faster than both CSA and
A1CSA. For 64 bits, the AICSAS is 15% faster than the CSA and 13 % faster than A1CSA. For 256 bits the
A1CSAS is 18% and 17 % faster than the CSA and the A1CSA, respectively.

Tab.1 - Adders critical delay [ps]

Bit-width
Adder 8 16 32 64 128 256
A1CSAS 365.9 440.7 608.1 888.5 1550.3 2855.7
A1CSA 315.4 413.0 624.8 1015.1 1854.1 3429.1
CRA 406.4 740.1 1415.5 2681.1 5187.8 10316.4
CSA 293.8 386.9 618.8 1037.0 1860.7 3481.6

Tab. 2 shows area estimates provided by Synopsys DC, in um®. As one would expect, the CRA requires the
smallest amount of area among the investigated architectures. Among the remaining architectures, referred to as
"select adders", A1CSAS is the architecture requiring the smallest amount of area, followed by A1CSA and
CSA. The main result of this table is that AICSAS is, on average, 26% smaller than CSA and 13% smaller than
AI1CSA, respectively.

Tab.2 - Adders area [umz]

Bit-width
Adder 8 16 32 64 128 256
A1CSAS 459 102.3 215.2 441.0 892.6 1795.8
A1CSA 50.5 116.1 247.3 509.8 1034.8 2084.7
CRA 353 70.6 141.1 282.2 564.5 1129.0
CSA 57.0 135.7 293.0 607.7 1237.1 24959

Tab. 3 shows the power consumption of each adder, expressed in mW, as estimated by Synopsys DC. The
CRA is the adder architecture requiring the least power, followed by A1CSAS and AICSA. On average,
A1CSAS demands 18% and 11% less power than CSA and A1CSA, respectively, for all bit widths.

Tab.3 - Adder power estimates [mW]

Bit-width
Adder 8 16 32 64 128 256
A1CSAS 27.0 57.6 118.3 238.4 482.8 976.8
A1CSA 293 63.6 133.4 270.6 550.4 1114.0
CRA 23.4 47.2 95.2 190.0 381.0 771.7
CSA 30.7 67.9 144.0 294.4 599.9 1212.1

To establish a comparison in terms of energy efficiency, the power-delay product (PDP) of each adder was
calculated. The PDP of an adder can be interpreted as the amount of energy it requires to perform each addition.
Tab. 4 shows PDP values, in fJ. A1CSAS presents the lowest PDP values for bit widths ranging from 16 to 256.
The A1CSA presents the second lowest PDP values, considering bit widths from 16 to 256. For 8 bit wide
adders, the CSA presents the lowest PDP, followed by A1ICSA. The CRA has the highest PDP among all

204 SIM 2011 — 26" South Symposium on Microelectronics

adders from 16 to 256 bits. The comparison of PDP between the “select adders” shows that the PDP of
A1CSAS is, on average, 19% lower and 15% lower than that of CSA and AICSA, respectively.

Tab.4 - PDP of adders [{]]

Bit-width
Adder 8 16 32 64 128 256
A1CSAS 9.87 25.37 71.95 210.59 748.50 2789.39
AICSA 9.26 26.28 83.36 | 274.65 1020.48 3820.19
CRA 9.51 34.92 134.69 | 509.45 1976.72 7960.79
CSA 9.02 26.28 89.08 305.33 1116.17 4220.88

4. Conclusion

This paper presented two version of Add-One Carry-Select Adders suited for cell-based VLSI design flow.
Those architectures were synthesized for TSMC 45nm standard-cells library by using Synopsys Design
Compiler in Topographical mode. Carry-Ripple Adders (CRA) and conventional Carry-Select Adders (CSA)
were also synthesized. Results showed that A1ICSAS requires, on average, 13% and 26% less area than A1CSA
and CSA, respectively. Such area reduction comes from the use of an add-one logic (replacing one of the two 4-
bit CRA modules encountered in conventional CSA) and elimination of the multiplexer present in the original
A1CSA.

For adders with bit width ranging from 32 to 256, critical delay estimates showed that AICSAS is
significantly faster than CSA and A1CSA. Considering the bit-widths between 16 and 256, the A1CSAS is the
most energy-efficient adder architecture. Finally, for the whole range of considered bit widths, the AICSAS
occupies less area and consumes less power than both the AICSA and the CSA. Only the CRA consumes less
power and requires less area than the A1CSAS. Therefore, the AICSAS is an excellent high performance and
energy-efficient adder alternative for cell-based VLSI design.

5. References

[1] J. M. Rabaey, A. Chandrakasan, B. Nikolic, Digital Integrated Circuits: a design perspective, 2nd ed.,
Upper Saddle River, N. J.: Prentice Hall, 2003, pp.559-586.

[2] M. D. Ercegovac and T. Lang, Digital Arithmetic, San Francisco: Elsevier Science, 2004.

