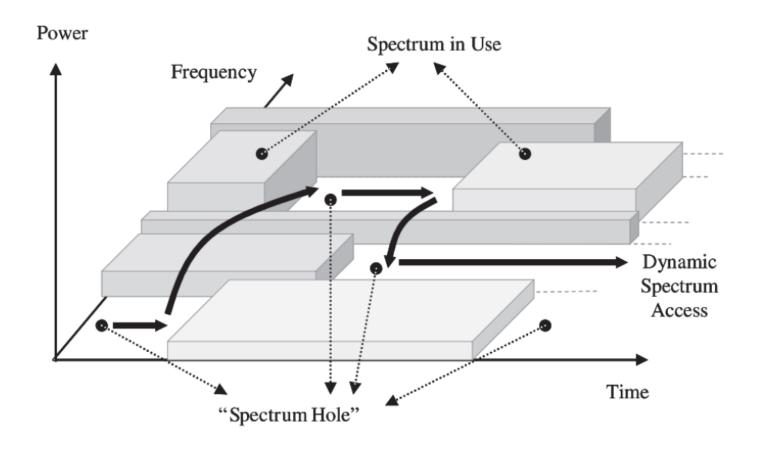
A SURVEY OF WIDEBAND LOW NOISE AMPLIFIERS DESIGN TECHNIQUES FOR COGNITIVE RADIO

Arthur L. T. Costa, M. Sc. Student Hamilton Klimach, PhD Sergio Bampi, PhD

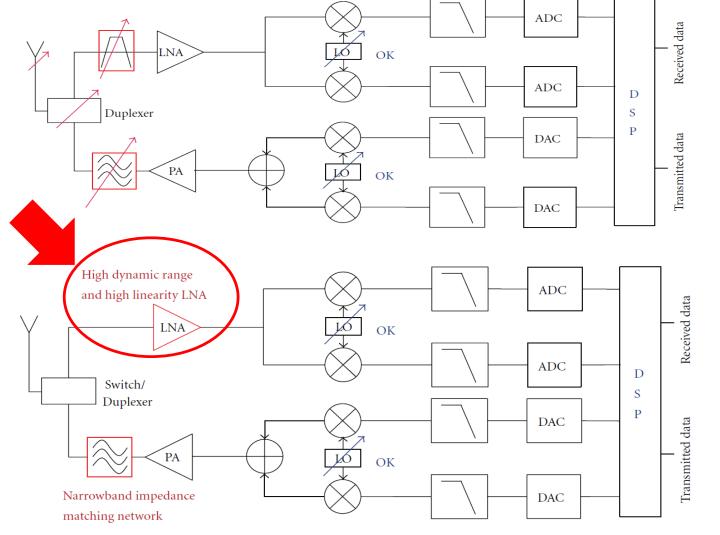
Graduate Program in Microelectronics - PGMicro Federal University of Rio Grande do Sul - UFRGS

Outline


Introduction: Cognitive Radio

- WBLNA design challenges
- Feedback and noise-cancelling WBLNA

- Linearization techniques for WBLNA
- Conclusions


Introduction: Cognitive Radio

 An intelligent radio capable of deciding for itself to change its frequency band based on spectrum activity monitoring

Introduction: Cognitive Radio

Transceiver architectures:

Multi-Narrowband

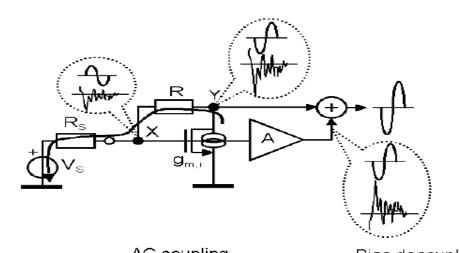
Wideband

WBLNA Design Challenges

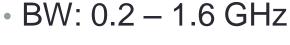
Over 2-3 decades of frequency:

- Input impedance matching (feasible with feedback)
- Noise Figure < 3dB (feasible with noise-cancelling)
- Gain > 10dB (feasible with cascading amplifiers)
- IIP2 (linearity) >> 0dBm (big challenge)
- IIP3 (linearity) >> 0dBm (big challenge)

WBLNA Design Challenges


IIP2 and IIP3 mitigation:

