EvaluatingAndroid best practices for performance

Aline Rodrigues Tonini, Marco Beckmann, Julio C. B. de Mattos, Lisane Brisolara de Brisolara

Centro de Desenvolvimento Tecnologico, Universidade Federal de Pelotas
Pelotas, RS, Brazil

{artonini, mbeckmann,

Abstract—To improve Android code performance, Google
proposed a number of coding best practices that aim to optimize
the code through analysis and refactoring. This work studies and
evaluatesa subset of these best practices, including an analysis of
their impact on the performance of experimental codes and real
Android applications. Experimental results demonstrate a
positive impact of these evaluated practices on the performance.
Our experiments reinforce that developers can avoid overheads
and improve performance by the use of coding best practices.

Keywords— Android; Best

Optimization; Efficiency

Practices; Performance;

INTRODUCTION

With the technological advances of recent years, the
development of applications for mobile devices hasgrown
exponentially[1]. Most of these devices run Android

Operating System. The Android platform was developed by
Open Handset Alliance [2], a group formed by several
companies led by Google. The purpose of the alliance is to
provide a standardized environment for the development
todifferent communication devices.

Android represents an open solution with development
tools, a large support to many devices, as well an operating
system.This platform supports the development using Java,
one of the most used programming language. In addition,
Android has connexion with Google services.The combination
of these characteristics becomesthe development for Android
easy and advantageous [3].

However, mobile applications are significantly different
from traditional applications, mainly due to limited resources
available on mobile devices (e.g. battery, memory, etc.).Thus,
the software should be developed -considering these
restrictions and optimization should be applied in order to
obtain an efficient code. Moreover, Android application
optimization is a hard task, mainly because an application can
be executed in different devices with different processors, as
well as several versions of the Virtual Machine [3]. The main
problem is how to ensure that the application works well
across a wide variety of devices, and how to ensure that the
code is efficient.

Addressing this problem, Google proposes best practicefor
Android development [4], focusing on performance
improvement.The proposed best practices are simple tips that
improve the code efficiency.This work studies these practices
and evaluates through experimentstheir impact on the code
performance when executed on Android based devices.

julius,

lisane}@inf.ufpel.edu.br

The remaining of the paper is organized as follows. Section
IT presents the related work. The Google best practicesare
presented in Section III. Experimental results are presented
and discussed in Section IV. Section VI concludes and points
out directions for future work.

RELATED WORK

Several authors have addressed the problem of code
efficiency for mobile applications [5][6][7][8]. In [5] the
impact of the software abstraction usage in embedded systems
efficiency is analysed through two benchmarks for Android
performance evaluation.

In [6] a tool was proposed, which automatically refactors
Android applications transferring some computation-intensive
tasks from a smartphone to a server in order to improve the
application efficiency. The refactoring is performed at byte
code levelgenerating an implementation that supports on-
demand offloading. Afterthat, according to [6], the offloaded
apps execute about 46-97% faster, as well as its energy
consumption is reduced about 27-83%.

Another study evaluatesthe efficiency of the native code
and compares it to Java Dalvik code on real Android
devices[7]. According to this study, the use of native code is
34,2% faster than Java code.

Likewise, in [8]experiments evaluate performance, potency
and energy consumption fordifferent Java implementationsof
algorithms of the same complexityrunning on Android
devices. The goal is to determinethe best algorithms for
specific applications running on this platform.

These efforts show thatthe worries with code efficiency
mainly related to performance, and energy consumptionare
realand constant for the Android platform.These works
propose or evaluate optimizations in different levels, as native
code, byte code and algorithms. However,neither effort
considers optimizationsatimplementation level, or evaluates
the impact of the best practices proposed by Googleon
theperformance of real applications.

BEST PRACTICES

This section summarizes the best practices for performance
proposed by Google to be incorporated in the Android
application process development. According to the
studyconductedby Google [4], the use of best practices
provides better overall performance in the application.

One of the best practices suggested that designer must
avoid the creation of unnecessary objects, because it is always
costly. The allocation of excessive objects impliesin a periodic

garbage collection, causing a negative impact on the
application performance.

Another practice indicates the use of static methodsinstead
of virtual ones. Thus, methods that do not access attributes of
object should be declared as static. According to Google,
these invocations will be about 15% - 20% faster.

