Federal University of Pelotas Group of Architectures and Integrated Circuits

An Architecture for the new Adaptive Loop Filter of the High Efficiency Video Coding

<u>Victor Covalski</u>, Fabiane Rediess, Pargles Dall'Oglio, Marcelo Porto e Luciano Agostini

{vrcjunes, fkrediess, pdalloglio, porto, agostini}@inf.ufpel.edu.br

Outline

- Introduction
- □ HEVC High Efficiency Video Coding
- □ ALF Adaptive Loop Filter
- Proposed Architectures
- Results
- Conclusions

Introduction

Digital video popularization;

> Several devices that held digital video;

➤ Inviable task without video compression.

HEVC

- > The H.264/AVC standard is still the state-of-art;
- Higher resolutions demand;
- High Efficiency Video Coding HEVC;
- > HEVC goals:
 - Double H.264 compression rates;
 - Same or reduced computational complexity;
- New techniques are required;

ALF

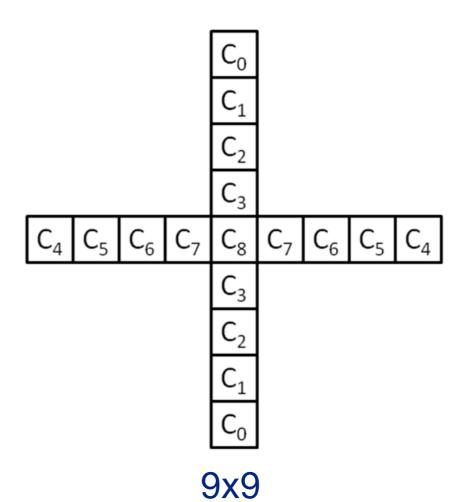
- Subjective quality of video is deteriorated with coding steps;
- ALF was removed after Working Draft 7 due to high complexity;
- Possible future reinsertion on HEVC's new profile (High efficiency)

ALF

Aims to reduce the image distortion;

> Two core sizes: 5x5 and 9x9;

> Filter coefficients generated by Wiener filters.

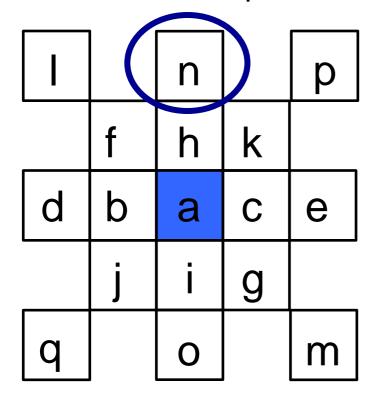


ALF

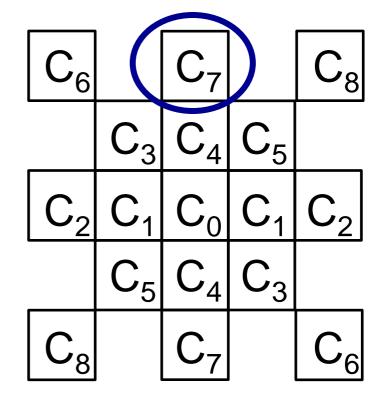
C_0		C_1		C ₂
	C_3	C_4	C ₅	
C_6	C ₇	C ₈	C ₇	C_6
	C ₅	C ₄	C_3	
C_2		C_1		C_0