[3] V. Oklobdzija, "High-speed VLSI arithmetic units: adders and multipliers”, in Design of High-
Performance Microprocessor Circuits, A. Chandrakasan, W. J. Bowhill and F. Fox, Eds. Piscataway, N.
J.: IEEE Press, 2001, pp. 181-204.

[4] T.Y. Chang and M. J. Hsiao, “Carry-select adder using single ripple-carry adder,” Electronics Letters,
vol. 34, no. 22, Oct. 1998, pp. 2101-2103.

[5] Y.Kimand L. S. Kim, “64-bit carry-select adder with reduced area”, Electronics Letters, vol. 37, no. 10,
May 2001, pp. 614-615.

[6] O.J. Bedrij, "Carry-Select Adder", IRE Transactions on Electronic Computers, June 1962, pp. 340-346.

[71 Y. He, C.-H. Chang, and J. Gu, “An area efficient 64-bit square root carry-select adder for low power
applications,” Proc. IEEE Intl. Symposium on Circuits and Systems (ISCAS2005), pp. 4082—4085.

[8] E. Mesquita, et al, “RIC fast adder and its SET-tolerant implementation in FPGAs,” Proc. Intl.
Conference on Field Programmable Logic and Applications (FPL 2007), pp. 638-641.

[9] Synopsys's Design Compiler User Guide, Version C-2009.06, June 2009.

SIM 2011 — 26" South Symposium on Microelectronics 205

Iterative Mode Hardware Implementation of CORDIC Algorithm

Raphael A. Camponogara Viera, Paulo César C. de Aguirre, Leonardo Londero de
Oliveira and Joao Baptista Martins
{raphaelviera, paulocomassetto, leonardo } @mail.ufsm.br, batista@inf.ufsm.br

Grupo de Microeletronica - GMICRO
Universidade Federal de Santa Maria - UFSM

Abstract

This paper presents different hardware implementations of CORDIC (Coordinate Rotation Digital
Computer) algorithm in iterative mode. CORDIC is a shifi-add algorithm for computing a wide range of
functions including trigonometric and logarithmic, for instance. We have used a C model of the CORDIC to
validate hardware design functionally. The algorithm was described in VHDL, synthesized and tested with a
SPARTAN3E XCS500E FPGA. After that, they were synthesized using standard cells. We have achieved the
maximum frequency of 420 MHz for the 16 iterations approach using the FPGA and 125 MHz in X-FAB XC06
standard cells synthesis.

1. Introduction

The Digital Signal Processing (DSP) has been dominated by low cost microprocessor-based-systems.
While these systems offer much flexibility, they are not fast enough for the current DSP applications because
yours software algorithms do not meet the demanding [1]. In order to solve this problem, hardware dedication
systems can be used for high speed DSP applications.

Trigonometric functions is one of the mainly tasks performed in DSP applications. Among the existing
hardware algorithms for trigonometric solutions the CORDIC (Coordinate Rotation Digital Computer)
algorithm is one of the most used. Several works and hardware implementations of CORDIC algorithm are
presented and the literature, like [2], [3] and [4]. These alternatives exist for implementing "shift-and-add”
algorithms functions in FPGA-based systems like logarithm and exponential functions.

This work focuses on a hardware implementation of the Bit-Parallel iterative mode (rotational) CORDIC
algorithm with 8, 16 and 32 iterations. To validate this architecture a CORDIC algorithm software
implementation was developed. The hardware architectures were implemented in a Spartan3E XC3S500E
FPGA and synthesized to X-FAB XC06 standard cells. A comparative study on the performance of these
implementations is presented.

The paper is organized as follows. Next we introduce the basis of CORDIC algorithm. Section 3 describes
the implementation of the serial mode CORDIC in hardware and software. Section 4 provides simulation and
synthesis results. Finally, we conclude the paper in Section 5.

2. The CORDIC Algorithm

The CORDIC algorithm is an iterative method for computing elementary functions like sine, cosine, and
arctangent. It was introduced by Volder [5] [6]. The method can also be easily extended to compute square
roots, hyperbolic functions as well polar to rectangular and rectangular to polar conversions [7]. It works by
reducing the calculation into a number of micro-rotations for which the arctangent value is precomputed and
loaded from a table. This method reduces the computation to addition, subtraction, compares and shifts [6].
Those functions are easily performed by a Field Programmable Gate Array (FPGA).

