Mecanismos para o provimento de tolerância a faltas em Redes-em-Chip

Thiago Felski Pereira

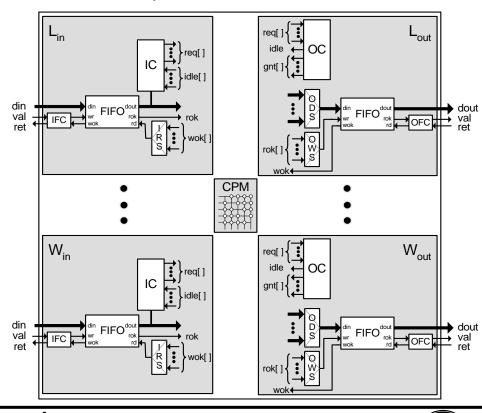
Cesar Albenes Zeferino

Universidade do Vale do Itajaí – UNIVALI Laboratório de Sistemas Embarcados e Distribuídos - LEDS

Sumário

- Introdução
- Adicionando tolerância a faltas à rede SoCIN
- Resultados
- Conclusões

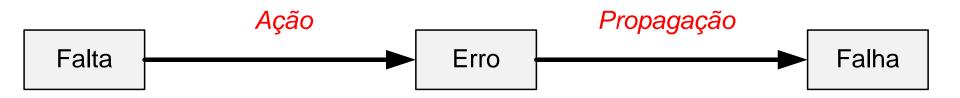
- Rede-em-Chip (NoC Network-on-Chip)
 - Arquitetura chaveada para comunicação entre núcleos em um sistema intergrado em único chip (SoC)
 - Chaveamento por circuitos ou pacotes
- Motivação para o uso de NoCs
 - Barramentos são reutilizáveis mas possuem desempenho limitado
 - NoCs oferecem
 - Desempenho escalável
 - Paralelismo em comunicação
 - Reusabilidade



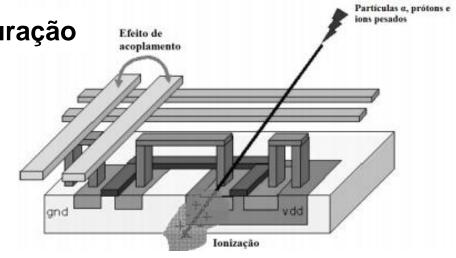
Exemplo de NoC – SoCINfp

- SoCIN RASoC
- NoC escalável de baixo custo
- Roteadores parametrizáveis (Canais e Buffers)
- Roteamento estático

SoCINfp – ParIS


- ParlS possui + parametrização
 - Controle de fluxo
 - Buffers
 - Roteamento
 - Arbitragem

- Como todos sistemas eletrônicos, as NoCs são suscetíveis a faltas
- Uma falta na rede pode levar o sistema a falhar


- NoCs tolerante a faltas evitam a propagação do erro decorrente da falha (ex. inversão de um bit)
- Para que um erro não seja propagado, ele precisa ser primeiramente detectado

Classificação das faltas quanto à duração

Transiente

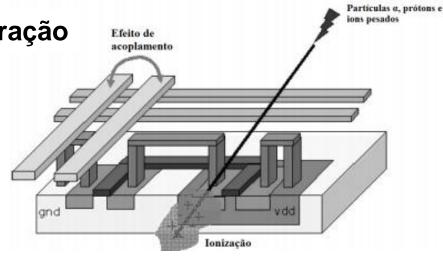
- Ocorre uma vez e n\u00e3o persiste
- Crosstalk
- Partículas α (SEU)

Permanente

- Ocorre durante a fabricação ou depois de certo tempo
- Desgaste físico
- Defeito de fabricação
- Erro de projeto

Intermitente

- Ocorre de forma repetida, mais não contínua, no mesmo local
- Desgaste em um componente
- Flutuações de temperatura e voltagem



