Parallel Prefix Adder in QCA technology

Kim Aragon Escobar Renato Perez Ribas Instituto de Informática Universidade Federal do Rio Grande do Sul

April 27, 2013

Why quantum-dot automata

- Transistor physical limitation;
- High speed circuits;
- Natural pipelined;
- The information is propagated using the eletric field.

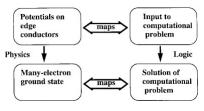


Figure: QCA Cell

Basics

- Each cell has 4 dots and 2 eletrons;
- Based in three devices: Wire, Majority Gate and Inverter.

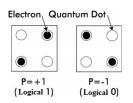
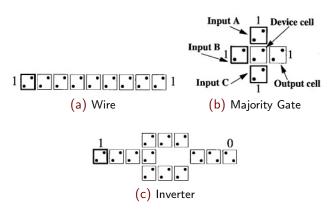



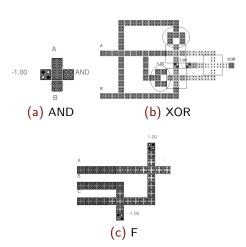
Figure: Technologic mapping

Devices

Parallel Prefix Adder

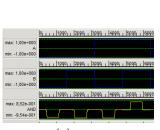
PPA Algorithm

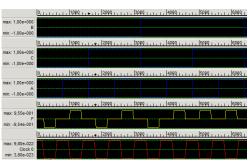
- **1** Calculate P_i and G_i : $P_i = a_i \oplus b_i$ and $G_i = a_i \cdot b_i$
- **2** Calculate the group generation and the group propagation using the following expressions: $G_{i+1,i} = G_{i+1} + P_{i+1} \cdot G_i$ and $P_{i+1,i} = P_{i+1} \cdot P_i$
- **3** Calculate the Couts for each bit: $Cout_{i-1} = G_{i,0} + P_{i,0} \cdot C_{in}$
- **4** Calculate the sum for each bit $S_i = P_i \oplus Cout_{i-1}$


Majority Equations

Principal Translations

- $OR = a + b \Rightarrow M(a, b, 1)$
- $\bullet (G_1, P_{i+1,i}) AND = a \cdot b \Rightarrow M(a, b, 0);$
- $(P_i, S_i) \ XOR = a \oplus b = a \cdot (b) + (a) \cdot b \Rightarrow M(M(a, b, 0), M(a, b, 0), 1);$
- $(Cout_{i-1}, G_{i+1,i}) F = a + b \cdot c \Rightarrow M(A, M(B, C, 0), 1).$


Circuits



Wave Form

(a) AND

(b) XOR

Figure: Wave Forms

Conclusions

- This paper presents ...
 - Majority Equations to each PPA cell;
 - Implementation of each PPA cell using QCA Technology.
- Future works ...
 - Full implementations of PPA with 4 bits;
 - Develop a strategy to assembly and route all cells of a more complex circuit;
 - Comparison with adders in literature.

Acknowledgments

Research partially supported by Brazilian funding agencies CNPq and FAPERGS, under grant 11/2053-9 (Pronem).

