

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

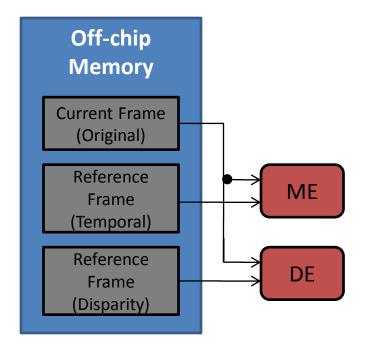
Instituto de Informática

Hardware Design for a Reference Frame Compression Technique for Multiview Video Coding

28th Southern Symposium on Microelectronics

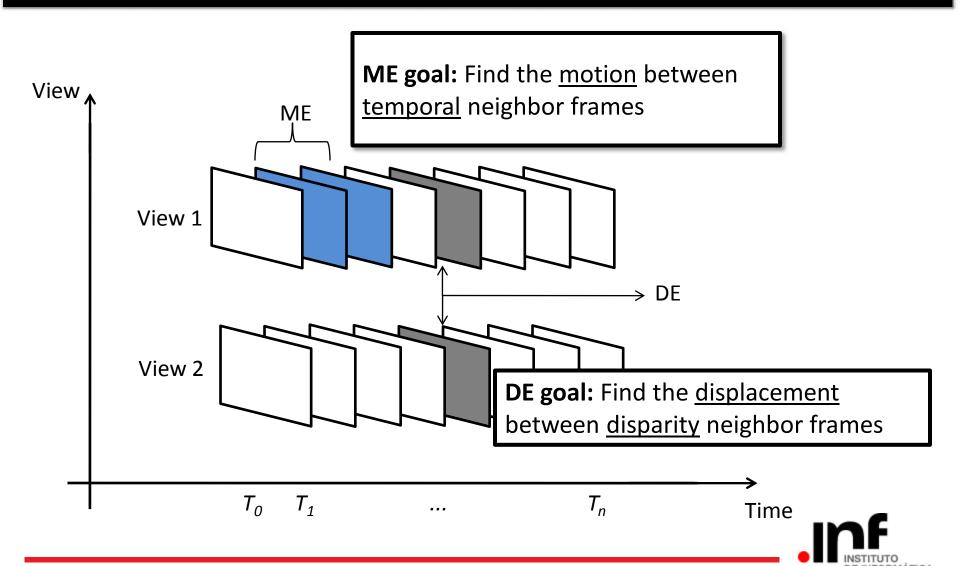
Rafael Justo, Felipe Sampaio, Sergio Bampi

rafael.justo@ufrgs.br


Introduction

- 3D Aplications
 - Multiple independent cameras record the same scene from different view points.
 - Same concept of multiview video coding.
- Multiview Video Coding Standardization
 - H.264/AVC Annex H (MVC Standard) in 2007
 - Provides 20-50% increased coding efficiency in comparison to the H.264/AVC.

Problems


• Off-chip Memory: 90% of the ME/DE power consumption is related to the external and on-chip. (Zatt, 2011)

B. Zatt, M. Shafique, F. Sampaio, L. Agostini, S. Bampi, J. Henkel, "Run-time adaptive power-aware motion and disparity estimation in multiview video coding", **IEEE DAC**, pp. 1026-1031, 2011.

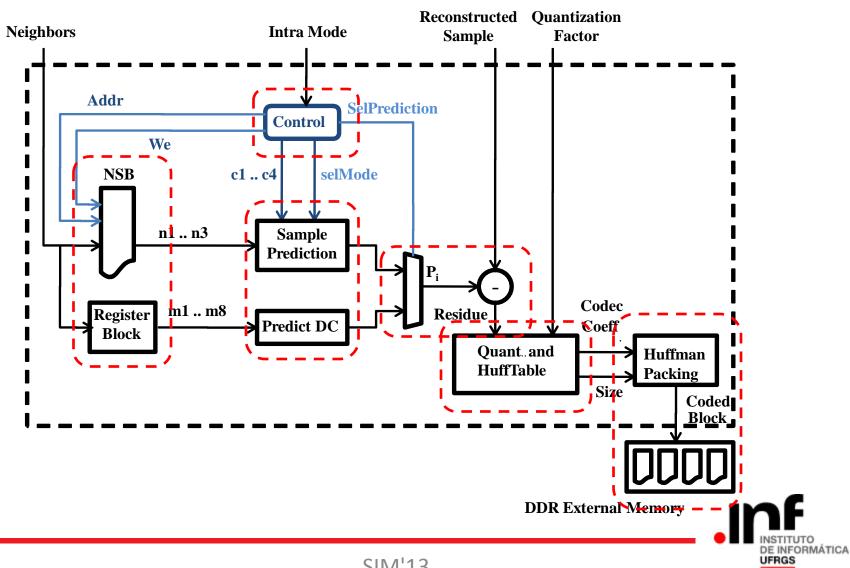
Motion and Disparity Estimation

Goals and Contributions

Goals:

- Design of an hardware architecture for a reference frame compression algorithm.
- Reduce the memory traffic in the ME/DE on MVC encoders.
- Evaluation of performance and hardware utilization.

