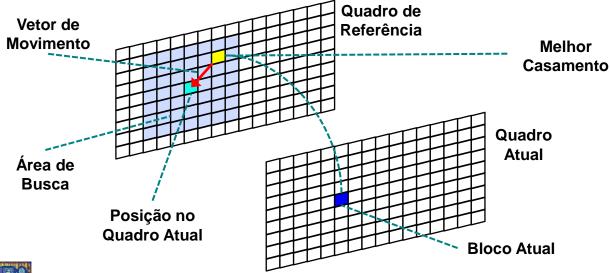


Universidade Federal de Pelotas Grupo de Arquiteturas e Circuitos Integrados PET Computação

Hardware Architecture for Motion Estimation on Chrominance Samples

Gustavo Wrege, Ruhan Conceição, Marcelo Porto, Luciano Agostini {gwgoncalves,radconceicao,porto,agostini} @inf.ufpel.edu.br

Sumário


- ☐ Estimação de Movimento (ME)
- ME sobre as amostras Crominância
- □ Avaliação em Software
- Avaliação com foco em Hardware
- Arquitetura Proposta
- Conclusões

Estimação de Movimento

- □ Avaliar e reduzir a redundância temporal entre os quadros vizinhos.
- □ Representa mais de 80% da complexidade computacional de um codificador de vídeo.
- Possui os maiores ganhos em compressão.

ME sobre a Crominância

- ☐ ME tradicional é aplicada apenas às amostras de Luminância.
- □ Crominância representa cerca de 34% da quantidade total de informação de um vídeo.
- ☐ Aplicação da ME para cada canal da Crominância.
- ☐ Aumentar os resultados de qualidade em vídeos HD 1080p.

Avaliação em Software

- ☐ Três algoritmos (DS, MPDS, S&IS).
- ☐ Dez sequências HD 1080p.
- ☐ Tamanho de bloco:
 - Luminância: 16x16
 - Crominância: 8x8

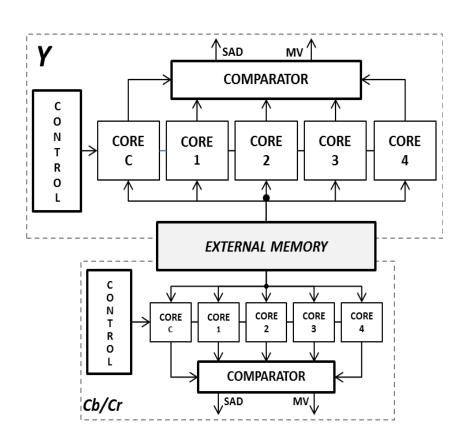
Resultados da Avaliação em Software

	Average PSNR (dB)			Average
	Y	Cb	Cr	CBC x108
DS	32,95	39,73	41,63	0,24
DS Y/Cb/Cr	-	1,83	2,28	0,35
MPDS	34,79	40,37	42,29	1,54
MPDS Y/Cb/Cr	-	2,34	2,93	2,13
S&IS	32,03	37,84	38,94	1,04
S&IS Y/Cb/Cr	-	2,98	3,86	1,74

Avaliação com foco em Hardware

- ☐ Algoritmo MPDS.
- ☐ Subamostragem de Pixel (2:1 e 4:1).
- ☐ Restrição no número de Iterações (5 iterações).
- Métrica de Custo Computacional (Número de Pixels Comparados NPC).

Resultados da Avalição com foco em Hardware


		MPDS	MPDS Y/Cb/Cr / 2:1 5 iterations	MPDS Y/Cb/Cr / 4:1 5 iterations
PSNR	Υ	34,791	33,612	33,612
	Cb	40,367	42,409	41,625
	Cr	42,285	44,810	44,052
Δ PSNR	Y	-	-	-
	Cb	-	2,041	1,257
	Cr	-	2,524	1,767
NCP x10 ⁸		272,64	206,592	99,744

Arquitetura Proposta

- Baseada na arquitetura do MPDS.
- □ Com subamostragem de pixels 4:1.
- Restrição de 5 Iterações.
- □ Arquitetura MPDS para Luminância processa 145 quadros/segundo HD 1080p.

Estimativa da Arquitetura Proposta

Modules	Number of Cores	Memory per Core	Memory Size
MPDS Luminance	5	16,4 Kbits	82 Kbits
MPDS Chrominance	5	4,1 Kbits	20,5 Kbits

- ☐ Total de 10 núcleos.
- ☐ Total de 102,5Kbits de memória para arquitetura.

Conclusões

- ☐ Ganho médio em qualidade:
 - 2,385dB em Cb e 3,022dB em Cr.
- □ Aumento médio no custo computacional:
 - 1,5 vezes.
- □ A arquitetura será capaz de processar vídeos
 HD 1080p em tempo real.

Trabalhos Futuros

- □ Descrição em Hardware da arquitetura proposta e síntese em FPGA e Standard Cell.
- □ Análise do padrão emergente HEVC.

Universidade Federal de Pelotas Grupo de Arquiteturas e Circuitos Integrados PET Computação

OBRIGADO! Perguntas?