2.1. Basis of CORDIC
The algorithm is derived from the general rotation transform that gives the equations for the vector (X s

Y;ﬂ) in terms of vector (X, ,Y,) and 0 as:
X, =X,.cos(8)-Y, .sin(0)
Y. = X,sin(0)+Y, .cos(0)

n+l
In order to simplify the calculations, the CORDIC algorithm now uses a number of rotations, each one can
be easily computed to build up the 8 angle. We decompose the 0 angle as a sum of the angles, so that:

0= Do)

n

(M

and each @, is chosen as: o, =ttan” (2")Stan(o,) =2" 3)

206 SIM 2011 — 26" South Symposium on Microelectronics

Rearranging the equations for a single rotation in terms of tan(c,,) :
X,,=X,.cos(@,) Y .sin(a,)=cos(,).[X,-Y, tan(a,)]
Y. =X, sin(a,)+Y cos(a,)= cos(a,).[X,.tan(a,) +Y]
Using tan(a,) =+2™ andlet 5, =+ 1, the equations for X , and Y, become:
X, =cos(a,).(X,-0a,2".X),)
Y. =cos(,).(Y,+a,2"Y)

n+l
If we ignore for the moment the cos(¢,,) terms, then these equations may be implemented with an adder and

“4)

(&)

a shifter. The solution to the term cos(e,,) is to ignore it! This in effect means that the values computed by the

CORDIC algorithm are 1/cos(a,) greater than they should be at each iteration. The total scaling factor as
K —n is:

k=11 =1_n[\/l+ci.2”::1.6468 (6)

r=0 cos(a,) 4o

The value of K depends on the number of iterations and the accuracy of the number in the look-up table.
Note that this scaling factor is constant, independent of the angle. In many applications, the scaling factor can
be ignored. The angle of rotation is accumulated by summing o, tan'1(2'")- The values of o, tan'1(2'") are

tabulated and then added to an accumulator. CORDIC is normally used in one of two modes: rotation mode and
vectoring mode.

Rotation Mode: In this mode the initial vector (X, ,Y;,) is rotated by an angle 0. The resulting values of x
and y provide the trigonometric functions, and follows the sequence below:

1. Aninitial vector (X, ,Y;,) is rotated by an angle 0;
The angle accumulator is initialized with the value of 6;

A sequence of rotations where each angle is of magnitude tan™(27") is applied;

At each step the sign of the angle o, is chosen to reduce the angle accumulator;

A

So o, is simply chosen according to the value of the angle accumulator (Z is the angle accumulator).
The equations for rotation mode are:

X, =X,-Y0,2"
Y=Y, +X,0,2" ™)
Z.,=Z .o,tan'(2")

where o, =—1if Z,<0, +1 otherwise. At the end of the algorithm, the results are:

X =K[X, .cos(Z,)-Y,.sin(Z,)]
Y= K[Y, .cos(Z,)*+ X, .sin(Z,)]
Z=0

®)

k=[[1#2 ™)

These equations provide both the length of the vector and add the tangent to any initial angle placed in
angle accumulator. The sine and cosine functions are performed in the rotation mode. In order to compute the
sine or cosine of an angle 6, the Z register will be initialized with 0, Y with 0, and the X with 1. The X register
corresponds to the scaled cosine value, and the Y register to the sine value. We can determine the unscaled
value by dividing the final values by K (1.6468). For example, after 16 iterations, the algorithm will be as (8)
and the results of sine and cosine:

sin(30°) = 1 = 08237 =0.5001=0.50 cos(30°) = X = 1.4261 =0.8660~=0.87
K 1.6468 K 1.6468

The method to compute polar to cartesian coordinate transformation is the same to compute sine and
cosine. The transformation is defined by:

x=r.cos@) y= r.sin®)

To perform this transformation is necessary to load again the 0 into Z, load X with K and Y with 0.

SIM 2011 — 26" South Symposium on Microelectronics 207

3. C Modeling and Hardware Implementations

The iterative (in Bit-Parallel mode) CORDIC algorithm was implemented in C language and VHDL.
We have used C modeling to validate the hardware architecture and also find errors that could lead to different
results between both implementations [8].

3.1. Software Implementation

The software implementation was developed in C language and provides circular, rotational and hyperbolic
functions. The same input vectors for the software algorithm were applied to the hardware input architectures in
order to evaluate yours functional behaviors.

3.2. Hardware Implementations

The Bit-Parallel CORDIC hardware architecture was described in VDHL and uses a single hardware block
to perform the » iterations. This block is composed for three adders/subtractors, three registers, two shifters, a
ROM and some multiplexers as can be seen in Fig. 1. Then, there is a latency of n clock cycles between the
input and output data. This implementation is faster than the Bit-serial one because the second has a latency of
(n x n) between the input and outputs data [3].

Typically, about 10 to 20 iterations are enough to give a good result with a lower error rate. More iterations
provide more accuracy but request longer adders and consequently reduce the maximum frequency operation
and increasing the logic area cell.

In this work three different implementations were developed. The first one performs 8 iterations, the
second, 16 iterations and the last, 32 iterations. An evaluation between these implementations is presented in
Section 4.

Xo Yo Zo

Reqgister Register Register

Signal (Zn-1)

>>n >n
Y

; ' 1'71. t of 2
y y
Zn

Fig. 1 — Block diagram architecture

4. Simulation and Synthesis Results

The designed modules were synthesized for two different technologies: Spartan3E XCS500E FPGA and X-
FAB XC06 5V CMOS Process, using Xilinx ISE 12.1 and Synopsys Design Compiler tools, respectively.

