Evaluating Application Performance Between DSP Processor and GPP Using Reconfigurable Hardware

Nicola, Eduardo V. Ruzicki, Julio C.M. Martins, Luis H.J. Mattos, Júlio C.B.

Group of Architectures and Integrated Circuits - GACI Federal University of Pelotas - UFPel Pelotas - Brasil

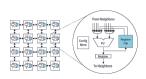
Index

- 1 Introduction
- 2 The Reconfigurable Hardware
- 3 Case Study
- 4 Results and Conclusions

Introduction

- The industry and market of electronic devices grows rapidly each day
- Most products now have builtin microprocessors to handle specific tasks
- This is made possible due to the fast technology development, in response to market demands
 - General purpose processors (GPPs)
 - ASICs (Application Specific Integrated Circuits)

Introduction



- However, it is possible to perform those tasks in other kinds of processors:
 - **GPPs** were used before the idealization of DSP processors
 - ASIC were another option of reduced costs and flexibility

Motivation

- Flexible Specialization
 - A field that is growing in research is Reconfigurable Architectures
 - This area of research aims to improve processor performance without increasing its clock rate
 - This is made using specialized hardware structures to perform portions of program code

The work was divided in stages:

- Choice of tools to simulate DSP processors and simulate the Mips32 processor;
- Selection of typical DSP applications;
- Use of simulators to generate execution traces from the DSP applications;
- Comparison of results between the DSP processor and the MIPS32, with and without the Reconfigurable Hardware.

Three commercial tools were analysed as possible DSP processor simulators for the work:

Code Composer

- Features
 - Development
 - Debugger
 - Profiler
 - Real-time-operation system

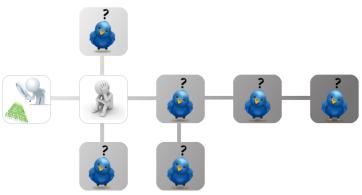
Symphony Studio

- Works with DSP563xx/DSP567xx processors
- Features
 - Can be executed on Eclipse environment
 - GDB (GNU Project Debugger)
 - Project Manager

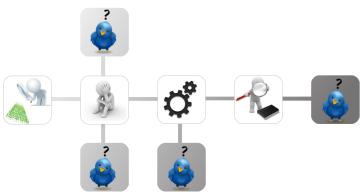
VisualDSP++

- Features
 - Statistical performance measurements
 - Emulation
 - Simulation
 - Compilation

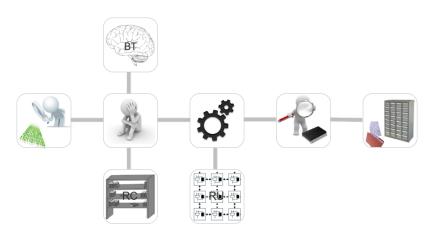
OVPsim


- Features
 - Describing platforms with one or more processors
 - Models are available for many standard processors
 - Compilation
 - Trace Generator

Pipeline Diagram


Instruction Fetch

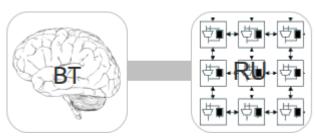
Instruction Decode



Execution

Memory Access

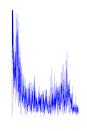
Write Back



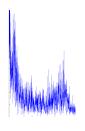
■ The Reconfigurable System works as a functional unit

- The Binary Translator works parallel with MIPS pipeline
 - At DI stage, BT reads the PC indexed address

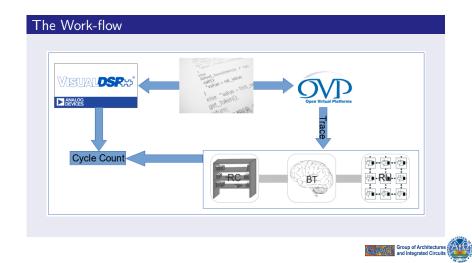
- The Binary Translator works parallel with MIPS pipeline
 - At DI stage, BT reads the PC indexed address
 - After decoding the instruction, BT sends the instruction to RU, when possible, as a configuration to be made on RU

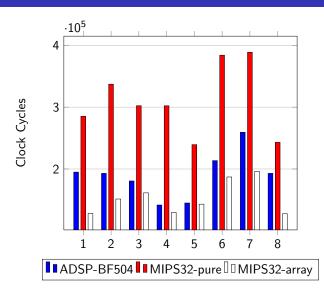


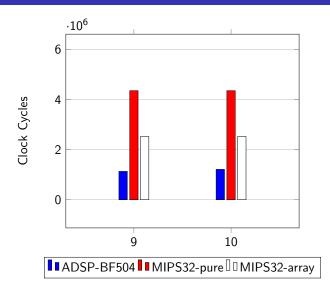
- The Binary Translator works parallel with MIPS pipeline
 - At DI stage, BT reads the PC indexed address
 - After decoding the instruction, BT sends the instruction to RU, when possible, as a configuration to be made on RU
 - BT also stores the instruction configuration or group of instruction configurations on RC
 - When PC points to an existing address on RC, RU takes the execution from CPU.

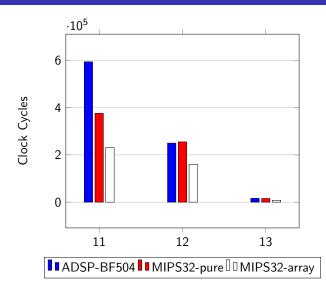


Case Study


- A generic and customized benchmark was made with DSP-like operations
 - Performs a multiplication of two real vectors
 - 2 Two matrix addition
 - 3 Matrix subtraction
 - 4 Matrix scalar multiplication
 - 5 Calculates the mean of the input array
 - 6 Calculates the RMS of the elements in the input array
 - 7 Accumulates the two vector product
 - 8 Two matrix addition


Case Study




- Executes the Discrete Fourier Transform
- **III** Executes the Inverse Discrete Fourier Transform
- Executes the Fast Fourier Transform
- Executes the Inverse Fast Fourier Transform
- **I** Executes the Finite Impulse Response

Case Study: Methodology

- MIPS32 had less clock cycles with the Reconfigurable System
- Blackfin ADSP-BF504 is a specialized DSP processor, comparing to MIPS-pure(without array), but MIPS-array had less clock cycles in most applications

Conclusions

- This work presented the simulation of DSP applications to compare Blackfin and MIPS32
- Even Blackfin ADSP-BF504 being a specialized DSP processor, MIPS-array had less clock cycles in most applications
- A GPP processor with Reconfigurable System can optimise program execution, compared to DSP processors
- For future works: Other kinds of simulations
 - Power estimates
 - 2 Energy consumption

Evaluating Application Performance Between DSP Processor and GPP Using Reconfigurable Hardware

Eduardo Nicola Julio Ruzicki Luis Martins Júlio Mattos

 $\{evnicola,\ jcmruzicki,lhjmartins,\ julius\}\\ @inf.ufpel.edu.br$

