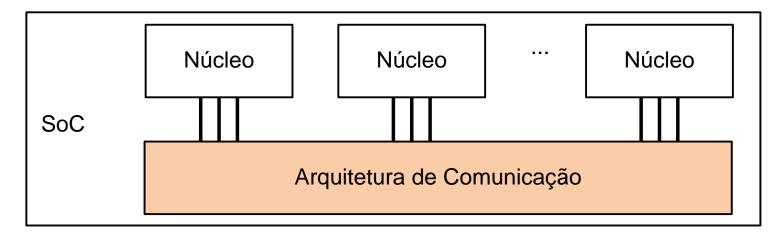
Interface de Comunicação Extensível para a Rede-em-Chip SoCIN

Douglas Rossi de Melo

Michelle Silva Wangham Cesar Albenes Zeferino

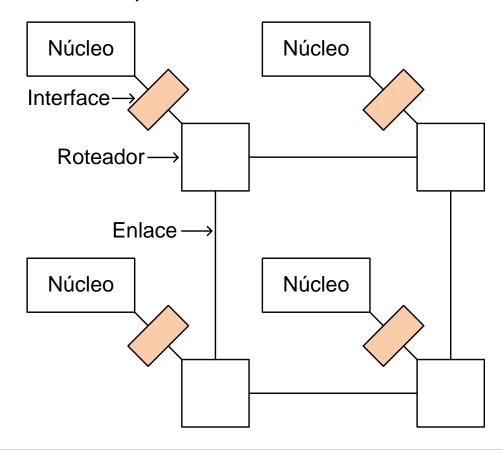
Universidade do Vale do Itajaí – UNIVALI Laboratório de Sistemas Embarcados e Distribuídos – LEDS

Sumário


- Introdução
- Interface de Rede para a SoCIN
- Implementação e Resultados
- Conclusões

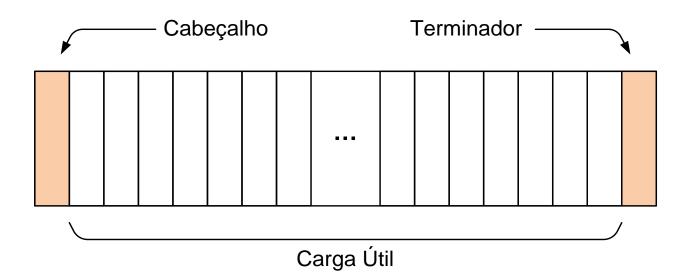
SoC – System-on-Chip

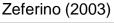
 Sistema complexo composto de modelos de hardware reutilizáveis (núcleos ou cores) integrados a um componente de silício


- SoCs com dezenas de núcleos requerem arquitetura de comunicação com
 - Reusabilidade
 - Escalabilidade
 - Paralelismo

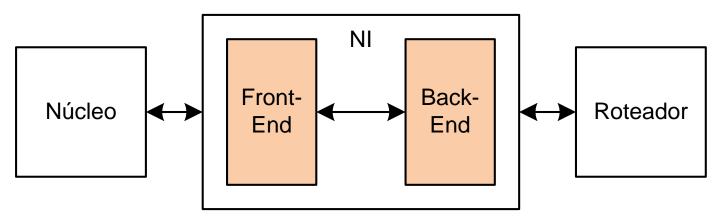
NoC (Networks-on-Chip)

 Conjunto de roteadores e canais ponto-a-ponto (enlaces) que interconectam núcleos por meio de interfaces de rede




Zeferino (2003)

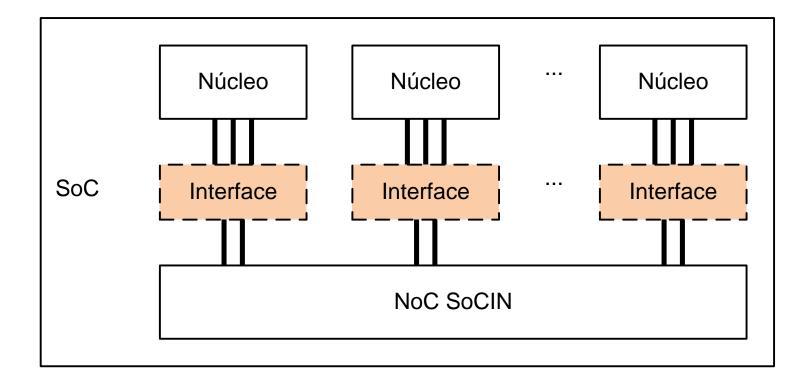
- NoCs (Networks-on-Chips)
 - Comunicação por meio de troca de mensagens
 - Cabeçalho
 - Carga Útil
 - Terminador



- SoCIN System-on-Chip Interconnection Network
 - Proposta por Zeferino e Susin (2003)
 - Topologia: Malha 2D
 - Controle de fluxo: Handshake ou baseado em créditos
 - Memorização: FIFOs parametrizáveis nos canais de entrada e de saída
 - Roteamento: Ordenado na dimensão (XY) ou baseado no *Turn Model* (WF)
 - Arbitragem: Round-robin, randômica ou fixa
 - Chaveamento: Técnica de chaveamento de pacotes wormhole