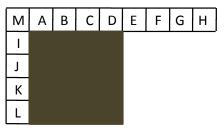
Reference Frame Compression Technique


• The compression scheme is able to reduce the external memory accesses by up to 63%. (Sampaio, 2013)

Algorithm: Content-Adaptive Reference Frame Compression 1. // inputs: predModes[]: sixteen RDO MVC encoder intra prediction modes 2. //origBlock4x4[]: original 4x4 block samples 3. //reconBlock4x4[]: reconstructed 4x4 block samples 4. // outputs: codedBlock4x4[]: compressed bitstream to send to the DPB 5.function compressBlk4x4(predModes[], origBlock4x4[], reconBlock4x4[]) $codedBlock4x4 \leftarrow 0$ foreach reconSample, origSample in reconBlock4x4, origBlock4x4 loop predictSample ← intraPrediction(neighbors, predModes[reconSample]) residueSample ← predictSample - reconSample quantizedSample ← quantization(residueSample) 10. 11. huffmanSample ← staticHuffman(quantizedSample, huffTable) codedSample ← packer(huffmanSample) 13. end loop 14. return codedBlock4x4 15.end function

Sampaio, F. "Energy-Efficient Memory Hierarchy for Motion and Disparity Estimation in Multiview Video Coding" (Dissertação). Universidade Federal do Rio Grande do Sul, Porto Alegre, 15 fev. 2013

Hardware Architecture

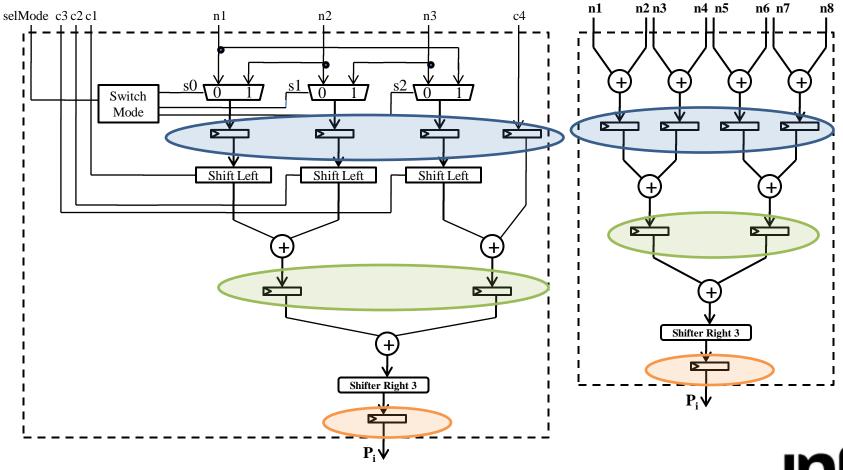


Neighbors Sample Buffer

- The thirteen neighbors required for the processing of one 4x4 block are stored in a memory.
- Each memory position is composed of three consecutive neighbors.
- Each memory position in the NSB occupies 24 bits (3 x 8bits).

_	NSB			
0000	LKJ			
0001	KJI			
0010	JIM			
0011	IMA			
0100	MAB			
0101	ABC			
0110	BCD			
0 1 1 1	CDE			
1000	DEF			
1001	EFG			
1010	FGH			

Neighbors Sample



Sample Predictor

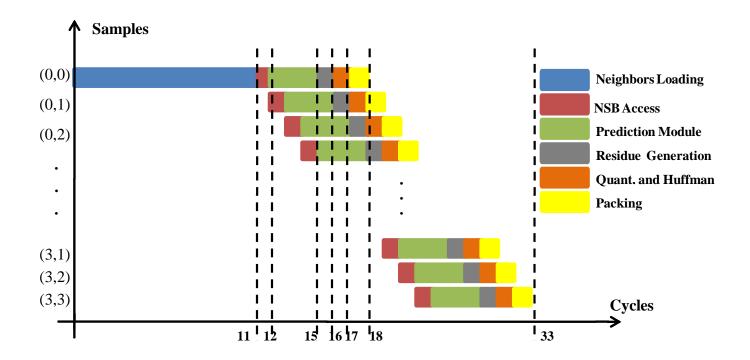
Sample Prediction

Prediction DC

Quantize and Huffman Encoder

- Static Quantization and Huffman Encoder.
- The input code is relates with the fixed conversion table.
- The quantization and Huffman table was mapped to a memory.

Packing


- Decoder module receives the number of valid bits on the Huffman code.
- The Mask module is responsible for packing these valid codes.
- The 16 most significant bits are sent to the output buffer.
- The rest of valid bits are sending to the Mask module and the process begins again.

Pipeline Schedule

• Pipeline schedule for the compression of one 4x4 block.

Results

- •Target Device (FPGA): Virtex 5 Xilinx FPGA (xc5vlx30)
- Maximum Frequency of Operation: <u>372 MHz</u>
- •Architecture Performance Evaluation:

Logic Utilization Summary							
#LUTs		98 (1%)					
#FFs		89					
#Slice FFs		89					
#BRAMs		1					
Frequency[MHz]		372					

Resolution	Frequency [MHz] for 30fps ution			Throughput [fps] @max. freq.			
	2-view	4-view	8-view	2-view	4-view	8-view	
VGA	38	76	152	293	146	73	
XGA	97	194	389	114	57	28	
HD1080	256	513	1026	43	21	10	

Conclusions

• Hardware architecture design for a reference frame compression technique for Motion and Disparity Estimation (ME/DE) on MVC.

- Achievements:
 - 2-view 1080p processing in real time (@30 fps)
 - Reduced off-chip memory bandwidth
 - Low impact of hardware (1%)

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

Instituto de Informática

Hardware Design for a Reference Frame Compression Technique for Multiview Video Coding

Thank You!

Rafael Justo, Felipe Sampaio, Sergio Bampi

rafael.justo@ufrgs.br

SIM'13