
EvaluatingAndroid best practices for performance
Aline Rodrigues Tonini, Marco Beckmann, Júlio C. B. de Mattos, Lisane Brisolara de Brisolara

Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas

Pelotas, RS, Brazil

{artonini, mbeckmann, julius, lisane}@inf.ufpel.edu.br

Abstract—To improve Android code performance, Google

proposed a number of coding best practices that aim to optimize

the code through analysis and refactoring. This work studies and

evaluatesa subset of these best practices, including an analysis of

their impact on the performance of experimental codes and real

Android applications. Experimental results demonstrate a

positive impact of these evaluated practices on the performance.

Our experiments reinforce that developers can avoid overheads

and improve performance by the use of coding best practices.

Keywords— Android; Best Practices; Performance;

Optimization; Efficiency

INTRODUCTION

With the technological advances of recent years, the

development of applications for mobile devices hasgrown

exponentially[1]. Most of these devices run Android

Operating System. The Android platform was developed by
Open Handset Alliance [2], a group formed by several

companies led by Google. The purpose of the alliance is to

provide a standardized environment for the development

todifferent communication devices.

Android represents an open solution with development

tools, a large support to many devices, as well an operating

system.This platform supports the development using Java,

one of the most used programming language. In addition,

Android has connexion with Google services.The combination

of these characteristics becomesthe development for Android

easy and advantageous [3].

However, mobile applications are significantly different

from traditional applications, mainly due to limited resources

available on mobile devices (e.g. battery, memory, etc.).Thus,

the software should be developed considering these

restrictions and optimization should be applied in order to

obtain an efficient code. Moreover, Android application

optimization is a hard task, mainly because an application can

be executed in different devices with different processors, as

well as several versions of the Virtual Machine [3]. The main

problem is how to ensure that the application works well

across a wide variety of devices, and how to ensure that the

code is efficient.

Addressing this problem, Google proposes best practicefor

Android development [4], focusing on performance

improvement.The proposed best practices are simple tips that

improve the code efficiency.This work studies these practices

and evaluates through experimentstheir impact on the code

performance when executed on Android based devices.

The remaining of the paper is organized as follows. Section

II presents the related work. The Google best practicesare

presented in Section III. Experimental results are presented

and discussed in Section IV. Section VI concludes and points

out directions for future work.

RELATED WORK

Several authors have addressed the problem of code

efficiency for mobile applications [5][6][7][8]. In [5] the

impact of the software abstraction usage in embedded systems

efficiency is analysed through two benchmarks for Android

performance evaluation.

In [6] a tool was proposed, which automatically refactors

Android applications transferring some computation-intensive

tasks from a smartphone to a server in order to improve the

application efficiency. The refactoring is performed at byte

code levelgenerating an implementation that supports on-

demand offloading. Afterthat, according to [6], the offloaded

apps execute about 46-97% faster, as well as its energy

consumption is reduced about 27-83%.

Another study evaluatesthe efficiency of the native code

and compares it to Java Dalvik code on real Android

devices[7]. According to this study, the use of native code is

34,2% faster than Java code.

Likewise, in [8]experiments evaluate performance, potency

and energy consumption fordifferent Java implementationsof

algorithms of the same complexityrunning on Android

devices. The goal is to determinethe best algorithms for

specific applications running on this platform.

These efforts show thatthe worries with code efficiency

mainly related to performance, and energy consumptionare

realand constant for the Android platform.These works

propose or evaluate optimizations in different levels, as native

code, byte code and algorithms. However,neither effort

considers optimizationsatimplementation level, or evaluates

the impact of the best practices proposed by Googleon

theperformance of real applications.

BEST PRACTICES

This section summarizes the best practices for performance

proposed by Google to be incorporated in the Android

application process development. According to the

studyconductedby Google [4], the use of best practices

provides better overall performance in the application.

One of the best practices suggested that designer must

avoid the creation of unnecessary objects, because it is always

costly.The allocation of excessive objects impliesin a periodic

garbage collection, causing a negative impact on the

application performance.

Another practice indicates the use of static methodsinstead

of virtual ones. Thus, methods that do not access attributes of

object should be declared as static. According to Google,

these invocations will be about 15% - 20% faster.

Another practices concerns to declaration and usage of

constants and recommends the use of static final forprimitive

constants and Strings. When using the finalreserved word in

the constant definitions, the access will be faster. This occurs

because the class does not require the <clinit> method,

generated during the class initialization, since those constants

are stored in the .dex file. However, this practice is valid only

to primitive types and constant Strings.

Inobject-oriented languages like C++ and Java is common

the use of getters/setters methods to access class

attributes.However, in Android this isnot a good practice,

because method invocations are expensive. Thus, the use of

getters/setters methodsshould be avoided. According to

Google, the time to directly access an attribute is three times

faster than trough getter/setter methods on devices without JIT

(Just-in-time) and about seven times faster with JIT recourses.