Classificação das faltas quanto à duração

Transiente

- Occere uma vez e não persiste
- Cros
- F

80% das faltas em sistemas eletrônicos

Permanente

- Ocorre durante a fabricação ou depois de certo tempo
- Desgaste físico
- Defeito de fabricação
- Erro de projeto

Intermitente

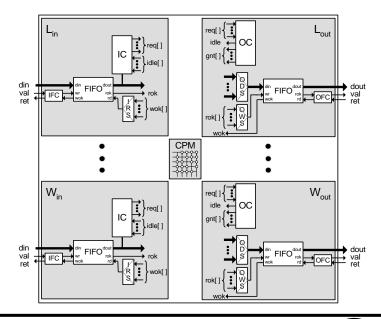
- Ocorre de forma repetida, mais não contínua, no mesmo local
- Desgaste em um componente
- Flutuações de temperatura e voltagem

Detecção de Erros

- É o aspecto mais importante de tolerância a faltas, pois um sistema não pode tolerar um problema do qual não está ciente
- A detecção de erros é feita usando-se redundância

Tipos de redundância

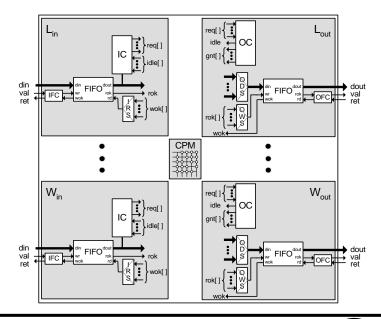
Tipo	Ideia básica	Exemplo
Espacial (física)	Adição de hardware	Replicar um módulo e ter duas réplicas
	redundante	para comparar seus resultados
Temporal	Execução de operações	Executar duas vezes uma operação e
	redundantes	comparar os resultados
Informação	Adição de bits	Adicionar bits de paridade a uma
	redundantes ao dado	palavra



Trabalhos anteriores de TF na SoCIN

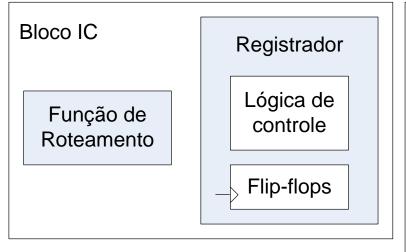
- Frantz (2007)
 - Proteção do roteador RaSoC (SEU e Crosstalk)
 - HC-HS-TMR x CRC e TS (menor sobrecusto)

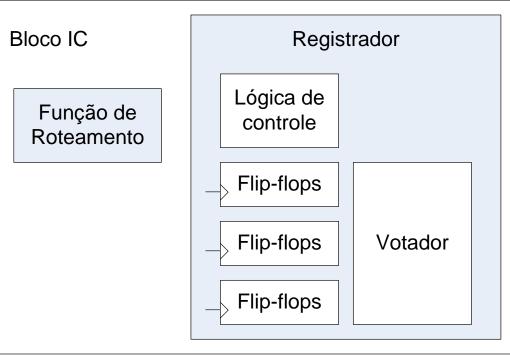
- Veiga (2010)
 - Proteção dos canais (Crosstalk)
 - R. Informação (CRC e Paridade)



Problema de pesquisa

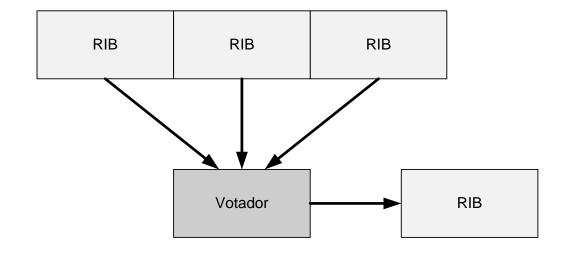
- Prover uma solução de baixo custo que garanta confiabilidade e a disponibilidade da rede SoCINfp mesmo na presença de faltas do tipo SEU e crosstalk.
- Redundância Espacial
 - TMR
- Redundância de Informação
 - Cabeçalho com a informação de roteamento (RIB) replicada