Another practices concerns to declaration and usage of
constants and recommends the use of static final forprimitive
constants and Strings. When using the finalreserved word in
the constant definitions, the access will be faster. This occurs
because the class does not require the <clinit> method,
generated during the class initialization, since those constants
are stored in the .dex file. However, this practice is valid only
to primitive types and constant Strings.

Inobject-oriented languages like C++ and Java is common
the use of getters/setters methods to access class
attributes.However, in Android this isnot a good practice,
because method invocations are expensive. Thus, the use of
getters/setters methodsshould be avoided. According to
Google, the time to directly access an attribute is three times
faster than trough getter/setter methods on devices without JIT
(Just-in-time) and about seven times faster with JIT recourses.

Concerning to manipulation of arrays, Google best
practices also present suggestion about the use of the
appropriated for syntax. Using the Java syntaxes, it is possible
to iterate an Array using three different forms, as illustrated in
the code from Fig. 1. The for-each syntax (used in two()) can
be used to define collections that implement an iterative
interface to Arrays. According to Google, the use of for-
eachin collections is three times faster (with or without JIT)
compared to the use of the traditional for (used in zero()).

static class Foo {
int mSplat;
}

Foo[] mArray = ...

public void zero(){
int sum = @;
for
(int 1 = ©; i < mArray.length; ++i){
sum + = mArray[i].mSplat;
}
}

public void one(){
int sum = ©;
Foo[] localArray = mArray;
int len = localArray.length;
for (int 1 = 8; i < len ; ++i){
sum + = localArray[i].mSplat;
}
}

public void two(){
int sum = @;
for(Foo : a){
sum + = a.mSplat;
}

}

Fig. 1: Code fragment of the appropriate for practice

The iteration used in the zeromethod is slow, because JIT
does not optimize the ways to obtain the Array length at each
loop iteration. The iteration in oneis faster, because uses local
variables and the array size is obtained before the loop and not
at each iteration. The last implementation uses the for-

eachsyntax,introduced in Java 1.5, which is fasterthan oneon
devices without JIT and indifferent in devices with JIT.

The best practices also indicate the use of package access
instead private access in private inner classes. This practice is
applied when an inner class another need to access attributes
of external class.The virtual machine considers the direct
accessof inner class to attributes of an external class as illegal,
because they are different classes. To avoid this problem,
attributes and methods from an inner class, should use
package visibility, which is provided by the publicand
protected modifiersor when no modifier is used[9]. Applying
this practice, one can avoid overhead in applicationsthat use
inner class at critical points of performance.

Another best practice indicatesthat the use of float point for
Android is not recommended. According Google, the use of
float point is two times slower than integer[4].

METHODOLOGY

For all experiments, the emulator provided into the Android
SDKis used. This emulator is configured to run on Android
4.1.2 using an API 15, and simulating the ARM EABI V7a
processor. Our experiments do not consider JIT.

The android.os.Debug library [10]is used to generate the
trace files required for performance estimation. The
startMethodTracing() and stopMethodTracing() methods from
this library are used to indicate start and end point of trace.
The execution time is obtained using Traceview tool[11],
which provides values for the Exclude and Include CPU
Time.Most experiments consider Exclude CPU Time and only
one experiment uses Include CPU Time. Thirty executions are
conducted for each experiment and medium values are
comparedusing a t-student statistic test to verify statistical
significance of the observed differences.

EXPERIMENTAL RESULTS

Two Google best practices are evaluated in this work.
Firstly, these are analysedusing experimental codes, and
finally these are applied on a real Android application.The
results presented in this section were obtained using the
Android 4.1.2. However, we also evaluated these practices for
Android 1.5, 2.1 and 3.0 and the results were representative in
these different versions of the platform.

