System Design Considerations for an Analog Frontend Receiver in Cognitive Radio Applications

Sandro Ferreira, Filipe Baumgratz, Sergio Bampi

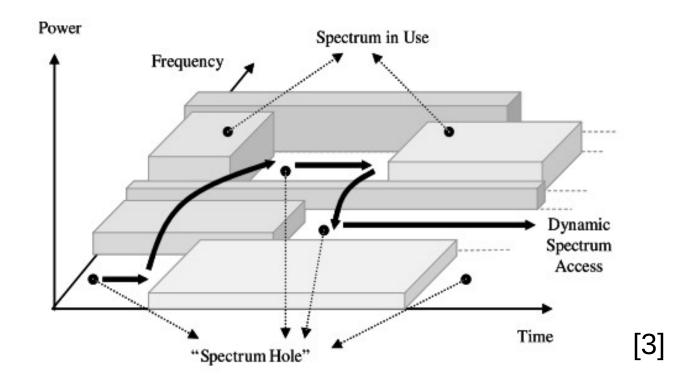
Graduate Program on Microelectronics

04/30/2013

Outline

- ☐ Cognitive Radio Networks
- Receiver Design Considerations
- Receiver Scenario
- Conclusions
- References

SIM 2013


Cognitive Radio Networks

- ☐ Federal Communications Commission (FCC) opened licensed TV bands for unlicensed broadband operations to enable rural areas access in 2004 [1]
- ☐ IEEE 802.22 Working Group Wireless for Regional Area Networks (WRAN) in 2011 [2]
 - First proposed implementation for CR networks
 - TV unused frequencies (white spaces)
 - Network has to protect incumbent TV and wireless microphone users

Cognitive Radio Networks

CR can adapt to the environment

SIM 2013

IEEE 802.22

TABLE - IEEE 802.22 Receiver Parameters [2]

Parameters	Specification	Remark
Frequency range	54 ~862 MHz	
Channel Bandwidth	6, 7, or 8 MHz	
Data rate	4.54 to 22.69 Mbps	For QPSK 1/2 and 64QAM 5/6
Modulation	QPSK, 16QAM, 64 QAM	
Multiple Access	OFDMA with 2048 FFT Size	
Cell Coverage	17 to 33 km	

- ☐ For extension of frequency band
 - from 54 MHz to 4 GHz
- ☐ Main aspects for the receiver
 - Noise Figure
 - Sensitivity
 - Linearity (in the complete band)
 - Dynamic Range

SIM 2013

6

Sensitivity

$$S=noise+NF+SNR_o+M_{rx}+M_{interf}+M_d$$

Table - Normalized SNR per Modulation [2]

Modulation - FEC rate	SNR for AWGN channel (dB)	Multipath channel (dB)
CDMA	1.2	5
QPSK, rate:1/2	4.3	8.1
64 QAM, rate:5/6	20.9	40.4

SIM 2013

- Linearity
 - Compression point for the OFDM using QAM modulation is specified with an Input Back-Off of 12 dB [9].

$$P1dB = Pin_{max} + PAR$$

TABLE - Receiver Top Level specifications

Parameter	Specification	Remark
Sensitivity (dBm)	-91.0 -87.7 -55.2	CDMA QPSK:1/2 FEC 64-QAM: 5/6 FEC
Noise Figure (dB)	6	For CPE users
Maximum Input Power (dBm)	-8	To be perceived at the ADC to accommodate interferers.
P1dB (dBm)	-29.8	
IIP3 (dBm)	-19.8	