The simulations were carried out using the ISE Simulator and the validation of these one was performed
comparing the hardware and software outputs. These results are shown in Tab.1. There is a slightly difference
between the hardware and software results because the constant factor (K) was ignored in VHDL
implementation.

Tab.1 — Simulation Results

Entries Software Hardware
Xin Yin Zin Xout Yout Xout Yout
100 5 30 -28.62 162.17 -32.00 149.00
8 bits 128 2 60 -37.80 207.39 -35.00 196.00
288 4 30 -84.24 466.76 -78.00 465.00
100 5 30 -36.37 160.83 -33.00 150.00
16 bits | 128 2 60 -39.41 207.10 -36.00 197.00
288 4 30 -87.43 466.18 -82.00 460.00
100 5 30 -36.37 160.81 -33.00 159.00
32 bits | 128 2 60 -39.42 207.09 -36.00 198.00
288 4 30 -87.89 466.09 -85.00 465.00

208 SIM 2011 — 26" South Symposium on Microelectronics

Tab.2 shows the FPGA synthesis results for the entire developed module considering maximum frequency
and resource utilization (number of CLBs, LUTs and IOBs) for three different hardware implementations with
8, 16 and 32 iterations.

Tab.2 — Device Utilization Summary

XC3S500E Used Utilization Maximum Frequency
Number of CLB 24 Less than 1%
8 bits | Number of 4 input LUTs 9 Less than 1% 264 MHz
Number of bonded I0OBs 25 10%
Number of CLB 76 Less than 1%
16 bits | Number of 4 input LUTs 31 Less than 1% 194 MHz
Number of bonded I0Bs 49 21%
Number of CLB 100 Less than 1%
32 bits | Number of 4 input LUTs 43 Less than 1% 177 MHz
Number of bonded I0Bs 97 41%

Tab. 3 presents the number of logic cells and equivalent gates (based in a NAND2) for three different
frequency operations for standard cells synthesis. This approach provides a tradeoff between maximum
frequency operation and logic cells number.

Tab. 3 — X-FAB XC06 Standard Cells Synthesis Results

Logic Cells NAND?2 Equivalent Gates Maximum Frequency
8 bits 1095 3417 125 MHz
16 bits 10826 21200 125 MHz
32 bits 51725 83808 100 MHz

5. Conclusion

In this paper, we have presented a hardware implementation of the CORDIC algorithm in a Bit-Parallel
iterative mode. This approach uses less hardware than a Bit-Serial or pipelined structure [3]. The initial study
has compared FPGA and logic synthesis and standard cells results. The standard cells synthesis proves that this
design can operate at higher frequencies (more than 100 MHz) even for a 600 nanometer technology. Bit-
Parallel iterative mode takes n clock cycles, where n is the number of algorithm iterations. In this work, were
implemented three different architectures, the first one with 8 iterations, the second one with16 iterations and
the third one with 32 iterations. It was proved that more iterations you have, more precision is given and more
clock cycles are needed to process an input data.

6. References

[1] Andraka, R., "A survey of CORDIC algorithms for FPGA based computers", Andraka Consulting
Group, Inc, 1998.

2] Angarita, F., Perez-Pascual, A., Sansaloni, T., Vails, J., "Efficient FPGA Implementation of CORDIC
Algorithm for Circular and Linear Coordinates", International Conference on Field Programmable Logic
and Applications. Aug 2005.

[3] Valls, J., Kuhlmann, M., Parhi, K.K., "Efficient mapping of CORDIC algorithms on FPGA", IEEE
Workshop on Signal Processing Systems, 2000. SiPS 2000. Oct 2000.

[4] Vadlamani, S., Mahmoud, W., "Comparison of CORDIC algorithm implementations on FPGA
families", IEEE Southeastern Symposium on System Theory. Nov 2002.

[ST Volder, J., "The CORDIC Trigonometric Computing Technique", IRE Trans. Electronic Computing,
Vol EC-8, pp330-334. Sept 1959.

[6] Bhakthavatchalu, R., Sinith, M.S., Parvathi N., Jismi K.,"A Comparison of Pipelined Parallel and
Iterative CORDIC Design on FPGA", 5th International Conference on Industrial and Information
Systems. Aug 2010.

[7] Duprat, J. and Muller, J.M., "The CORDIC Algorithm: New Results for Fast VLSI Implementation",
IEEE Transactions on Computers, Vol. 42, pp. 168-178. 1993.

[8] Andraka, R. J., "Building a High Performance Bit Serial Processor in an FPGA", On-Chip System
Design Conference. 1996.