Concerning to manipulation of arrays, Google best

practices also present suggestion about the use of the

appropriated for syntax. Using the Java syntaxes, it is possible

to iterate an Array using three different forms, as illustrated in

the code from Fig. 1. The for-each syntax (used in two()) can

be used to define collections that implement an iterative

interface to Arrays. According to Google, the use of for-

eachin collections is three times faster (with or without JIT)

compared to the use of the traditional for (used in zero()).

Fig. 1: Code fragment of the appropriate for practice

The iteration used in the zeromethod is slow, because JIT

does not optimize the ways to obtain the Array length at each

loop iteration. The iteration in oneis faster, because uses local

variables and the array size is obtained before the loop and not

at each iteration. The last implementation uses the for-

eachsyntax,introduced in Java 1.5, which is fasterthan oneon

devices without JIT and indifferent in devices with JIT.

The best practices also indicate the use of package access

instead private access in private inner classes. This practice is

applied when an inner class another need to access attributes

of external class.The virtual machine considers the direct

accessof inner class to attributes of an external class as illegal,

because they are different classes. To avoid this problem,

attributes and methods from an inner class, should use

package visibility, which is provided by the publicand

protected modifiersor when no modifier is used[9]. Applying

this practice, one can avoid overhead in applicationsthat use

inner class at critical points of performance.

Another best practice indicatesthat the use of float point for

Android is not recommended. According Google, the use of

float point is two times slower than integer[4].

METHODOLOGY

For all experiments, the emulator provided into the Android

SDKis used. This emulator is configured to run on Android

4.1.2 using an API 15, and simulating the ARM EABI V7a

processor. Our experiments do not consider JIT.

The android.os.Debug library [10]is used to generate the

trace files required for performance estimation. The

startMethodTracing() and stopMethodTracing() methods from

this library are used to indicate start and end point of trace.

The execution time is obtained using Traceview tool[11],

which provides values for the Exclude and Include CPU

Time.Most experiments consider Exclude CPU Time and only

one experiment uses Include CPU Time. Thirty executions are

conducted for each experiment and medium values are

comparedusing a t-student statistic test to verify statistical

significance of the observed differences.

EXPERIMENTAL RESULTS

Two Google best practices are evaluated in this work.

Firstly, these are analysedusing experimental codes, and

finally these are applied on a real Android application.The

results presented in this section were obtained using the

Android 4.1.2. However, we also evaluated these practices for

Android 1.5, 2.1 and 3.0 and the results were representative in

these different versions of the platform.

Analysing a set of Google best practices

Firstly, the practice that suggests to

avoidgetter/settersmethods is evaluated using the code

fragmentsillustrated in Fig.2, Fig.3 and Fig.4. Fig. 2 illustrates

the class definition, which has an attribute that can be

accessed directly or by the getGetter() method. These

different solutions are represented in Fig. 3 by withGetters()

and withoutGetters() methods, where

withoutGetters()represents the solution that uses the good

practice, differently of withGetters().To evaluate both

solutions, the code fragment presented in Fig. 4 isused for

tracing these methods and estimate its performance and the

obtained results are presented in Table I (medium execution

time and standard deviation).In these experiments, the

withoutGetter method is 2,93 times faster than withGetter.

Fig. 2: Experimental code fragment– Avoiding getters/setters.

Fig. 3:Methods used for tracing.

Fig. 4: Code fragment for performance evaluation of avoiding getters.

Table I: Results of the avoiding getters/setters methods

Method Med. Exec.Time(ms) σ
withGetter 547,435 3,882

withoutGetter 187,156 5,507

The impact of using the appropriate for syntax is observed

comparing the code fragments from Fig. 5, which represent

three different implementations (zero, one, and two) of a loop.

These implementations are evaluated using the tracing code

illustrated in Fig. 6 and results are presented in Table II. In the

experiments, Two is 1,25 faster than zero and 1,05 faster than

one.

Fig.5: Experimental code fragment - Appropriate for practice

Fig. 6: Code fragment with tracing.

Table II: Results of the appropriate for practice

Method Med. Exec.Time(ms) σ

Zero 4,171 1,362

One 3,4974 1,062

Two 3,322 0,810

Evaluating impact on the performance of a real application

In this section,one application is used to demonstrate the

impact of the two studied best practices on real

applications.The chosen application is the OpenSudoku [12],

which was used toevaluate the impact of the for syntax

selection as well as of the avoiding getters/setters methods.

These impacts are firstly evaluatedseparately and after that

simultaneously.

To evaluate the two best practices, the code fragment

illustrated in Fig. 7 is used. This code illustrates the validate()

method after the best practicesbe applied.