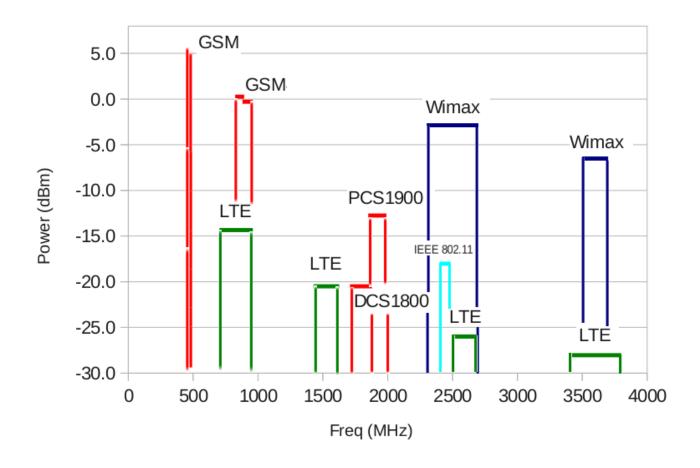
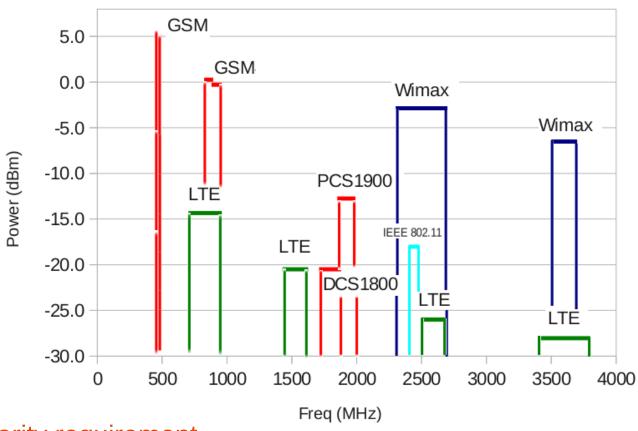

Receiver Scenario

TABLE - Technologies inside the spectrum scope

Standard	Frequency Range (MHz)	BW(MHz)	Data rate (Mbps)
IEEE 802.22 [2]	54 - 862	6, 7, 8	22.69
EDGE [5]	380 - 1900	0.2	0.06
WCDMA [5]	800 - 2600	5	14.4
LTE [6]	800 - 2600	20	173/86
IEEE 802.11 [7]	2400 - 2483.5	22	54
IEEE 802.16 [7]	2300 -3500	10, 20	21



Interferers in the Spectrum Scope

Interferers in the Spectrum Scope

Linearity requirement due to intermodulation

$$IIP3 = Pbl + 1/2(Pbl - P_{IM,i})$$

Conclusions

- ☐ This paper presented a brief overview of the cognitive radio standard IEEE 802.22.
- ☐ Sensitivity, noise figure and linearity are the main requirements for the receiver top level design.
- ☐ IIP3 is the tougher specification when defined by the receiver scenario.

References

- 1. Federal Communications Commission (FCC), "Notice of Proposed Rule Making: ET Docket no. 04-113," 2004.
- 2. IEEE "Part 22: Cognitive Wireless RAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Policies and Procedures for Operation in the TV Bands," IEEE Computer Society, 2011.
- 3. I. F. Akyildiz, W.-Y. Lee, M. C. Vuran, and S. Mohanty, "NeXt generation/dynamic spectrum access/cognitive radio wireless networks: A survey," Computer Networks, vol. 50, no. 13, pp. 2127–2159, 2006.
- 4. B. Razavi, RF Microelectronics. Pearson, 1998.
- 5. T. Aleksandar, "Circuits and systems for future generations of wireless communications (hardback) book (series: integrated circuits and systems)," 2009.
- 6. F. Khan, LTE for 4G Mobile Broadband: Air Interface Technologies and Performance. Cambridge University Press, 2009.
- 7. H. Labiod, H. Afifi, and C. de Santis, Wi-Fi(TM), Bluetooth(TM), Zigbee(TM) and WiMax(TM). Springer, 2007.
- 8. T. S. Rappaport, Wireless Communications. Prentice Hall, 1996.
- 9. R. Ben Amira, D. Ayadi, I. Kammoun, M. Loulou, "Methodology of a System Level Design for a Cognitive Radio Receiver Application for IEEE 802.22 Standard", in Proc. ICECS 2009, 2009, pp. 319 -322.

