Generation and Analysis of Android Benchmarks
with Different Algorithm Design Paradigms

Andrws Vieira, Cristian Bosin, Luciano Agostini, Felipe Marques, Julio de Mattos

Group of Architectures and Integrated Circuits — GACI

Federal University of Pelotas — UFPEL
Pelotas, Brazil

{aavieira, cmbosin, agostini, felipem, julius}@inf.ufpel.edu.br

Abstract—In embedded application, features like performance,
energy consumption, software and hardware size reduction,
among others aspect must be considered. However, between on
todays embedded systems, the mobile devices with Android
operation system are in highlighted spot in the current market,
because of the large number of devices sold, thus requiring an
analysis of non-functional requirements during the development
of applications for these devices, in order that the energy these
devices is supplied by a battery. In this line of research, this work
will propose an implementation of a lot of applications for
Android platform, doing use of a different algorithm design
paradigms. These ways being possible to evaluate the impact of
these methods for the Android OS embedded in portables devices
like, smartphones and tablets. To evaluate the applications that
will be describes in this work, will be use tools and applications
of profiling that will be provide report about energy
consumption, dissipate power and execution time. In this work
are shown the results of analyzes of different algorithm design
paradigms like recursion, divide and conquer, among other
techniques, and the diagnosis of which techniques have a better
performance for the Android platform in different situations. In
general, recursive structures demonstrate an inferior
performance when compared to others methods, also was proved
that replacement extensive calculations by static tables shows
very high performance gains with only a irrelevant memory
storage increase. Furthermore, on the different sorting
algorithms analyzed the Tim Sort shows the best performance
for the Android platform. Already among the Java Collections
when subjected to benchmark developed in this work, the best
performance was demonstrated by the ArrayList.

Keywords— Embedded Systems, Android, Energy
Consumption, Performance Analysis, Algorithm Design
Paradigms

I. INTRODUCTION

Android is a development platform for mobile applications
based on Linux operating system [1] derived from an open
source project led by Google. The fact Android is an open
source project, allied with Apache 2.0 license, makes it
flexible, allowing developers and companies to make
customizations without need of sharing such changes. The
Android application development is simplified by the
Software Development Kit (SDK) that provides tools and
APIs needed to develop applications, favouring an easy
integration with many resources available on the device.
During the development of mobile applications, it is necessary

to analyze non-functional requirements, such as performance,
power dissipation and energy consumption, because these
applications run on battery-based devices.

Performance analysis of an Android application can be
done with Traceview [2], and power and energy consumption
estimations can be obtained with PowerTutor [3]. Traceview
is a graphical viewer for execution logs that can be done with
the Debug class, this way is generating log tracing information
of the source code. Traceview can help a debug any
application and profile its performance [2]. With the help of
this tool, it is possible to find bottlenecks in an application,
allowing developers to make modifications that increase the
application’s performance as much as possible. PowerTutor is
an application for Google devices that shows the power
consumed by major system components, such as CPU,
network interface, display, GPS receiver and different
applications. This application allows software developers to
see the impacts of design changes on power efficiency.
Application users can also use it to determine how their
actions are impacting battery life. PowerTutor uses a power
consumption model built by direct measurements during
careful control of device power management states. This
model generally provides power consumption estimates very
close to actual values, with a 5% error margin. A configurable
display for power consumption history is provided. It also
provides users with a text-file based output containing detailed
results. One can use PowerTutor to monitor the power
consumption of any application [3].

The focus of this work is shows a comparative analysis
between different design patterns. Among them, it is shown
the impact of recursive and iterative algorithms, algorithms
that use more memory versus algorithms that use more CPU
and the most common data structures of Java Collections
Framework.

Il. STATE OF THE ART AND RELATED WORKS

The current increase of processing capacity of mobile
devices brings as consequence an energetic consumption
increase by applications. Since it is undesirable (because
decreases battery life), the research for methods which avoid
this is necessary.

In this year is expected that mobile devices (smartphones
and tablets) will overtake PCs as the most widely used devices
for Internet access [4]. The most modern smart-phones are
capable of running video and audio in high definition, to

provide high speed access on internet, allow taking pictures
and making videos on high quality - HD - besides having
interface with sensors such as GPS and accelerometer.

The focus of this session is to describe and introduce
systems that perform real-time estimates of energy
consumption on mobile devices with Android. PowerRunner
and PowerTutor are results of research related to this work.