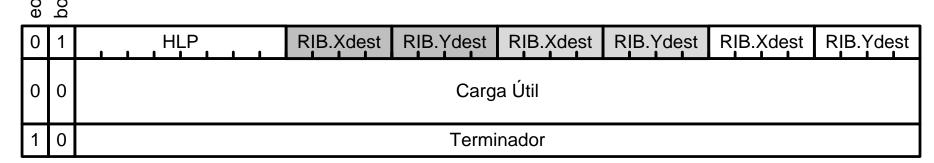




Adicionando tolerância a faltas à rede SoCIN

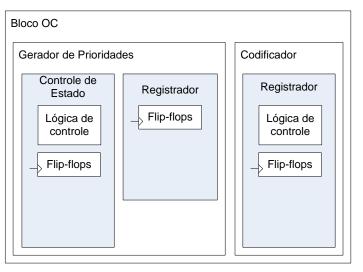
- Técnica para proteção do módulos de roteamento e arbitragem
 - Exemplo: Redundância espacial (TMR) no módulo de roteamento (IC)

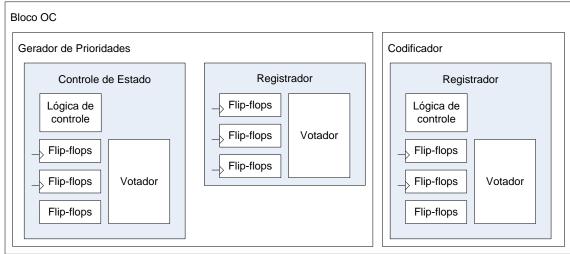




Adicionando tolerância a faltas à rede SoCIN

- Técnicas para proteção do RIB
 - Redundância de informação




LEDS

Adicionando tolerância a faltas à rede SoCIN

- Técnica para proteção do módulos de roteamento e arbitragem
 - Exemplo: Redundância espacial (TMR) no módulo de arbitragem (OC)

PG PPE

Implementação e Resultados

- Implementação
 - VHDL
 - Quartus
 - Synopsys

- Configurações utilizadas no roteador ParlS
 - Roteamento: XY
 - Controle de fluxo: Baseado em Créditos
 - Árbitro: Round-Robin
 - Memorização: Buffers de profundidade 4 na entrada
 - Tamanho da palavra de dados: 32 bits
 - Tamanho do campo de roteamento (RIB): 8 bits
 - Portas de comunicação ativas: Todas (L, N, E, S e W)

Implementação e Resultados

Custos de silício

Implementação	Área Combinacional (μm²)	Área Não Combinacional (µm²)	Área de Ligações (μm²)	Área total (µm²)	Sobrecusto (%)
Original	24.389,22	21.136,90	3.535,16	49.061,28	
Informação	26.912,56	21.136,90	3.689,99	51.739,45	5,46%
Espacial	32.263,37	26.915,33	4.475,15	63.653,85	29,74%
Informação + Espacial	34.900,99	26.915,33	4.645,38	66.461,70	35,47%

Implementação e Resultados

Potência

Implementação	Potência Total (µW)	Sobrecusto %
Original	2134,70	
Informação	2204,80	3,28%
Espacial	2224,30	4,20%
Espacial + Informação	2272,50	6,46%

Conclusões

- Custo de redundância de informação muito inferior ao de redundância espacial: 5,46%
 - Custo combinado

Área: 35,47%

Potência: 6,46%

Trabalhos futuros

- Combinar as técnicas deste trabalho com as de Veiga (2010) para proteger também os dados através de (paridade/CRC)
- SystemC para simulação e avaliar a taxa de cobertura da das técnicas

Mecanismos para o provimento de tolerância a faltas em Redes-em-Chip

Thiago Felski Pereira

felski@univali.br

Cesar Albenes Zeferino

<u>zeferino@univali.br</u>

Universidade do Vale do Itajaí – UNIVALI Laboratório de Sistemas Embarcados e Distribuídos - LEDS

