

Theoretical Specification of a Spectrum Sensing Receiver for Cognitive Radio

Filipe Dias Baumgratz, Sandro B. Ferreira, Sergio Bampi

30/04/2013

Graduate Program on Microelctronics – PGMICRO Federal University of Rio Grande do Sul – UFRGS Porto Alegre, Brazil

I. Introduction

II.Signal-to-Noise Ratio

III.Sensitivity and Noise Figure

IV.Linearity

Introduction

 The increasing spectrum utilization and its fixed band allocation will lead to a spectrum scarcity. [1]

 Spectrum occupation surveys observed that bands of the spectrum are severely underutilized. [2,3]

 The Cognitive Radio (CR) allows for secondary users to use the vacant channels. [4]

CR needs a trustful and fast spectrum sensing (SS).

Goals

Theoretical calculation of specification for SS receiver.

First steps in SS receiver circuit design.

• This SS receiver should be multistandard (IEEE 802.22, Wimax and LTE) and wideband (50MHz to 3.8GHz).

And also, this SS receiver should comply with Energy Sensing.

I. Introduction

II.Signal-to-Noise Ratio

III.Sensitivity and Noise Figure

IV.Linearity

Signal-to-Noise Ratio I

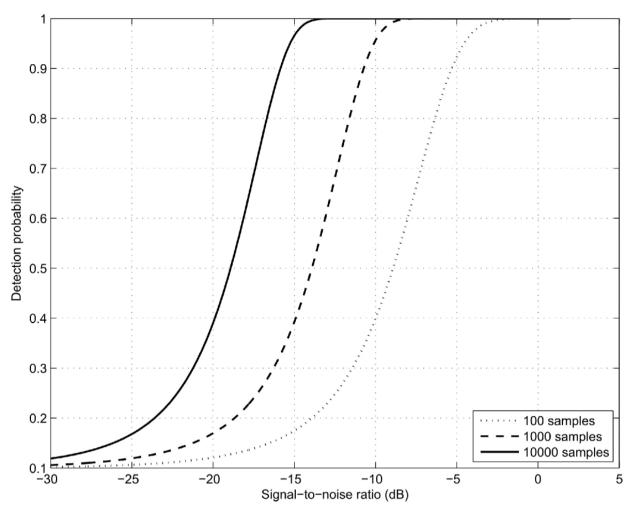
 The signal-to-noise ratio (SNR) desired for a spectrum sensing (SS) receiver is determined by detection theory.

 Detection probability (P_D): Probability of classifying an occupied channel as occupied. In other words, found the signal. [7]

 False alarm probability (P_{FA}): Probability of classifying a vacant channel as occupied. [7]

Signal-to-Noise Ratio II

 If T > γ, the channel is considered occupied, otherwise the channel is considered vacant. [8]


$$T = \sum_{n=1}^{M} y(n) \cdot y^{*}(n)$$
 [8]
$$\gamma = P_{N} \left(1 + \frac{Q^{-1}(P_{FA})}{\sqrt{M}} \right)$$
 [8]

• In [8] is defined,

•
$$P_D \ge 90\%$$

$$P_{D} = 1 - Q \left(\sqrt{M} - \frac{\sqrt{M} + Q^{-l}(P_{FA})}{SNR + 1} \right) [8]$$

Signal-to-Noise Ratio III

 A SNR of -10dB is assumed for the subsequent analysis.

• $P_D>90\%$ for 1000 samples.

I. Introduction

II.Signal-to-Noise Ratio

III.Sensitivity and Noise Figure

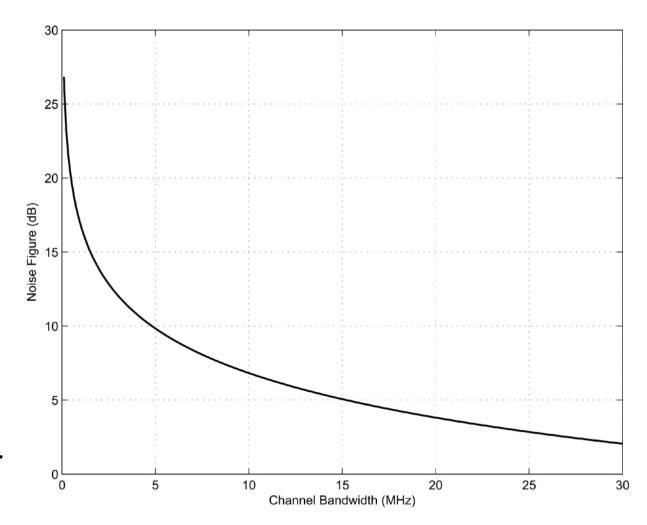
IV.Linearity

Sensitivity and Noise Figure I

 Sensitivity is the smallest signal power that a receiver can detect with "acceptable quality", which means a sufficient SNR.
[9]

