A New Algorithm to Implement Combinational Logic Cells with Reduced Number of Switches

Vinicius Possani, Vinicius Callegaro, Andre Reis, Renato Ribas, Felipe Marques, Leomar da Rosa Jr.

vnpossani@inf.ufpel.edu.br

Outline

- Introduction
- Motivation
- Our Approach
 - SP Kernel Finder
 - Kernel Composition
- Experimental Results
- Conclusions

Introduction

- In current VLSI design, the total number of transistors necessary to implement a logic gate is strongly related to the signal delay propagation, power consumption and area of integrated circuits.
- CAD tools have held designers to manipulate more transistors allowing achieving optimized cell libraries in a short time.

Motivation

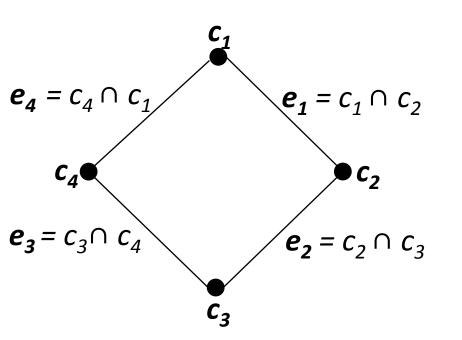
- Either in factorization methods as in the graph approaches, determine what is **the best point to start** the optimizations process is a not trivial task.
- Considering that, this point has a strongly influence in the result's quality, it is needed investigate different possibilities to determine it.

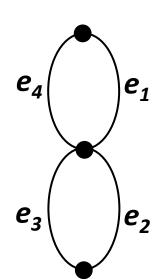
Motivation

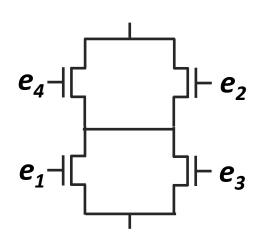
- The existent methods try some alternatives to start the algorithm, but in general, this alternatives are related to the greedy strategies.
- This way, the bad choices in the begin of the optimization process carry the results to limited solutions.
- In this sense, we present a methods based on graph structures called SP kernels, which aims to provide a good starting point for the optimizations process.

Our Approach

- The proposed method starts from an irredundant sum-ofproducts (ISOP), and tries to combine cubes to build SP kernels.
- In a second step the algorithm tries to merge the found kernels in order to deliver an optimized switch network.
- These steps are run in the following sequence:
 - SP Kernel Finder
 - Kernel Composition

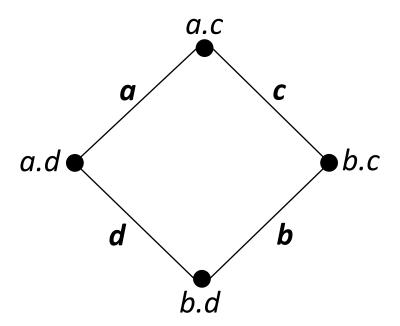


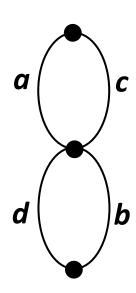


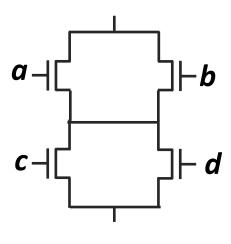


SP Kernel Finder

• The main idea of this routine is select the cubes of the input ISOP in combinations \mathcal{C}_n^4 , and try to build **SP kernels**.