PowerRunner is automated management software that
provides energy and optimizes energy consumption on mobile
devices, using learning Linux kernels and a low-level API for
power management at runtime [5]. Modern Linux Kernels
define a structure for the code to facilitate power management
off and on an individual component of the system at runtime.
Through careful monitoring and learning the behavior of the
system components used by various user activities,
PowerRunner analyzes and estimates the resources required
by an activity on Android. In order to maximize the user
experience, minimize power requirements and maximize
energy savings by applying various combinations of
optimizations at runtime. The project has proven to save up to
25% of energy consistently.

PowerTutor is a system for estimating energy consumption
in real time implemented for the Android platform smart-
phone. PowerTutor provides accurate estimates of energy
consumption in real time to the hardware components,
including CPU and LCD display, as well as GPS, Wi-Fi,
audio and mobile network interfaces. This tool was chosen
because it provides estimates of energy consumption by
hardware components, allowing an analyze the behavior of
energy consumption in different components of the device.

I11. DESCRIPTION OF DEVELOPED WORK

A. Algorithms that use more memory versus algorithms that
use more CPU

The sine and cosine functions are a greater example for this
analysis, because is possible make a static table with these
results and access them. And also calculate the sine (1) and
cosine (2) by Taylor Series [6]. The trigonometric functions
Java implementations also will be used (which is the Math
class) [7].

(_1)11 . x2n+1

sinx) = o gnasy M
_1 N, 2N
cos(x) = Tizo o — @)

For this, it was previously calculated a table with the sine
and cosine values between zero and ninety with an accuracy
of a tenth (for to make a sine’s table and cosine’s table). With
these values is possible to calculate all the others values, just
changing the signal and the accessing order in the table. This
can be done implementing a hash function for to access this
table.

B. Sorting Algorithms

A computational problem that arises with frequency is the
sorting problem, which consists, basically, in sorting a

numeric sequence in increase order. Formally the sorting
problem can be defined the following way:

Input: a sequence with n numbers: (a4, a,, ..., a).

Output: a permutation (reordering): {a,’, a;’, ..., a,') of the
sequence so that a; < aj < - a,’.

A sorting algorithm can be classified by computational
complexity of the elements comparison in terms of the size of
the sequence n, by computational complexity of the swap
realized, memory used, among others.

In general for to determinate if an algorithm is more
efficient than other, it is analyzed the asymptotic growth of
the algorithm, in others words, how is the comportment of this
algorithm comparison in terms of the size of the sequence for
very large n, in limit.

For the development of this part, it was selected and
analyzed different sorting algorithms to evaluate the impact of
the characteristics of the energy consume of each algorithm in
embedded devices. Among the popular sorting algorithms,
those chosen were: Merge Sort, Heap Sort, Counting Sort,
Tim Sort and Insertion Sort (iterative and recursive versions).

The data set used as entry was the same to all algorithms.
The data entry consists in an array of 200 positive integer
numbers, where the values of this set range from 0 to 200.

C. Java Collections Framework — List Interface

Since Java 2SDK, the platform J2SE includes a collections
framework (called Java Collections Framework — JCF). The
JCF is a set of classes and interfaces that implements some
generic collection data structures [7]. On the other hand a
collection is an object that represents an object group. With
this, a collections framework is a unified architecture for
representing and manipulating collections, allowing them to
be manipulated independently of the details of their
representation. It reduces programming effort while increasing
performance. It allows for interoperability among unrelated
APIs, reduces effort in designing and learning new APIs, and
fosters software reuse. The framework is based on nine
collection interfaces. It includes implementations of these
interfaces, and algorithms to manipulate them.

As JFC consist in many different generic data structure
implementation, only List interface will be analyzed.

The List interface extends Collection and defines ordered
collections (also known as sequence). In most cases a List
may be compared to a primitive array (the access can be done
by numeric index) with insert and remove methods.

There are three classes that implement List interface:
ArrayList, Vector and LinkedList. The LinkedList class
implements a doubly linked list. The insert, remove and index
operations into the list will traverse the list from the beginning
or the end, whichever is closer to the specified index
(complexity 0(n)).

The ArrayList class is as primitive array but it has any
facilities. Internally it implements an object array. But when
the size of this array isn’t enough, a new array 1.5x bigger is
allocated and all elements is moved to this new array. The
insert and remove operation run in a linear time (0(n)). But
this linear time is amortized, because only elements after the

stated index are displaced. The access operations run in a
constant time.

The Vector class is equivalent to ArrayList with
synchronized operations [9].