SIM 2011 — 26" South Symposium on Microelectronics 209

Test-Chip Structures for Local Random Variability
Characterization in CMOS 65 nm

'F elipe Correa Werle, 2Juan Pablo Martinez Brito, 1’2Sergi0 Bampi
{ fcwerle, juan, bampi} @inf.ufrgs.br

'GME, Microelectronics Group — Informatics Institute
’PGMICRO, Graduate Program on Microelectronics
UFRGS, Federal University of Rio Grande do Sul

Abstract

This paper describes the design of a 65nm technology test chip, aimed at investigating and characterizing
the truly local random variations. The first structure is a matrix-style transistor array with closely spaced MOS
transistors. The second structure comprises three arrays of ring oscillators with different numbers of stages
and other two arrays of ring oscillators composed solely by single-type transistors. The third structure is based
on a procedure to measure an array of stacked-pairs of identical MOS transistors. The design is done in 65nm
CMOS bulk technology and the final chip area is 1580 x 1580 um.

1. INTRODUCTION

Process variations impose a very important challenge to future nano-scaling of VLSI technology below
32nm. For the past several years, variation in CMOS process has been a concern in the design, manufacture and
accurate operation of integrated circuits. Nowadays, intradie variations (further discussion on the differences
between interdie and intradie variation are in [1]) are considered as one of the limiting factors for further
CMOS scaling [2] and certainly a drawback to the continuing Moore’s law [3] scaling. Intradie fluctuations [4]
originate mainly from the fluctuation of dopants in the channel region, which is determined by a stochastic
energetic ion implantation process [5]. That is, this type of characteristics fluctuation cannot be eliminated in
principle.

Mismatch differences among MOSFETs are of utmost concern, since the fluctuation of their characteristics
becomes significant as their physical size decreases. Therefore, to model and characterize these variations,
highly accurate measurement data on local variability are needed to feed and verify transistor mismatch models
[6, 7] with realistic statistical data. Thus, one of the most serious challenges in process variations for sub-100-
nm technologies is the effective and reliable way to obtain statistical data from FETs within a reasonable time.
To obtain meaningful variation data, special care must be taken concerning the test structure and measurement
setup. Due to its statistical random nature, the local random variation effect must be characterized by measuring
a large number of individual devices closely placed.

A basic approach to obtain statistical data from a given process is to use arrays of identical transistors [8,
9]. Transistor arrays unavoidably occupy a large area and require sequentially long measurements, reducing the
measurement throughput. Nevertheless, the attractiveness of transistor arrays as test structures has led to recent
efforts [10] that aim to come up with new ways to create optimized structures for fast and semi-automatic
measurement procedures. This structure relies on a multiplexed transistor array with high-density access to
multiple devices by means of address decoding and access circuits comprised of CMOS transmission gates. An
alternative to the first class of measurements is to convert an analog signal to a more robust measurable
quantity. Doing so simplifies the requirements for the test equipment and environment.

Frequency measurements using on-chip circuitry can help with signal-to-noise and bandwidth problems
and provide a minimally invasive probing strategy. Ring oscillator-based approaches [11] are effective for test
time and are good general-purpose indicators of process variations on digital performance. However, they
typically cannot help to predict unique device variation because they tend to indicate the mean parameter
strength from its frequency value.

A more recent technique for variability measurement is to use a common gate series-connected MOSFET
structure [12-14] suitable for process monitoring purposes. In this structure the mismatch behavior of a large
number of MOSFETS pairs is promptly evaluated in a small area using simple voltage measurements. In this
paper we propose a test chip designed with new structures for local random variability measurements. Design,
simulation and variance simulations using Monte-Carlo were done for a 65 nm CMOS bulk process. The
designed test chip has the following structures:

210 SIM 2011 — 26" South Symposium on Microelectronics

1) A MOSFET matrix-style array composed of multiplexed/biased closely spaced identical MOS transistors.

2) An array of a new type of ring oscillator composed solely by single-type transistor called: NMOS-only [or
PMOS-Only] ring oscillator.

3) An array of MOSFET stacked-pairs in which their gates are internally connected.

4) An array of MOSFET stacked-pairs in which the gates are externally connected, providing the possibility
to evaluate layout/distance mismatch.

2. A MOSFET MATRIX

The purpose of this structure is to evaluate the transistor mismatch in the traditional way (data analysis of
current-voltage curves). Based on [9], Fig. 1 shows the entire diagram of the test structure. The MOSFET
matrix includes: bias circuitry, level shifters and address decoding.

VD[ain *S
orce-sense
foree-sgnss Decoder X 6x64 m<
g fe g2
© S 64 Level Shifters - Drain $g
T > 2
>(.'J I 64 Transmission Gates r‘h T
vl
}s4
$§ o 2
®© R
x| 0O o2
gl |age i
w2
© g 3 Sa5|3 MOSFET MATRIX 2 o
= T *E'éo] P S
Q < 5c oo *p
8 Dex (Pmos and Nmos) |®(g &
8| [28* o ¢
o| |85 g @
< © 2 5
O o

Fig. 1 - Entire MOSFET Matrix Test Structure
The transistors are arranged in individually addressable cells. The matrix contains a total of 1024 devices
(512 NMOS and 512 PMOS) placed in 64 columns with 16 rows. Ten groups of ten different size transistors

compose the MOSFET matrix. Table 1 summarizes the transistor sizes (60nm is the minimum channel length):

Tab. 1 - Transistor Sizes

L [nm] W [nm]

1 60

2 90

& 120 6000

4 240

5 600

6 6000

7 180
600

8 360

9 120
60

10 180

All transistor drains on each column are connected together. All gates and sources on each row are
connected together. Figure 2 draws the connection to each Device Under Test (DUT) within the matrix.

