

EXPLICIT LOGICAL EFFORT FORMULATION FOR MINIMUM ACTIVE AREA UNDER DELAY CONSTRAINTS

Caio G. P. Alegretti, Vinícius Dal Bem, Renato P. Ribas, André I. Reis

Institute of Informatics, UFRGS, Porto Alegre, RS

{cgpalegretti, vdbem, rpribas, andreis}@inf.ufrgs.br

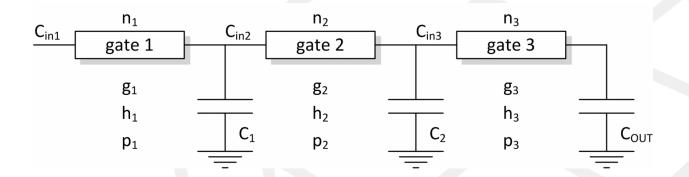
SIZING

- Choosing the sizes of logic gates
 - Respecting design constraints
 - Minimizing other costs
- Based on a delay model

OBJECTIVE

minimize active area (power)

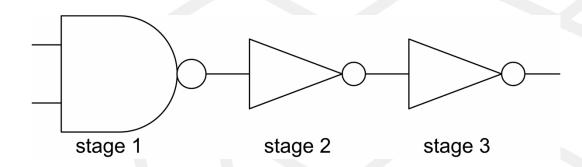
LOGICAL EFFORT DELAY MODEL


Gain-based delay model

$$d_{abs} = \tau(gh + p)$$

- d_{abs} : absolute delay
- $-\tau$: delay of an inverter driving an identical inverter with no parasitics
- − g : logical effort of the gate
- − h : electrical effort
- p: parasitic delay

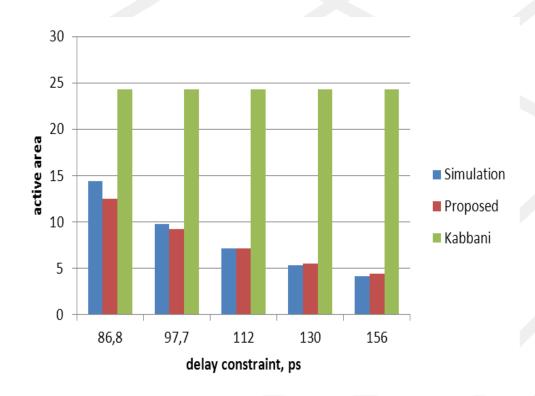
PROPOSED METHOD


- Total delay of an n-stage logic path:
- ▼ Total active area 3-stage logic path:
- dA / dC_{in1} ; dA / dC_{in2} ; dA / dC_{in3}
- one-variable equation

$$D = d_1 + d_2 + ... + d_n$$

$$A = n_1 C_{\text{in}1} + n_2 C_{\text{in}2} + n_3 C_{\text{in}3}$$

EXAMPLE: NAND - INV - INV



- Loads: X4, X16, X32, X40, X64, X100 (input capacitance of the minimum inverter)
- Delay constraints: minimum possible delay + slacks (for every load)

RESULTS

Significant improvement over previous method*

Active areas for output load X100 and 5 delay constraints.

*Kabbani, A.: 'Logical effort based dynamic power estimation and optimization of static CMOS circuits', *Integration, the VLSI journal*, 2010, 43, pp. 279-288

CONCLUSION

- New method for sizing subcircuits
- Finds minimum active area analytically
- Solving a one-variable equation
- Maximum sizing error: 13.5%
- Maximum power error: 4.1%
- Maximum delay error: 5.6%
- Future work