Fig. 7: validade() method after best practices be applied.

Experimental results obtained for the different for syntaxes

are depicted in Fig. 8. This comparison is based on medium

values for CPU Exclude Time of original and optimized code.

Thefor-each syntaxhas reduced execution time(1775,0134 ms)

compared to the traditional syntax (1792,9221ms), with

standard deviation of 23,5669 ms for optimized code and

17,6413 ms for original code (commented in Fig. 7).By

criteria conventional, this difference is considered

statisticallysignificant.

Fig. 9 presents the CPU Include Time obtained for the

validate() method, considering the versions with and without

Getters/Setters. Experiments show the positive impact of

replacing getter and setter invocation by direct accesses. The

execution time for original code (using getter/setter methods)

is 7046,0340ms(σ =101,2620ms). Applying the best practice,

the execution time is reduced to 4195,0565ms (σ

=87,7723ms). In this experiment, we used Include time in

order to consider invocations inside of the evaluated method.

This difference is considered statistically significant.

Fig. 8: Comparison between Traditional For syntax and For Each syntax

Fig. 9: Comparison between solutionswith and without Getter/Setter methods

After the separate evaluation, we applied the two practices

simultaneously (Fig. 7) and obtained results are illustrated in

Fig. 10. In these experiments, the best practices reduced the

execution timeof the application in133,6%, which can be

considered a significantdifference.

Fig. 10: Comparison between original code and two practices applied.

CONCLUSIONS

This paper presents a preliminarystudy of the Android best

practices for performance in which a subset of these practices

are revised and evaluatedthrough experiments. This work

presents only the analysis of the most significant best

practices, “for syntax” and “avoiding getters/setters”, due

limitation on the number of pages. Our experiments firstly use

experimental codes and finally analyze the impact of these

two best practices on a real Android application.Experimental

results demonstrate a significant and positive impact when

getter/setters methods are avoided and when the for-each

syntax is used. As future work, we plan extend these

experiments to evaluate the impact of the best practices on

energy consumption, an important issue for mobile devices.

ACKNOWLEDGMENT

The authors acknowledge financial support received from

Fapergs, and NESS project (PRONEX-10/0043-0).

REFERENCES

[1] A. Wasserman, "Software Engineering Issues for Mobile Application

Development," in Proc. of the FSE/SDP Workshop on Future of
Software Engineering Research, New York, 2010, pp. 397-400.

[2] OHA. (2013) Open Handset Alliance. [Online].

http://www.openhandsetalliance.com/

[3] Y.L. Jie, Z. X. Yi, C. Da, and Z. Siting, "Development and

Implementation of Eclipse-based File Transfer for Android
Smartphone," in The 7th International Conference on Computer Science

& Education, Melbore, Australia, 2012.

[4] Google. (2013) Best Practices. [Online].
http://developer.android.com/training/articles/perf-tips.html

[5] V.B. Camara, U. Corrêa, and L. Carro, "Impacto de uso da abstração de

software no desempenho de sistemas embarcados complexos," in
Brazilian Symposium on Computing System Engineering, Florianópolis,

2011.

[6] Y. Zhang et al., "Refactoring Android Java Code for On-Demand," in
Proceedings of the ACM international conference on Object oriented

programming systems languages and applications, New York, 2012, pp.

233-248.

[7] C. M. Lin, J. H. Lin, C. R. Dow, and C. M. Wen, "Benchmark Dalvik

and Native Code for Android System," in Second International

Conference on Innovations in Bio-inspired Computing and Applications,
2011, pp. 320-323.

[8] A. Vieira, D. Debastiani, L. Agostini, F. Marques, and J. C. B. Mattos,

"Performance and Energy Consumption Analysis of Embedded
Applications based on Android Platform," in Brazilian Symposium on

Computing System Engineering, Natal, 2012.

[9] Oracle. (2013) Controlling Access to Members of a Class. [Online].
http://docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html

[10] Google. (2013) Using DDMS. [Online].

http://developer.android.com/tools/debugging/ddms.html

[11] Google. (2013) Profiling with Traceview. [Online].

http://developer.android.com/tools/debugging/debugging-tracing.html

[12] R. Masek. (2013) Open Sudoku. [Online].
http://code.google.com/p/opensudoku-android/

1710

1720

1730

1740

1750

1760

1770

1780

1790

1800

1810

1820

E
x
cl

C
P
U

T
im
e
 (
m
s)

Traditional Syntax

For-each Syntax

0

1000

2000

3000

4000

5000

6000

7000

8000

In
cl
 C
P
U

T
Im
e
(m
s) With Getter/Setter

Without Getter/Setter

0

1000

2000

3000

4000

5000

6000

7000

8000

In
cl
 C
P
U

T
im
e
(m
s)

Original Code

Two Practices