1) Benchmark: For this analysis was determined a set of
operations that will be tested the same way in all List interface
implementations (ArrayList, LinkedList and Vector). Also
will be tested the Java primitive array. This set of operations
was defined in six steps and each step run the following
routine: (a) Values are inserted into a list; (b) The elements
are removed one by one, in increasing order; (c) The same
vector is reinserted; (d) The elements are removed one by one,
in decreasing order; (e) The same vector is reinserted; (f) The
elements are removed at random order (predetermined);

Each step runs this way: (1) Run the routine with an
increasing sorted vector; (2) Same as with step 1, but with a
decreasing sorted vector; (3) Same as with step 1, but with a
random vector; (4) Same as with step 3, but after insertions,
reverse the list; (5) Same as with step 4, but sort the list; (6)
Same as with step 4, but reverse sort the list.

IV.RESULTS ACHIEVED

All these analyze were performed on a Tablet Coby Kyros
MID7016 with the following features: Processor Telechips
ARM 11 800 MHz, 256 MB RAM and 4GB flash memory for
data storage and Android OS 2.3. After the process of
developing and testing of algorithms have been finalized, all
algorithms were then installed on the device to start the
analysis.

A. Analysis of algorithms that use more memory versus
algorithms that use more CPU

The main objective of this session is to present a method
that reduces the information processing by the CPU of the
device in order to save energy, aiming at a longer battery life.

First the applications sine and cosine only 900 values were
calculated (in a range from 0 to 90). In this case, the table had
all the values.

The cosine and sine had a similar comportment, where the
table shows the best efficiency, as illustrated in Figure 1
illustrates. Because this, the sine graphics were occulted.

Cosine

1000

800 1T—

600 +— bt \
400

Power (mW)

——y

1 3 5 7 9 11 13 15 17 19 21 23 25 27

Time (s)
Using Table J

s TaY|OT Serie emmfilems \ath

Fig. 1. Execution of the Cosine

But this implementation only returns results in first
quadrant of the trigonometric circle. For the results of the
other quadrants, just implement a hash function that convert
any angle between 0 and 360 for a corresponding value into

table. However, in this case, the result shows a difference
from the first, where the table version was worse than version
that uses the Math class, as illustrated in Figure 2.

The fact that table with the hash function was worse than
Math class solution, suggest that Math class contain a table
with the values previously calculated using a fast hash
function.

Cosine with Hash

1000

800 -'J‘V—. — e e e e
600 [\ L.

400
j 1
200 | L
0 >l v
1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81

Time (s)
Taylor Serie J‘

Power (mW)

g \ath — esssfies Using Table

Fig. 2. Execution of the Cosine with Hash Function

Although the input set is small for this case study, is
possible to note the use of a table containing the data
previously calculated always becomes more efficient than to
calculate each time it is needed. The only hitch is the use for
additional memory for store this values, what is not really a
problem in current devices.

B. Sorting Algorithms

This section will show the results of the analysis of energy
consumption of sorting algorithms. The Figure 3 shows a
comparison between the runtime in seconds (s) and the power
dissipation in milliwatts (mW). As can be seen, the algorithms
that had the worst performance were Insertion Sort (both
implementation) and Merge Sort. As Table | shows, Merge
Sort has complexity O(nlg(n)) and Insertion Sort has
complexity 0(n?), but the Merge Sort has worst performance
than Iterative Insertion Sort. This happens because in Android
platform recursive algorithms do not show good results [8]

[10].
The Table | also show that Tim Sort had the best
performance, running in 10s and consuming 7023mJ,

followed by Counting Sort and Heap Sort.

Sorting Algorithms

1000

A/00

600

400 -

Power (mW)

|
200 -

106 11 16 21 26 31 36 41 46 51 56 61 66
Time(s)

—— |52 TTON SOMT RECUrSive =g lerge Sort m—— |nizertion Sort [Lerative

— Heap Sort e cunting Sort e Tim Sort)

Fig. 3. Sorting Algorithms

TABLE |
SORTING ALGORITHM: ENERGETIC COST AND PERFORMANCE

Algorithms Complexity | Energy Consumed (mJ) | Time (s)
Rec. Ins. Sort 0(n® 49742 66
It. Ins. Sort o0n? 42290 60
Merge Sort O(nlg(n)) | 40144 66
Heap Sort 0(nlg(n)) 22866 31
Counting Sort o(n + K) 7466 13
Tim Sort 0(nlg(n)) 7023 10

C. Java Collections Framework — List Interface

This session will present the results obtained from of
analyze of some Java Collections (ArrayList, LinkedList and
Vector) and Java primitive array.