Using a row/column address decoder, only one transistor is selected. The other terminals of the non-
selected transistors are clamped to respective (N-Fet or P-Fet) clamp voltages into the accumulation mode. The
transmission gates connection to each DUT, the force/sense lines, and the DUT selection procedure are shown
in Fig. 3.

SIM 2011 — 26" South Symposium on Microelectronics 211

VD force
IDS0| IDS1 IDSn ﬁ

vap VDO$— VD1 VDn —I
L L L) D[j[—‘j—(VS sense
T
LI B] VS force
VS0 E[E[— T
L}]]
L} n L}
[] [] []
VGn
von ﬂ ﬁ - 'L{ e
L * VD sense
Fig. 2 - Transistor Connections. Fig. 3 - DUT Connection

Transmission gates are composed by thick oxide transistors (I/O transistors 2.5V) to drive current of the
selected device to the I/O pin. The transmission gate lies in series between the drain and the source terminal of
the DUT, causing a difference between the applied pin voltage (‘external’ voltage) and the ‘real’ bias voltage
applied to the device. To minimize the effects of these IR drops, a Kelvin measurement technique is used. This
technique increases the pin count because a Sense pin is needed. The entire layout of this structure including the
PMOS and NMOS MOSFET Matrix, the bias circuitry, level shifters, address decoding and routing is about
330 x 280 pm” as shown in figure 4:

Fig. 4 - MOSFET Matrix Layout

3. RING OSCILATOR

The frequency of a traditional CMOS ring oscillator (RO) is typically sensitive to many process
parameters, e.g., transistor gate length and width, threshold voltage, oxide thickness, etc. For equally designed
ROs (that is, same number of stages and same W and L for the inverters), the respective difference on the
measured output frequency is related to process variations [11]. In our test chip, we designed three different
CMOS ring oscillators with 67, 101 and 151 stages that are planned to achieve (with full supply power. 1.2V)
148.4 MHz, 221.5 MHz and 332.9 MHz respectively. To control and avoid interferences in our measurement
the last stage of each ring oscillator is controlled by a Tristate inverter, thus only one oscillator oscillates at
time. By now one group of oscillator was measured in a temporary test platform. The definitive setup is being
planned. The measurement was made in appropriated voltage range to show variations between the oscillators.

Tab. 2 —Voltage and frequency of oscillation.

VDD OSC 67 | Mean Freq. | Variation
230 17 kHz 15%
280 6.1 kHz 14.6%
300 100 kHz 14.8%
400 1.2 MHz 13.3%

In our test chip, we designed a novel ring oscillator whose frequency is maximally sensitive to variations in
a single type of transistors and minimally sensitive to other variation sources. For this, we introduced the use of
NMOS-Only (or PMOS-Only) ring oscillators [15], with the inverter as an enhancement load/enhancement
driver configuration. Figure 5 has an example of a three (3) stage NMOS-Only Ring Oscillator:

212 SIM 2011 — 26" South Symposium on Microelectronics

e T

e Cu |
M1 M1 M1

VSS
Fig. 5 - Three (3) stages NMOS-Only Ring Oscillator

Usually, the variation in transistor threshold voltage is the strongest contributor to the measured
fluctuations in the frequency of ring oscillators. Since this type of ring oscillator contains only NMOS or
PMOS transistors, the output frequency variation will be only dependent respectively on NMOS or PMOS
threshold voltage variation. In 65 nm technology, this circuit consists of a pull-up device (M2) that must be
sized considerably more resistive than the pull-down device (M1). Consequently, for this circuit the sizes
shown in Table 3 for M1 and M2 were chosen:

Tab. 3 - transistor size
Ml M2
V%[nm] W;=20000 | W,=200

L,=100 L,=10000

The oscillation frequency of this type of RO is typically low (~20MHz), due to the large load and large size
transistors. In Fig. 6, an example of the output waveform from the output inverter nodes for an asymmetric
supply, e. g. VDD=1V e VSS=-0.2V:

ACLX R
“ NSNS NS

LAAAA

7@ 6 - Output of a 3 staéé RO — extracted simulation Fig. 7 - Ring Oscillators layout

The entire test structure includes 320 (5 x 64) Ring Oscillators of which: 64 NMOS-Only 3 stage ring
oscillators, 64 PMOS-Only 3 stage ring oscillators, 64 CMOS 67-stage ring oscillators, 64 CMOS 101-stage
ring oscillators, 64 CMOS 151-stage ring oscillators. Each group of oscillators has its individual supply pin.
The layout of this structure including all types of ring oscillators and appropriate buffering measures 200 x 480
pm’ as shown in Fig. 7.