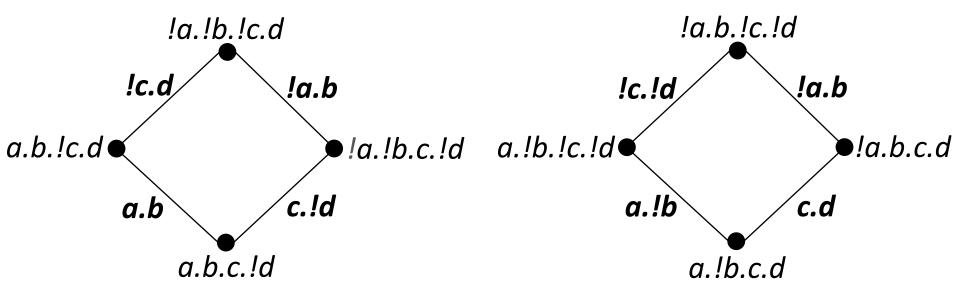


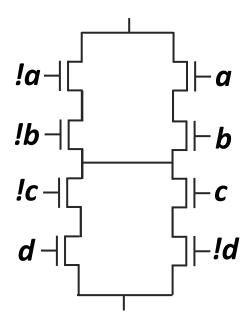


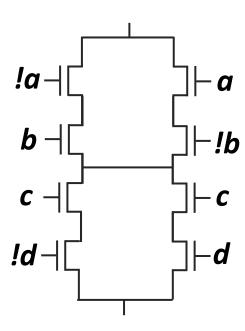


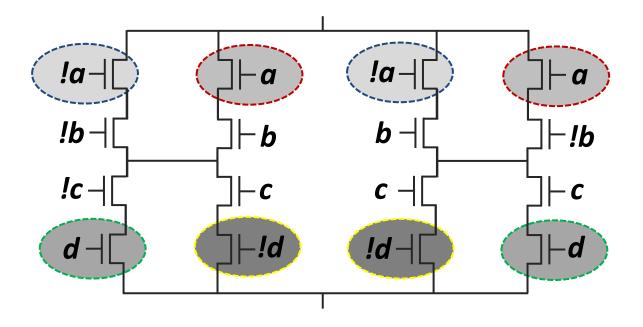
SP Kernel Finder

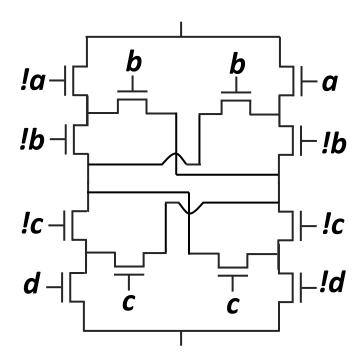
$$f = a.c + a.d + b.c + b.d$$


- Depending on the input ISOP multiple kernels may be found.
- To build the transistor network, the found kernels are gradually merged through parallel associations.
- For each kernel added in a parallel arrangement, an edges sharing procedure is applied to remove some redundancies of the network.
- Besides that, some cubes from the input ISOP may not compose any kernel.









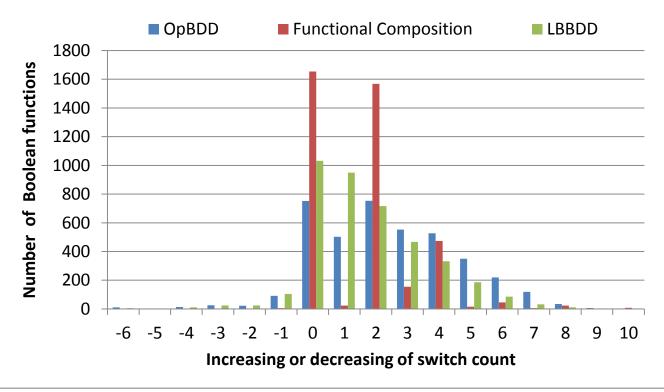
Experimental Results

- The experiments were performed over the set of 4-input P-class logic functions, that is composed by 3982 functions.
- We have generated CMOS logic gates for each functions of this set.
- In this experiment, we also take in to account the number of switches needed to implement the inverters for each variable that appear in both polarity in the functions.

Experimental Results

 The total number of switches needed to implement all functions of P-class was compared with the solution provided by other methods available in the literature.

	FC Matins, 2010	OpBBD Da Rosa Junior, 2006	LBBD Da Rosa Junior, 2007	Kagaris Kagaris, 2007	Proposed Method
Total number of switches	106,162	102,668	103,049	97,174	96,484



Experimental Results

 Distribution of switch count when comparing the proposed approach to the other methods, considering the set of 4-input P-class logic functions.

Conclusions

- This paper proposed a new graph-based method to generate optimized transistor (switch) networks.
- Through this feature, the method can avoid the greedy choices in some steps of the optimizations process.
- The proposed method results in a reduction of transistor count when compared to previous approaches.

A New Algorithm to Implement Combinational Logic Cells with Reduced Number of Switches

Vinicius Possani, Vinicius Callegaro, Andre Reis, Renato Ribas, Felipe Marques, Leomar da Rosa Jr.

Thank you! Questions?

vnpossani@inf.ufpel.edu.br