$$P_{sens} = -174 + 10 \cdot \log(B) + NF + SNR_{min} + IM$$

- Sensitivity values for spectrum sensing (SS) application are:
 - -114dBm TV signals and wireless microphones. [8]
 - -116dBm for IEEE 802.22 signal. [8]
 - -125dBm for Wimax and LTE.


Sensitivity and Noise Figure II

•
$$P_{sens} = -125dBm$$

•
$$SNR_{min} = -10dB$$

•
$$IM = 2dB$$

• NF = 3.83dB for B = 20MHz

- I. Introduction
- II.Signal-to-Noise Ratio
- III.Sensitivity and Noise Figure

IV.Linearity

Linearity I

 OFDM/OFDMA systems exhibit a large amplitude variation which is measured by the peak-to-average ratio (PAR).

Compression will be the most harmful nonlinearity. [9]

 1dB compression point (CP) requirement depends on PAR considered.

Linearity II

$$PAR_{max} \le 2 \cdot \ln(N)$$
 [12]

$$CP = P_{inmax} + PAR$$
 [5,6,9]

$$IIP3 \approx CP + 9.6$$
 [9]

	Number of subcarriers (N)	PAR (dB)	Pin,max (dBm)	CP (dBm)	IIP3 (dBm)
IEEE 802.22	1680 [8]	14.85	-41 [6]	-26.15	-16.55
Wimax	1680 [10]	14.85	-30 [10]	-15.15	-5.55
LTE	1200 [11]	14.18	-25 [11]	-10.82	-1.22

- I. Introduction
- II.Signal-to-Noise Ratio
- III.Sensitivity and Noise Figure
- **IV.Linearity**

Conclusion

 Linearity is the major challenge for SS receiver circuit design.

 Noise figure becomes a constraint if channel bandwidth and sensitivity are increased.

Thank you!

Any questions?

References

- [1] Background on CTIAS semi-annual wireless industry survey, CTIA, 2011.
- [2] Report of the spectrum efficiency working group, S. E. W. Group, 2002.
- [3] Q. Zhao and B. M. Sadler, "A survey of dynamic spectrum access", IEEE Signal Processing Magazine, pp. 79–89, 2007.
- [4] M. C. V. Ian F. Akyildiz, Won-Yeol Lee and S. Mohanty, "Next generation/dynamic spectrum access/cognitive radio wireless networks: A survey", *Computer Networks*, vol. 50, no. 13, pp. 2127–2159, 2006.
- [5] D. Ayadi, S. Rodriguez, M. Loulou, and M. Ismail, "System level design of radio frequency receiver for IEEE 802.16 standard", *in Proc. IDT 2008*, 2008, pp. 82 -86.
- [6] R. Ben Amira, D. Ayadi, I. Kammoun, M. Loulou, "Methodology of a system level design for a Cognitive Radio receiver "Application for IEEE 802.22 Standard", *in Proc. ICECS* 2009, 2009, pp. 319 -322.
- [7] S. M. Kay, Fundamentals of Statistical Signal Processing: Detection Theory, 1st ed., Prentice Hall PTR, 1998.
- [8] Part 22: Cognitive Wireless RAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Policies and Procedures for Operation in the TV Bands, IEEE Std. 802.22, 2011.
- [9] B. Razavi, RF Microelectronics, 2nd ed., Prentice Hall, 2012.
- [10] Part 16: Air Interface for Fixed Broadband Wireless Access Systems, IEEE Std. 802.16, 2004.
- [11] LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) radio transmission and reception (3GPP TS 36.101 version 10.3.0 Release 10), ETSI, 2011.
- [12] N. Dinur, and D. Wulich, "Peak-to-average power ratio in high-order OFDM", *IEEE Transactions on Communications*, vol. 49, pp. 1063 -1072, Jun, 2001.