The Figure 4 shows the runtime versus dissipate power by
each structure. It is noted that the ArrayList presented the best
performance, running in 17s. On the other hand, the
LinkedList show the worse performance, running in 33s,
which also influences higher power consumption (22.3 J).

Collections

Power (mW)

19 21 213 25 27

29 321 33
Time (s)
e \/ECTOr ==l ArrayList ArrayPrimitive —%—LinkedList‘)

Fig. 4. Java Collections. Time in seconds and Power in miliWatt.

In real systems, the synchronization in Vector methods
causes an unnecessary overhead, because even when there is
access multitasking to the list (what does not happen in most
cases), almost always is needed do a new synchronization in
the methods for to atomize the concurrent operations into
Vector.

So if there is no the use of multiple threads, for reasons of
efficiency, the ArrayList is the most suitable.

V. CONCLUSIONS

This paper presented an evaluation of performance and
energy consumption of applications for the Android platform
in order to find a pattern of energy consumption in relation to
the design paradigm of algorithm used, so diagnosing the best
version of a particular algorithm to an end specific. Given that
most modern mobile devices are capable of running video and
audio in high definition, providing access to high speed
internet, allow pictures and videos of high quality, besides
having interface with sensors like GPS and accelerometer. But
with all these features the challenge is to extend the battery
life at this point is that this work fits.

It was evaluated algorithms that use more memory versus
algorithms that use more CPU, recursive and iterative
algorithms with the same complexity, and the impact of using

Java Collections Framework (in this case, the implementations
of the List interface), within the Android platform.

With the aid of the tool PowerTutor [3] which provides
estimates of energy consumption by hardware components, it
was possible to analyze the behavior of energy consumption
of the device running Android.

In cases where a good solution to a problem involves a lot
of calculations, and memory is not a crucial factor for the
project, the use of a table with some (or even all) of the pre-
calculated values becomes much more efficient than calculate
every time the result using a function of recurrence or where
the complexity of calculation is large, causing a relative delay.
On the other hand, the results showed that recursive
algorithms in Android platform cause a great loss of
performance and a high energetic consumption [8]. This is a
reason for the Tim Sort had a better performance compared to
other sorting algorithms, justifying its recent inclusion as a
standard sorting algorithm java language.

Among the collections of Java, ArrayList showed the best
performance when subjected to the benchmark that was
developed to assess in general the use of collections. With
these results it was found that except in very specific cases
when studies shown that another class may have superior
performance, it is preferable to use ArrayList in Java for
Android.

The importance of the results obtained in this study lies in
the fact that we can determine the impact of design changes in
software power dissipated by mobile applications for the
Android platform.

REFERENCES

[1] R. R. LECHETA, Google Android: Aprenda a criar aplicacbes para
dispositivos mdveis como o Android SDK, 22 ed., Sdo Paulo: Novatec
Editora, 2010.

[2] G. Android,
[Online].

[3] L. Zhang, R. Dick, Z. Mao and L. Yang, “PowerTutor,” 2012. [Online].
Available: http://powertutor.org. [Accessed March 2012].

[4] "Gartner," 2010. [Online]. Available:
http://www.gartner.com/it/page.jsp?id=1278413. [Accessed Abril 2012].

[5] E. Kreiman, “Using Learning to Predict and Optimise Power
Consumption in Mobile Devices,” Longdon, 2010.

[6] J. Stewart, Calculo, vol. 11, Sdo Paulo: Thomson Learning, 2007.

[7] “Oracle,” 2012. [Online]. Available:
http://docs.oracle.com/javase/tutorial/collections/intro/index.html.
[Accessed January 2013].

[8] A.VIEIRA, D. DEBASTIANI, A. L., F. MARQUES and C. MATTOS,
“An analysis of power and performance of applications for mobile
devices with Android OS,” in South Symposium on Microelectronics,
S&o Miguel das Missdes, 2012.

[9] "Javafree.org,” 2013. [Online]. Available:
http://javafree.uol.com.br/artigo/940/ArrayL.ist-ou-Vector.html.
[Accessed January 2013].

[10] A. VIEIRA, D. DEBASTIANI, A. L., F. MARQUES and C. MATTOS,
“Performance and Energy Consumption Analysis of Embedded
Applications Based on Android Platform” in Computing System
Engineering (SBESC), Natal, 2012.

“http://developer.android.com/index.html,” 10 2011.