4. TEST CHIP OVERVIEW

The design size of this test-chip (Fig. 8) is 1.58 mm x 1.58 mm (with pads, without scribe lines), or Imm x
Imm core size, under 65 nm CMOS design rules. An array of 44 Pads for packaging is needed to access the
internal test structures previously described.

SIM 2011 — 26" South Symposium on Microelectronics

213

EEEN
EEEn

rHE

SmmEn

Fig. 8 - Complete layout of the test chip and photography of the chip

Tab. 4 - Shows the area of all blocks included in the test chip, including the pads (which were obtained

from the foundry library):
Circuit Area [pm x pm]
MOSFET Matrix 330 x 280
Ring Oscillator 200 x 480
Stacked-Pair Matrix version 1 390 x 320
Stacked-Pair Matrix version 2 205 x 155
uProbe Test Structures 2 x (930 x 280)

S. CONCLUSIONS

The test structures that we developed for the local random variations characterization are composed of
transistor arrays of identical size MOSFETs, ring oscillators and stacked-pair transistors. The simulations were
done to verify the sensitivity of each structure to random local variations. Electrical measurements are
indispensable for the complete validation of the test structures proposed in this chip. The measurements in our
test vehicle are multiplexed for thousands of test transistors and pairs, using only 44 pads. The first
measurements show variations between the frequency of ring oscillator with the same number of stages and
same power supply. Currently the test platform and setup is being developed to allow an automatic

measurement of all structures that are implemented on the chip.

214 SIM 2011 — 26" South Symposium on Microelectronics

6. REFERENCES

[1] Gary S. May,Costas J. Spanos. Fundamentals of semiconductor manufacturing and process control. John
Wiley & Sons, Inc 2006.

[2] Wilson R.; “The dirty little secret: Engineers at design forum vexed by rise in process variations at the die
level,” EE Times, p. 1, Mar. 25, 2002. Web: http://www.eetimes.com/issue/fp/OEG20020324S0002.

[3] Kuhn, K. et al. “Managing Process Variation in Intel’s 45nm CMOS Technology”. Intel Technology
Journal, [S.1.], 2008.

[4] S. Springer et al., “Modeling of Variation in Submicrometer CMOS ULSI Technologies,” IEEE
Transactions on Electron Devices, vol. 53, Issue 9, pp. 2168-78, September 2006.

[5] Asenov, A.; Brown, A.R.; Davies, J.H.; Kaya, S.; Slavcheva, G., "Simulation of intrinsic parameter
fluctuations in decananometer and nanometer-scale MOSFETS," Electron Devices, IEEE Transactions on ,
vol.50, no.9, pp. 1837-1852, Sept. 2003.

[6] Galup-Montoro, C.; Schneider, M.C.; Klimach, H.; Arnaud, A., "A compact model of MOSFET mismatch
for circuit design," Solid-State Circuits, IEEE Journal of , vol.40, no.8, pp. 1649-1657, Aug. 2005.

[7] Chung-Hsun Lin; Dunga, M.V.; Darsen Lu; Niknejad, A.M.; Chenming Hu, "Statistical Compact
Modeling of Variations in Nano MOSFETSs," VLSI Technology, Systems and Applications, 2008. VLSI-TSA
2008. International Symposium on , vol., no., pp.165-166, 21-23 April 2008.

[8] Wang, V.; Shepard, K.L., "On-chip transistor characterization arrays for variability analysis," Electronics
Letters , vol.43, no.15, pp.806-807, July 19 2007.

[9] Agarwal, K.; Liu, F.; McDowell, C.; Nassif, S.; Nowka, K.; Palmer, M.; Acharyya, D.; Plusquellic, J., "A
Test Structure for Characterizing Local Device Mismatches," VLSI Circuits, 2006. Digest of Technical Papers.
2006 Symposium on , vol., no., pp.67-68, 0-0 0.

[10] Agarwal, K.; Hayes, J.; Nassif, S., "Fast Characterization of Threshold Voltage Fluctuation in MOS
Devices," Semiconductor Manufacturing, IEEE Transactions on , vol.21, no.4, pp.526-533, Nov. 2008.

[11]Bhushan, M.; Ketchen, M.B.; Polonsky, S.; Gattiker, A., "Ring oscillator based technique for measuring
variability statistics,” Microelectronic Test Structures, 2006. ICMTS 2006. IEEE International Conference on ,
vol., no., pp. 87-92, 6-9 March 2006.

