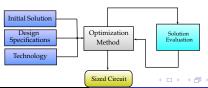
Parallel Characterization of Operational Amplifiers for Acceleration of Design Optimization

Arthur Campos de Oliveira Lucas Compassi Severo Alessandro Gonçalves Girardi

Computer Architecture and Microelectronics Group Federal University of Pampa

Content

- Analog Design Automation
- UCAF Analog Integrated Circuit Sizing Tool
 - Evaluation Process
- Testbench Implementations and Parallelization
- Results
 - Execution Time Serial
 - Execution Time Parallel
- Conclusions
- 6 References



1 - Analog Design Automation

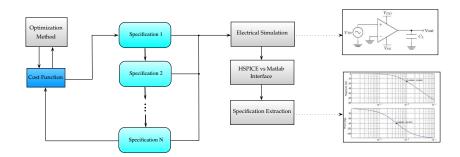
- Analog circuit design is a time consuming task due to the complex relations between performance and circuit parameters
- A design have a set of variables W, L and V_{bias} / I_{bias} for a specific application that need to be find
- We can find the value of these variables in two ways:
 - Manual design; Optimization design
- The optimization tools use artificial intelligence to explore the design space in order to find optimized solutions
- The inputs of these tools are
 - Initial solution for the circuit; Design specifications; Fabrication technology
- Based in these inputs the optimization methodology provides values for the circuit variables.
 These values are design possible solutions

1 - Analog Design Automation

- Analog circuit design is a time consuming task due to the complex relations between performance and circuit parameters
- ullet A design have a set of variables W, L and V_{bias}/I_{bias} for a specific application that need to be find
- We can find the value of these variables in two ways:
 - Manual design; Optimization design
- The optimization tools use artificial intelligence to explore the design space in order to find optimized solutions
- The inputs of these tools are
 - Initial solution for the circuit; Design specifications; Fabrication technology
- Based in these inputs the optimization methodology provides values for the circuit variables.
 These values are design possible solutions

2.1 - Evaluation Process

 In the UCAF tool, the solution evaluation is made by means of a cost function


References

$$f_c = \sum_{i=1}^n P_{O_i}.S_i + \sum_{j=1}^n P_{R_j}.f(S_j)$$

- The first sum represents the objective part of the cost function and the second sum is the constraints part
 - S_i is the i^{th} specification of the circuit to be optimized
 - ullet S_j is the j^{th} specification of the circuit that is constrained in a maximum or minimum value
 - \bullet P_{O_i} and P_{R_i} are values used as weighting purpose
 - $f(S_j)$ is the constraint function used to measure the distance between the required value and the reached value for the specifications
- The more important part of the solution evaluation is the specification estimation, because the metric to the heuristic design exploration is the values of the specifications

2.2 - Evaluation Process

2.2 - Evaluation Process

2.3 - Evaluation Process

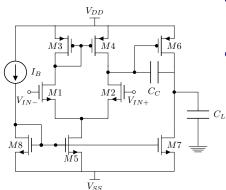
 It is necessary to perform electrical simulation and specification extraction for each testbench in order to measure the required specification

References

- This task is executed several times in the optimization process
- Most execution time is spent in the circuit characterization
- All specifications are dependent on the generated solution and independent on each other
- It allows the execution of all circuit simulations in each iteration in parallel form

3 - Testbench Implementations and Parallelization

- In this context, this work proposes a set of standard characterization testbenches to evaluate circuit specifications in a automatic sizing tool
- Parallelization of circuit evaluation
- Time reduction of circuit simulation


4 - Design Analysis

• As an example of using the proposed characterization method, the design of a two-stage CMOS OTA Miller in 0.25 $\mu \rm m$ TSMC technology

4 - Design Analysis

ullet As an example of using the proposed characterization method, the design of a two-stage CMOS OTA Miller in 0.25 μm TSMC technology

References

- Must be matched:
 - differential pair M1-M2
 - current mirror M3-M4 and M5-M8
- Free variables:
 - W_1 , L_1 , W_3 , L_3 , W_5 , L_5 , W_6 , L_6 , W_7 , L_7 , I_B and C_c

4.1 - Serial Results

- The proposed circuit is simulated in
 - 8 core Intel i7 processor
 - 8GB RAM
 - Simulated Annealing Algorithm as optimization heuristic
 - Serial

4.1 - Serial Results

- The proposed circuit is simulated in
 - 8 core Intel i7 processor
 - 8GB RAM
 - Simulated Annealing Algorithm as optimization heuristic
 - Serial
- The obtained results

Table: Specifications of OTA Miller Design

Specifications	Required	Obtained
	Value	Value
A_{v0} (dB)	≥ 70.00	81.62
GBW (MHz)	≥ 2.00	2.67
PM (°)	≥ 50.00	78.01
OS (V)	≥ 2.00	2.33
CMRR (dB)	≥ 70.00	78.58
PSRR+ (dB)	≥ 70.00	84.61
PSRR- (dB)	≥ 70.00	80.60
SR (V/µs)	≥ 1.50	4.35
P_{diss} (μ W)	Minimize	744.50
Execution Time (min)	-	1194

4.2 - Parallel Results

- To analyze the influence of parallel execution in the optimization process, the previous design was repeated using parallel simulations
- The number of cores was set in 1, 2, 3, 4 and 6
- As the design needs a maximum of 6 testbenches to evaluate the solution the maximum number of cores is 6

4.2 - Parallel Results

- To analyze the influence of parallel execution in the optimization process, the previous design was repeated using parallel simulations
- The number of cores was set in 1, 2, 3, 4 and 6
- As the design needs a maximum of 6 testbenches to evaluate the solution the maximum number of cores is 6
- The obtained results

Table: Execution time and Speedup of the parallel simulations

Cores	Execution Time(min)	Speed up
1	1194	-
2	616	1.94
3	539	2.22
4	447	2.67
6	308	3.88

5 - Conclusions and Future Work

- The proposed method for operational amplifier automatic characterization presented good results when included in an automatic sizing tool.
- As the electrical simulations in each optimization iteration are independent, they can be executed in parallel
- The execution time is reduced up to 3.88 times in relation to the sequential version
- Saving more than 14 hours in the optimization design space exploration time
- As future work we intent
 - · Insert new testbenches in the simulation environment
 - Expand the methodology to other analog circuits

Acknowledgment

Thank You for your attention!