- Interface de Rede ou NI (Network Interface)
 - Unidade que realiza a comunicação de forma transparente entre o núcleo e a rede, adaptando sinais de sincronismo e dados
- Composta pelos submódulos
 - Front-End: Implementação da camada de sessão do modelo OSI
 - Back-End: Implementação das camadas inferiores do modelo OSI

Classes de serviço oferecidas pelas NIs


- Adaptação
 - Ajustam o protocolo de comunicação
- Relógio
 - Tratam da distribuição de relógio e sincronismo
- Rede
 - Implementam serviços da camada de transporte na abordagem de redes
- Funcionais
 - Adicionam novas funcionalidades ao sistema

Problema de pesquisa

 Desenvolver interfaces de rede baseadas no modelo OSI para interconexão de núcleos por meio da NoC SoCIN

Serviços de comunicação previstos para a NI proposta

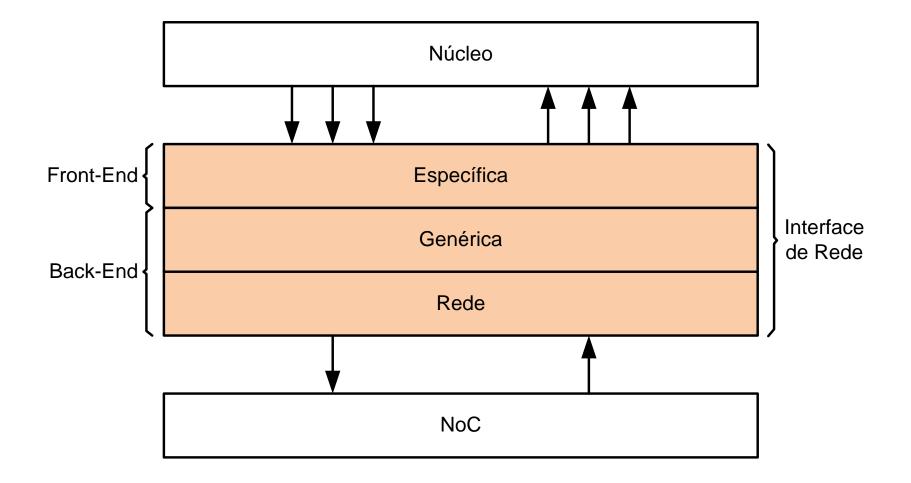
Adaptação

Interfaceamento
Empacotamento
Desempacotamento

Funcionais

Baixa Potência Segurança

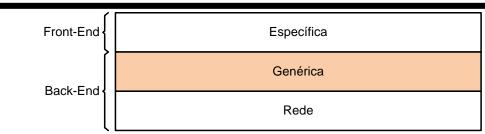
Relógio


Rede

Controle de Integridade Controle de Fluxos Diferenciação de Fluxos Transferência em Rajadas Reordenamento de Pacotes Chaveamento de Circuitos

Visão simplificada da NI proposta

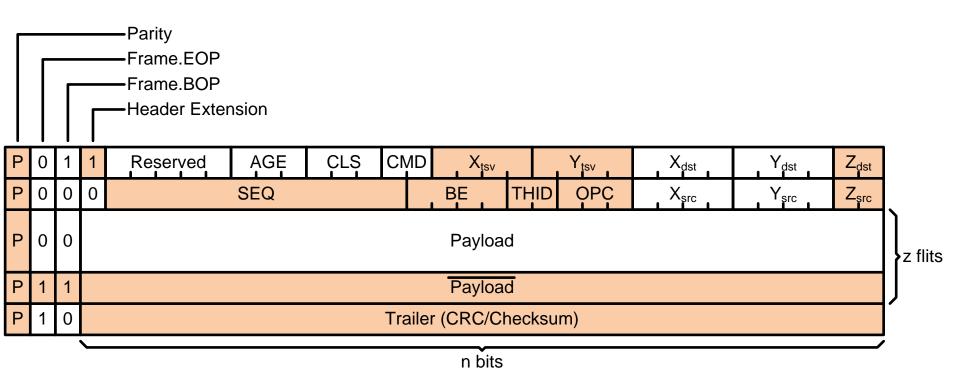
- Camada Específica da NI
 - Serviço
 - Interfaceamento

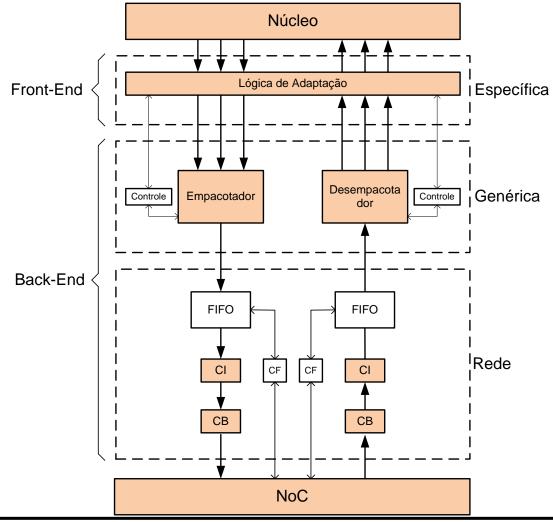


- Distinção quanto à natureza do núcleo
 - Mestre
 - Escravo
- Adaptação ao padrão de comunicação utilizado no grupo de pesquisa
 - Altera Avalon
 - OCP-IP
 - IBM CoreConnect
 - AMBA-AXI
 - AMBA-AHB