Analysing a set of Google best practices

Firstly, the practice that suggests to
avoidgetter/settersmethods is evaluated using the code
fragmentsillustrated in Fig.2, Fig.3 and Fig.4. Fig. 2 illustrates
the class definition, which has an attribute that can be
accessed directly or by the getGetter() method. These
different solutions are represented in Fig. 3 by withGetters()
and withoutGetters() methods, where
withoutGetters()represents the solution that uses the good
practice, differently of withGetters().To evaluate both
solutions, the code fragment presented in Fig. 4 isused for
tracing these methods and estimate its performance and the
obtained results are presented in Table I (medium execution

time and standard deviation).In these experiments, the
withoutGetter method is 2,93 times faster than withGetter.

public class Getter {
int getter;

int getGetter() {
return getter;
}

}
Fig. 2: Experimental code fragment— Avoiding getters/setters.
void withoutGetter(Getter get) {

int i;
i = get.getter;

void withGetter(Getter get) {
int i;
i = get.getGetter();

}

Fig. 3:Methods used for tracing.
Debug.startMethodTracing("Getter", 40000000);
for (int 1 = 0; 1 < 10000; i++)

withoutGetter(get);

//withGetter(get);
Debug.stopMethodTracing();

Fig. 4: Code fragment for performance evaluation of avoiding getters.

Table I: Results of the avoiding getters/setters methods

Method Med. Exec.Time(ms) c
withGetter 547,435 3,882
withoutGetter 187,156 5,507

The impact of using the appropriate for syntax is observed
comparing the code fragments from Fig. 5, which represent
three different implementations (zero, one, and two) of a loop.
These implementations are evaluated using the tracing code
illustrated in Fig. 6 and results are presented in Table II. In the
experiments, Two is 1,25 faster than zero and 1,05 faster than
one.

public void povoa(FooLoop mArray[]) {
for (int 1 = ©; 1 < mArray.length; ++i) {
mArray[i] = new Fooloop();
mArray[i].mSplat = 1;
}
}

public void zero(Fooloop mArray[]) {
int sum = 0;
for (int i = 8; 1 < mArray.length; ++i) {
sum += mArray[i].mSplat;
}

}

public void one({Fooloop mArray[]) {
int sum = 8;
FooLoop[] localArray = mArray;
int len = mArray.length;
for (int i = 8; 1 < len; ++i) {
sum += localArray[i].mSplat;
}

}

public void two{FooLoop mArray[]) {
int sum = 0;
for (FooLoop a : mArray) {
sum += a.mSplat;
}
}

Fig.5: Experimental code fragment - Appropriate for practice

FoolLoop[] mArray = new Fooloop[10000];
povoa(mArray);

Debug.startMethodTracing("For@", 48800800);
zero(mArray);

//one(mArray);

//two(mArray) ;

Debug.stopMethodTracing();

Fig. 6: Code fragment with tracing.

Table II: Results of the appropriate for practice

Method Med. Exec. Time(ms) c

Zero 4,171 1,362
One 3,4974 1,062
Two 3,322 0,810

Evaluating impact on the performance of a real application

In this section,one application is used to demonstrate the
impact of the two studied best practices on real
applications.The chosen application is the OpenSudoku [12],
which was used toevaluate the impact of the for syntax
selection as well as of the avoiding getters/setters methods.
These impacts are firstly evaluatedseparately and after that
simultaneously.

To evaluate the two best practices, the code fragment
illustrated in Fig. 7 is used. This code illustrates the validate()
method after the best practicesbe applied.

protected boolean validate() {
boolean valid = true;
contvalidate+=1;
Map<Integer, Cell> cellsByValue = new HashMap<Integer, Cell=();
//int len = mCells.length;
Cell cell;
int value;
J/for (int i = 0; 1 < len; i++){
for (Cell a :mCells) {
//cell = mCells[i];
cell = a;
//value = cell.getValue;
value = cell.mValue;
if (cellsByValue.get(value) != null) {
J/mCell[i].setValid(false);
a.mvalid=false;
cellsByvalue.get(value).setvalid(false);
valid = false;
} else {
cellsByValue.put(value, cell);
}

return valid;

Fig. 7: validade() method after best practices be applied.

Experimental results obtained for the different for syntaxes
are depicted in Fig. 8. This comparison is based on medium
values for CPU Exclude Time of original and optimized code.
Thefor-each syntaxhas reduced execution time(1775,0134 ms)
compared to the traditional syntax (1792,9221ms), with
standard deviation of 23,5669 ms for optimized code and
17,6413 ms for original code (commented in Fig. 7).By
criteria conventional, this difference is considered
statisticallysignificant.

