

Universidade Federal do Rio Grande do Sul Instituto de Informática

Acceleration Techniques for Motion Estimation Algorithms Using Parallel and Distributed Computing

28th Southern Symposium on Microelectronics

Jonas Meinerz, Eduarda Monteiro, Felipe Sampaio Sergio Bampi, Altamiro Susin

jcmeinerz@inf.ufrgs.br

Outline

- Introduction
- Motion Estimation Overview
 - Full Search Algorithm
- Our Contribution
 - OpenMP Parallel Full Search
 - MPI+OpenMP Parallel and Distributed Full Search
 - Results
- Conclusion

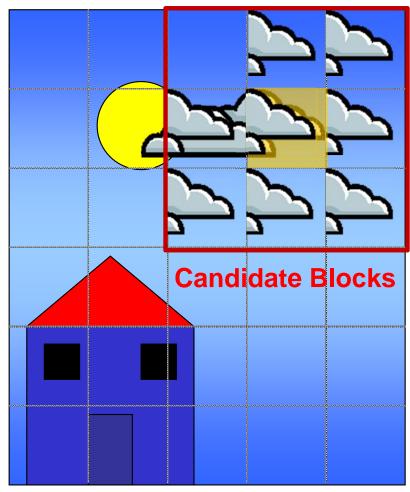
Introduction

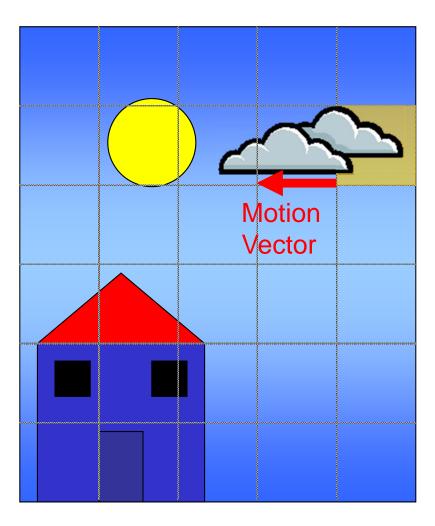
- Motion Estimation (ME):
 - Core procedure of video coding;
 - Most complex and rewarding part of video coding;
- Challenges (focus of this work):
 - Combine different parallel computing paradigms to achieve faster ME;
 - OpenMP (shared memory) and MPI (distributed memory);

3IM'13

Motion Estimation (ME)

Given a block, ME's goal is to find its best match;


- How ME works:
 - Compares an uncoded block to previously coded ones within a search area;
 - The search area is defined by a block-matching algorithm;
 - The best match is chosen following a similarity criterion;
- The given block will then be represented by a motion vector (of its best match) and a residue;


Motion Estimation (ME)

Search Area

Reference Frame

Current Frame

Motion Estimation (ME)

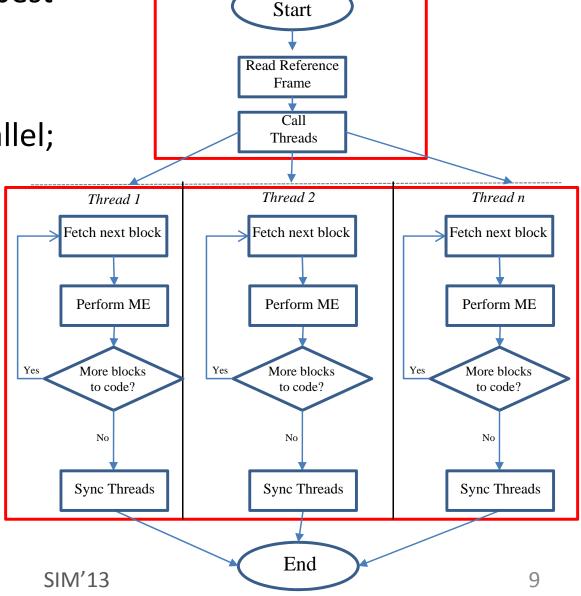
• This work:

- Block-matching algorithm: Full search;
- Similarity criteria: Sum of absolute differences (SAD);

The Full Search (FS) Algorithm

- How FS works:
 - Exhaustively compares the blocks within a search area to the selected block;
- Reasons for choosing the FS:
 - Optimal;
 - High level of data independence;
 - Favors parallelism.

Contributions


- This work's contribution is a hybrid <u>parallel</u> and <u>distributed</u> implementation of the FS algorithm.
- We developed:
 - A serial version of the FS algorithm;
 - An OpenMP based parallel version of the FS;
 - An OpenMP + MPI hybrid version of the FS, which we compare to our other versions;

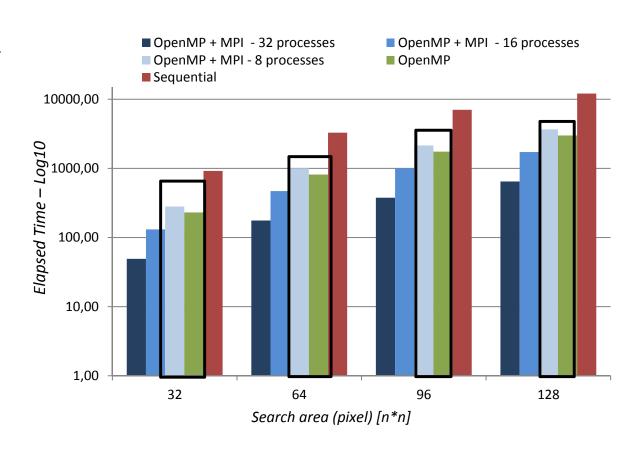
OpenMP Parallel FS

 Different blocks seek for its best match at the same time;

OpenMP threads run in parallel;

Master Thread Only

OpenMP + MPI Hybrid FS


- Another level of parallelism is added:
 - The nodes of a cluster run in parallel (MPI)
 - Each node's threads run in parallel (OpenMP)

Results – Elapsed Time

- The **hybrid** version (32 proc.) saves about 95% of time compared to the serial version and about 75% compared to the OpenMP version;
- The **OpenMP** only version is faster than the hybrid version when both run 8 processes.

Results - Speed-up

Presents gains up to 7x when compared to the serial version and 4x when compared to the OpenMP version in terms of speed-up;

Conclusion

- The literature does not present implementations
 combining distributed and parallel computing paradigms;
- The Motion Estimation was successfuly accelerated by combining the parallel computation with shared memory and a distributed system;

Universidade Federal do Rio Grande do Sul Instituto de Informática

Acceleration Techniques for Motion Estimation Algorithms Using Parallel and Distributed Computing

28th Southern Symposium on Microelectronics

Jonas Meinerz, Eduarda Monteiro, Felipe Sampaio Sergio Bampi, Altamiro Susin

jcmeinerz@inf.ufrgs.br