- Camada Genérica da NI
 - Serviços
 - Empacotamento
 - Desempacotamento

- Especificação baseada na interface do processador MIPS
 - Mapeamento de faixa de memória para comunicação com dispositivos externos


- Camada de Rede da NI
 - Serviços
 - Controle de Integridade
 - Controle de Fluxos
 - Diferenciação de Fluxos
 - Transferência em Rajadas
 - Reordenamento de Pacotes
 - Chaveamento de Circuitos
 - Baixa Potência
 - Segurança
 - Definição do novo padrão de cabeçalho e estrutura do pacote da SoCIN


- Cabeçalho e estrutura do pacote proposto
 - Contribuições deste trabalho

Visão geral da interface proposta

Implementação e Resultados

- Metodologia
 - Implementação das técnicas em VHDL
 - Ferramentas Altera Quartus II e ModelSim
 - Síntese em FPGA
 - Verificação baseada em simulação
- Métricas obtidas
 - Custo de silício
 - Frequência máxima de operação

Implementação e Resultados

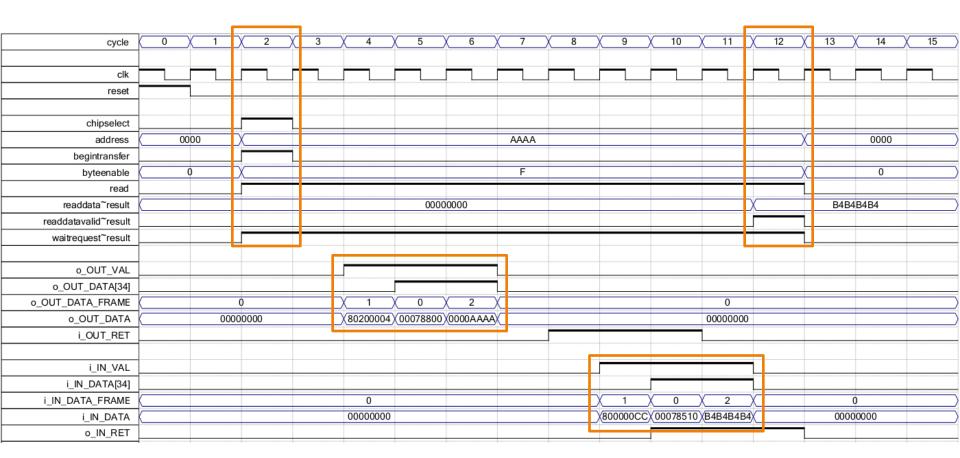
Síntese em FPGA

Comparativo dos custos dos blocos funcionais utilizados no projeto

Componente	LUTs	FFs	Fmax
Roteador	918	800	164,74 MHz
Interface de Rede	546	423	282,17 MHz

Distribuição dos recursos pelas camadas da interface proposta

Módulo	%LUTs	%FFs
front-end	0,20%	0,47%
back-end	99,80%	99,53%


Camada	%LUTs	%FFs
Específica	0,20%	0,47%
Genérica	11,68%	15,37%
Rede	88,12%	84,16%

Implementação e Resultados

- Verificação baseada em simulação
 - Operação de leitura do Mestre Avalon

Conclusões

- Foi apresentada uma interface de rede extensível para a NoC SoCIN, a qual foi modelada usando VHDL e caracterizada quanto ao seu custo e impacto no desempenho da rede
- Foi possível identificar que a camada Rede é a que apresenta os serviços de maior custo, tanto em lógica combinacional como em lógica sequencial
- Por se tratar de um modelo extensível e parametrizável, os custos da interface de rede podem variar de acordo com os serviços utilizados e a aplicação alvo

Conclusões

Trabalhos futuros

- Integrar núcleos e interfaces Avalon (Mestre e Escravo) em um SoC
- Avaliar os custos da interface de rede em tecnologias ASIC
- Avaliar a eficiência da codificação de barramentos na redução da potência total dissipada pela rede
- Disponibilizar versões SystemC das interfaces para integração ao simulador BrownPepper
- Prover o suporte a outros barramentos de comunicação

Interface de Comunicação Extensível para a Rede-em-Chip SoCIN

Douglas Rossi de Melo

drm@univali.br

Michelle Silva Wangham wangham@univali.br

Cesar Albenes Zeferino zeferino@univali.br

Universidade do Vale do Itajaí – UNIVALI Laboratório de Sistemas Embarcados e Distribuídos – LEDS