Contact:

Arthur Campos

E-mail: arthuroliveira@alunos.unipampa.edu.br

References

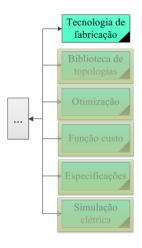
P. Allen and D. Holberg, CMOS Analog Circuit Design. Oxford University Press, 2nd edition, 2002.

B. Razavi, CMOS Technology Characterization for Analog and RF Design. IEEE Custom Integrated Circuits Conference, 1998.

M. F. M. Barros, J. M. C. Guilherme, N. C. G. Horta, Analog Circuits and Systems Optimization Based on Evolutionary Computation Techniques, Springer, 2010.

R. Phelps, Anaconda: Simulation-based synthesis of analog circuits via stochastic pattern search, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, v. 19, p. 703717, 2000.

G. Gielen, R. A. Rutenbar Computer-Aided Design of Analog and Mixed-Signal Integrated Circuits. Proceeding of the IEEE, v. 88, no. 12. December 2000.


R. A. Rutenbar How to Automate Analog IC Design. IEEE Spectrum, August 1988.

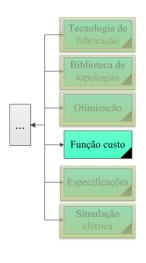
L. Severo, A. G. Girardi UCAF A Framework For Analog Integrated Circuit Analysis And Design. XI Microelectronics Students Forum (SForum 2011) - Chip on the Cliffs, 2011, Jo^{*}ao Pessoa - PB.

C. Knoth, V.B. Kleeberger, P. Nordholz, U. Schlichtmann Characterization and implementation of nonlinear logic cell models for analog circuit simulation. Integrated Circuits, ISIC '09. Proceedings of the 2009 12th International Symposium on , vol., no., pp. 97.100, 14-16 Dec. 2009.

- Dados da tecnologia de fabricação:
 - Parâmetros do modelo elétrico
 - Dimensões mínimas e máximas dos transistores
- Ferramenta é capaz de trabalhar com qualquer modelo de tecnologia, desde que o simulador elétrico seja compatível.
- Dados:

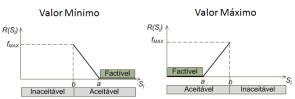
Diretório com os arquivos de parâmetros.

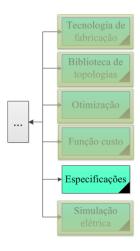
- Topologias de circuitos que será projetado com a ferramenta:
 - Inserção de novas topologias
 - Nível elétrico (Netlist)



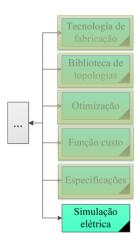
- Técnicas de inteligência artificial de otimização para exploração do espaço de projeto
- Técnicas aplicadas na ferramenta:
 - Algoritmos Genéticos
 - GAOT (Genetic Algorithms Optimization Toolbox)¹
 - Simulate Annealing
 - Matlab Optimization Toolbox®
 - fmincon (Busca Local)
 - Matlab Optimization Toolbox®
 - Método de Pontos Interiores²

² PRESS, W. et al. Numerical recipes: The art of scientific computing. In: . 3. ed. New York: Cambridge University Press, 2007, cap. Section 10.11, Linear

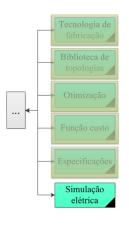

¹HOUCK, C.; JOINES, J.; KAY, M. A genetic algorithm for function optimization: A matlab implementation. NCSU-IETR 95-09, 1995.

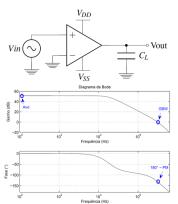


- Avaliação da solução
- Alvo de otimização


Fc = E_Otimização + E_Restrições

$$f_c(X) = \sum_{i=1}^{n} P_{O_i}.S_i(X) + \sum_{j=1}^{n} P_{R_j}.R(S_j(X), S_{jref})$$




- As especificações da ferramenta dividem-se em dois tipos:
 - Restrições:
 - · Valor mínimo ou máximo
 - Objetivos do projeto:
 - Minimizar ou maximizar.
- Valores para as especificações são obtidos com simulação SPICE

- Interface com os simuladores elétricos comerciais:
 - Análise DC
 - Análise AC
 - Análise TRAN
- · Escolha do simulador:
 - Modelo de tecnologia disponível
 - Técnica de convergência de simulação
- Neste ferramenta foi utilizado o simulador elétrico Synopsys HSPICE[®].
- Testbenches de simulação.
 - Avo, GBW, PM (AC em malha aberta)
 - Slew rate (TRAN)
 - ICMR (DC)
 - OS (DC)
 - Potência (OP)
 - Área de gate (diretamente com as variáveis)

Ex. Análise AC em malha aberta