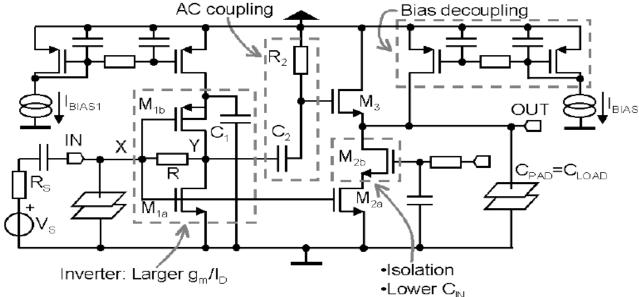
Use differential topologies


Use feedback

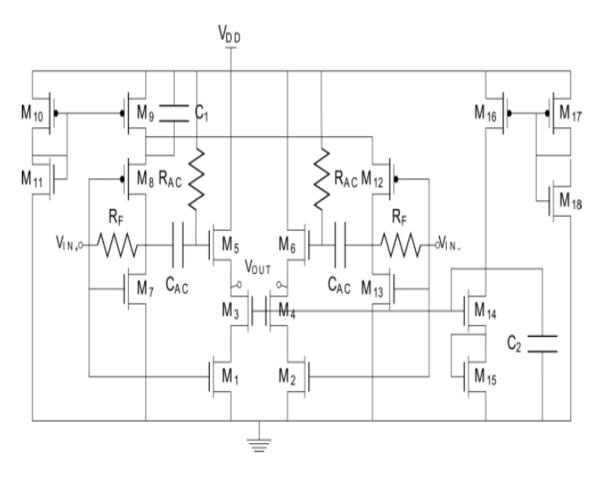
- Cancel nonlinear terms
 - Subtract signals
 - Cancel signal series expansion 2nd and 3rd order terms

Single-ended amplifier [10]:

- Noise generated by A is decoupled.
- Noise is still partially cancelled with mismatch.


Gain: 13.7 dB

о<u>шт</u> **Ы**ВІАЅ2• NF: < 2.4 dB


IIP2: 12 dBm

IIP3: 0 dBm

Tech: 250 nm

Differential amplifier (Pimentel, 2012) UFRGS [9]:

 Improved noise figure with common-mode rejection.

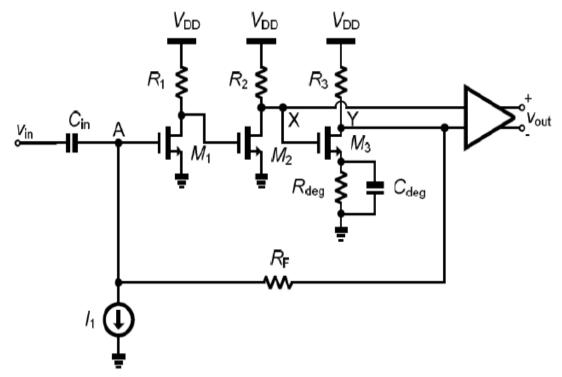
• BW: 0.05 – 1 GHz


• Gain: 11-12 dB

• NF: 3-5 dB

• IIP3: 0.72 dBm

Tech: 130 nm


Feedforward differential cascode amplifier [8]:

Complete Receiver:

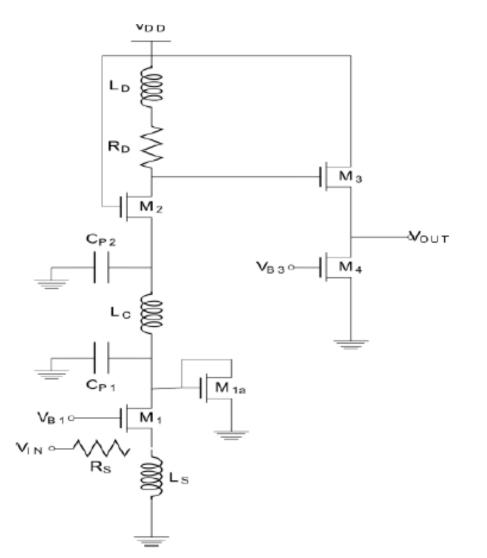
- BW: 0.6 3 GHz
- Gain: 42-48 dB
- NF: 3 dB
- IIP3: -14 dBm
- Tech: 130 nm

Cascaded amplifiers with differential output [5]:

- Resistive and capacitive degeneration on the output.
- Last stage gain 0 dB.
- Improved nonlinearity cancellation.