[12]Rahul Rao; Jenkins, K.A.; Jae-Joon Kim, "A Completely Digital On-Chip Circuit for Local-Random-
Variability Measurement," Solid-State Circuits Conference, 2008. ISSCC 2008. Digest of Technical Papers.
IEEE International , vol., no., pp.412-623, 3-7 Feb. 2008.

[13]Wils, N.; Tuinhout, H.P.; Meijer, M., "Characterization of STI Edge Effects on CMOS Variability,"
Semiconductor Manufacturing, IEEE Transactions on , vol.22, no.1, pp.59-65, Feb. 2009.

[14]Test Circuit for Evaluating Characteristics Mismatch in Metal-Oxide—Semiconductor Field-Effect
Transistor Pairs by Estimating Conductance Variation through Voltage Measurement Mamoru Terauchi and
Kazuo Terada Jpn. J. Appl. Phys. 47 (2008) 4480.

Gonzalez, Christopher J. (Shelburne, VT, US), Ramadurai, Vinod (Burlington, VT, US), Rohrer, Norman
J. (Underhill, VT, US) 2008 Circuit and method to measure threshold voltage distributions in SRAM devices
United States International Business Machines Corpo

SIM 2011 — 26" South Symposium on Microelectronics

215

Author Index

Agostini, Luciano: 49, 53, 57, 61, 79, 93, 97, Martinelli, Jonathan: 153

105, 201
Bampi, Sergio: 41, 45, 49, 61, 97, 209
Bartra, Walter: 71
Benvenuti, René: 197
Brito, Juan: 209
Butzen, Paulo: 123
Callegaro, Vinicius: 35, 127, 31
Campos, Pedro: 201
Cardoso, Douglas: 137
Chagas, Stephan: 177
Chaves, Tales: 145
Corréa, Guilherme: 57
Correa, lan: 167
Corréa, Marcel: 105
Costa, Alcides: 141
Costa, Eduardo: 191
Costa, Jodo: 167
Cristani, Cassio: 97
da Rosa Jr, Leomar: 79, 87, 93
da Rosa, Thiago: 137
da Silva, Anderson: 131
Dal Bem, Vinicius: 31, 67
Dall'Oglio, Pargles: 97
de Aguirre, Paulo: 149, 205
de Brisolara, Lisane: 173
de Mattos, Julio: 53, 181
de Oliveira, Leonardo: 177, 205
de Souza, Renato: 87
Diniz, Claudio: 41
Domingues Jr, Julio: 87
Escobar, Kim: 123
Fabris, Eric: 141
Ferreira, Sandro: 141
Flach, Guilherme: 17,75, 119
Ghignatti, Everton: 141
Ghissoni, Sidinei: 191
Gongalves, Juliano: 93
Grellert, Mateus: 53, 181
Guex, Jerson: 187
Giintzel, José: 109, 167, 201
Haacke, Paulo: 23
Hecktheuer, Bruno: 181
Johann, Marcelo: 75, 119
Kastensmidt, Fernanda: 13, 23, 71
Klautau, Aldebaro: 167
Klein, Henrique: 113
Klock, Carlos: 127
Lucchese, Felipe: 149
Marques, Felipe: 79, 87
Marranghello, Felipe: 31, 67

Martins, Jodo: 177, 205
Martins, Mayler: 35
Matos, Débora: 153
Meinhardt, Cristina: 187
Moll, Francesc: 31
Monteiro, Eduarda: 41
Monteiro, Jucemar: 201
Moraes, Bruno: 109
Moraes, Fernando: 137, 145
Moreira, Jeffrei: 113
Miiller, Cristian: 149
Neuberger, Gustavo: 163
Nicola, Eduardo: 181
Noble, Diego: 49, 97
Nunes, Erico: 83

Nunes, Lucas: 119
Pagliarini, Samuel: 13, 23
Palomino, Daniel: 57
Parada, Abilio: 173
Porto, Marcelo: 49, 97
Possani, Vinicius: 79, 87
Posser, Gracieli: 17
Prior, César: 149
Quadro, Jean: 93

Rech, Jonatas: 113
Reinbrecht, Cezar: 153
Reis, André: 31, 35, 67, 123, 127, 131

Reis, Ricardo: 17,27, 71, 75, 119, 159, 163,

187, 191
Renner, Adriano: 197
Ribas, Renato: 31, 35, 67, 123, 127, 131
Sampaio, Felipe: 53, 61
Sanchez, Gustavo: 49
Santos, Paulo: 153
Scartezzini, Gerson: 27
Schmidt, Alonso: 101
Schoenknecht, Mateus: 105
Seidel, Ismael: 109
Siegert, Eliane 173
Susin, Altamiro: 57, 101, 113, 153, 197
Tavares, Reginaldo: 83
Teixeira, Lucas: 149
Tonfat, Jorge: 159, 163
Trojahn, Tiago: 93
Viera, Raphael: 205
Vizzotto, Bruno: 41
Walter, Fabio: 45
Werle, Felipe: 209
Wilke, Gustavo: 17
Zatt, Bruno: 41, 61