5x5

Video Samples

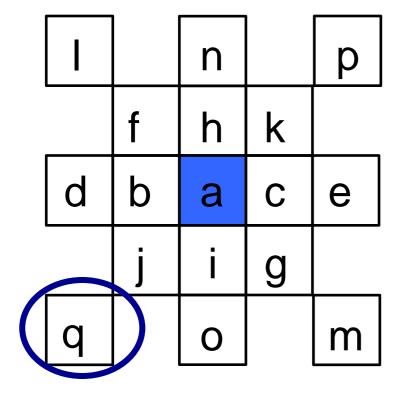


C_6		C_7		C ₈
	C_3	C_4	C_5	
C_2	C_1	C_0	C_1	C_2
	C_5			
C_8		C ₇		C_6



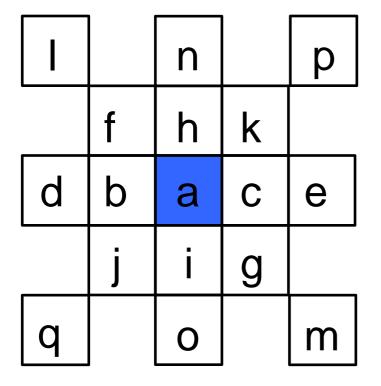
Video Samples

Filter Coefficients



 $(n * C_7)$

Video Samples

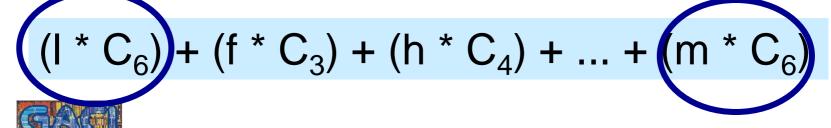

C_6		C ₇		C ₈
	C_3	C_4	C_5	
C_2	C_1	C_0	C_1	C_2
	C_5		C_3	
C_8		C ₇		C_6

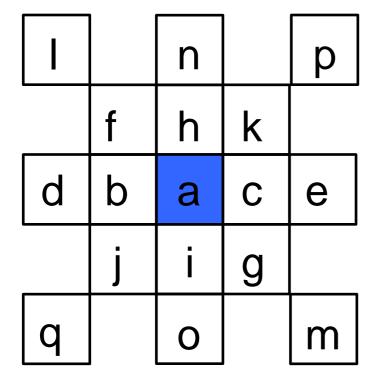
$$(q * C_8)$$

Video Samples

$$egin{array}{c|cccc} C_6 & C_7 & C_8 \\ \hline C_2 & C_1 & C_0 & C_1 & C_2 \\ \hline C_2 & C_5 & C_4 & C_3 \\ \hline C_8 & C_7 & C_6 \\ \hline \end{array}$$

$$(I * C_6) + (f * C_3) + (h * C_4) + ... + (m * C_6)$$




Video Samples

		n		р
	f	h	k	
d	b	a	С	е
	j	i	g	
q		0		m

C_6		C ₇		C ₈
	C_3	C_4	C_5	
C_2			C_1	C_2
	C_5			
C ₈		C ₇		C_6

Video Samples

$$egin{array}{c|cccc} C_6 & C_7 & C_8 \\ \hline C_3 & C_4 & C_5 \\ \hline C_2 & C_1 & C_0 & C_1 & C_2 \\ \hline C_5 & C_4 & C_3 \\ \hline C_8 & C_7 & C_6 \\ \hline \end{array}$$

$$((I + m) * C_6) + ...$$

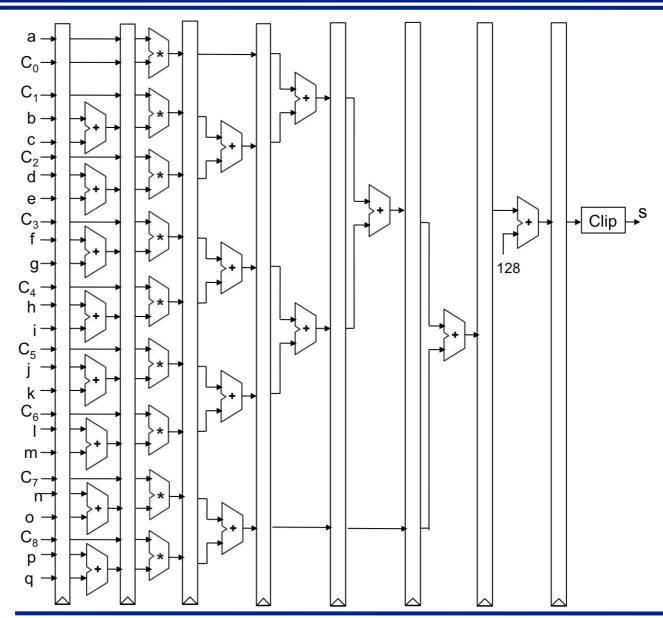
Video Samples

		n		р		C_6		C_7		C ₈
	f	h	k				C_3	C_4	C_5	
d	b	a	C	е		C_2	C_1	C_0	C_1	C_2
	j	i	g				C_5	C_4	C_3	
q	Reduce multipliers from 17 to 8									

$$((I + m) * C_6) + ...$$

Proposed Architecture

> ALF Core based on HEVC Draft Version 7.0


Described in VHDL;

Synthesized for Altera Stratix II EP2S15F484C3 FPGA;

Proposed Architecture for ALF 5x5

Synthesis Results

Filter Size	ALF Core
ALUTs	371 (2 %)
Total Registers	613 (<1%)
Embedded Multiplier 9-bit	14 (5%)
Frequency (MHz)	326

Altera Stratix II EP2S15F484C3

EMICRO / SIM 2013 17

Comparison

Filter Size	ALF Core
Adders	17
Multipliers	9
Clipping	1
Pipeline stages	8

EMICRO / SIM 2013 18

Estimated Processing Rates

Video resolution	ALF Core
720p (1280x720)	353
1080p (1920x1080)	157
WQXGA (2560x1600)	79
QFHD(3840x2160)	39

Frame's per second

Conclusions and Future Work

- This work shown the hardware design for the ALF Core;
- High Throughput;
- At least 157 1080p and 39 QFHD frames per second;
- > Future works:
 - Other ALF steps;
 - > Architecture for the entire ALF.

Federal University of Pelotas Group of Architectures and Integrated Circuits

An Architecture for the new Adaptive Loop Filter of the High Efficiency Video Coding

Thank You!

<u>Victor Covalski</u>, Fabiane Rediess, Pargles Dall'Oglio, Marcelo Porto e Luciano Agostini

{vrcjunes, fkrediess, pdalloglio, porto, agostini}@inf.ufpel.edu.br