• BW: 0.05 – 10 GHz

Gain: 24-25 dB


NF: 2.7-3.6 dB

IIP3: -2 to -10 dBm

Tech: 65 nm

Linearization techniques for WBLNA

Cascode CG with diode and buffer (Sánchez-Sinencio 2009)[11]:

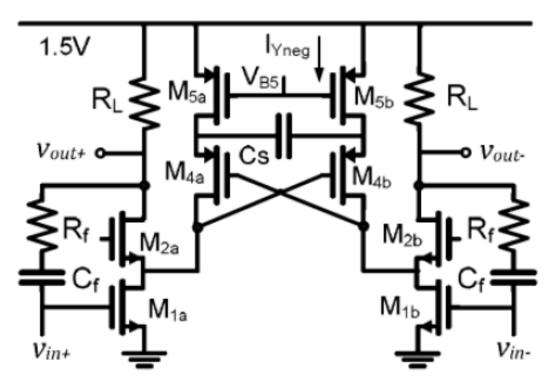
 Subtract currents in order to cancel nonlinear terms.

Linearized CGLNA:

• BW: 1.5 – 8.1 GHz

Gain: 8.6-11.7 dB

NF: 3.6-6 dB


IIP2: 7.6-23 dBm

IIP3: 11.7-14.1 dBm

• Tech: 130 nm

Linearization techniques for WBLNA

Negative Impedance + differential resistive feedback [12]:

 Use negative impedance to cancel series expansion terms.

• BW: 0.1 – 1 GHz

• Gain: 12-17 dB

NF: 4-5 dB

• IIP3: 1-11 dBm

• Tech: 160 nm

Conclusions

- Feedback + noise-cancelling can achieve NF < 3 dB and wideband input impedance matching.
- Linearization technique in order to cancel nonlinear terms improves > 10 dBm IIP3 and also IIP2.
- IIP2 can be improved using differential topologies.
- Single-ended topologies might be needed depending on antenna and attenuator connections.
- Linearization techniques may not achieve NF < 3 dB.

Thank you! Any questions?

Tuesday, April 30, 2013 SIM 2013 **15**

References

- [5] Weng-Fai Cheng; Ka-Fai Un; Pui-In Mak; Martins, R. P., "A highly-linear ultra-wideband balun-LNA for cognitive radios," *EUROCON-International Conference on Computer as a Tool* (*EUROCON*), 2011.
- [6] Ansari, A.; Yavari, M., "A very wideband low noise amplifier for cognitive radios," *Electronics, Circuits and Systems (ICECS), 2011 18th IEEE International Conference on,* vol, no., pp.623,626, 11-14, Dec. 2011.
- [7] Ximenes, A. R.; Swart, J. W., "A wideband noise canceling low-noise amplifier for 50MHz-5GHz wireless receivers in CMOS technology," New Circuits and Systems Conference (NEWCAS), 2011 IEEE 9th International, vol.,no.,pp.197,200,26-29 June 2011.
- [8] Xiao Wang, Sturm, J.; Na Yan; Xi Tan; Hao Min, "0.6-3GHz Wideband Receiver RF Front-End With a FeedForward Noise and Distortion Cancellation Resistive-Feedback LNA," Microwave Theory and Techniques, IEEE Transactions on, vol60, no.2, pp.387,392, Feb. 2012.
- [9] Pimentel, H.L.A.; Bampi, S., "A 50MHz-1GHz wideband low noise amplifier in 130nm CMOS technology," Integrated Circuits and Systems Design (SBCCI), 2012 25th Symposium on, Vol.,no.,pp.1,6,Aug. 30 2012-Sept 2 2012.
- [10] Bruccoleri, F.; Klumperink, E. A. M; Nauta, B., "Wide-band CMOS low-noise amplifier exploiting thermal noise canceling," Solid-State Circuits, IEEE Journal of, vol.39,no.2,pp.275,282,Feb. 2004.
- [11] Heng Zhang; Xiaohua Fan; Sinencio, E.S., "A Low-Power, Linearized, Ultra-Wideband LNA Design Technique," Solid-State Circuits, IEEE Journal of, vol.44,no.2,pp.320,330,Feb. 2009.
- [12] Wei Cheng; Annema, A.-J.; Wienk, G. J. M; Nauta, B., "A wideband IM3 cancellation technique using negative impedance for LNAs with cascode topology," Radio Frequency Integrated Circuits Symposium (RFIC), 2012 IEEE, vol.,no.,pp.13,16,17-19 June 2012.