Fig. 9 presents the CPU Include Time obtained for the
validate() method, considering the versions with and without
Getters/Setters. Experiments show the positive impact of
replacing getter and setter invocation by direct accesses. The

execution time for original code (using getter/setter methods)
is 7046,0340ms(c =101,2620ms). Applying the best practice,
the execution time 1is reduced to 4195,0565ms (o
=87,7723ms). In this experiment, we used Include time in
order to consider invocations inside of the evaluated method.
This difference is considered statistically significant.

1820
1810

1800 I
1790 +
1780 +
1770
1760 -
1750 4
1740 +
1730 4
1720 4
1710 -

B Traditional Syntax

B For-each Syntax

Excl CPU Time (ms)

Fig. 8: Comparison between Traditional For syntax and For Each syntax

8000
7000 -
6000 -
5000 -
4000 -
3000 -
2000 A
1000 -

0 -

B With Getter/Setter

= Without Getter/Setter

Incl CPU TIme (ms)

Fig. 9: Comparison between solutionswith and without Getter/Setter methods

After the separate evaluation, we applied the two practices
simultaneously (Fig. 7) and obtained results are illustrated in
Fig. 10. In these experiments, the best practices reduced the
execution timeof the application inl133,6%, which can be
considered a significantdifference.

8000
7000 -
6000 -
5000 -
4000 +
3000 -
2000 -
1000 -

0 m

B Original Code
B Two Practices

Incl CPU Time (ms)

Fig. 10: Comparison between original code and two practices applied.

CONCLUSIONS

This paper presents a preliminarystudy of the Android best
practices for performance in which a subset of these practices

are revised and evaluatedthrough experiments. This work
presents only the analysis of the most significant best
practices, “for syntax” and “avoiding getters/setters”, due
limitation on the number of pages. Our experiments firstly use
experimental codes and finally analyze the impact of these
two best practices on a real Android application. Experimental
results demonstrate a significant and positive impact when
getter/setters methods are avoided and when the for-each
syntax is used. As future work, we plan extend these
experiments to evaluate the impact of the best practices on
energy consumption, an important issue for mobile devices.

ACKNOWLEDGMENT

The authors acknowledge financial support received from
Fapergs, and NESS project (PRONEX-10/0043-0).

REFERENCES

[11 A. Wasserman, "Software Engineering Issues for Mobile Application
Development," in Proc. of the FSE/SDP Workshop on Future of
Software Engineering Research, New York, 2010, pp. 397-400.

[2] OHA. (2013) Open Handset
http://www.openhandsetalliance.com/

[3] Y.L. Jie, Z. X. Yi, C. Da, and Z. Siting, "Development and
Implementation of Eclipse-based File Transfer for Android

Smartphone," in The 7th International Conference on Computer Science
& Education, Melbore, Australia, 2012.

[4] Google. (2013) Best Practices.
http://developer.android.comy/training/articles/perf-tips.html

Alliance. [Online].

[Online].

[S] V.B. Camara, U. Corréa, and L. Carro, "Impacto de uso da abstragdo de
software no desempenho de sistemas embarcados complexos," in
Brazilian Symposium on Computing System Engineering, Florianopolis,
2011.

[6] Y. Zhang et al., "Refactoring Android Java Code for On-Demand," in
Proceedings of the ACM international conference on Object oriented

programming systems languages and applications, New York, 2012, pp.
233-248.

[71 C. M. Lin, J. H. Lin, C. R. Dow, and C. M. Wen, "Benchmark Dalvik
and Native Code for Android System," in Second International
Conference on Innovations in Bio-inspired Computing and Applications,
2011, pp. 320-323.

[8] A. Vieira, D. Debastiani, L. Agostini, F. Marques, and J. C. B. Mattos,
"Performance and Energy Consumption Analysis of Embedded
Applications based on Android Platform," in Brazilian Symposium on
Computing System Engineering, Natal, 2012.

[9] Oracle. (2013) Controlling Access to Members of a Class. [Online].
http://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html

[10] Google. (2013) Using DDMS. [Online].
http://developer.android.com/tools/debugging/ddms.html

[11] Google. (2013) Profiling with Traceview. [Online].
http://developer.android.com/tools/debugging/debugging-tracing.html

[12] R. Masek. (2013) Open Sudoku. [Online].

http://code.google.com/p/opensudoku-android/

