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Abstract— Nowadays many devices can handle with digital 

videos, especially with high definition, even for portable devices, 

as smartphones and tablets. However, high definition videos 

demand a high amount of information to be represented. The 

current video coding standards use a set of new techniques to 

increase its coding efficiency. One of these techniques, used by 

H.264 and HEVC (High Efficiency Video Coding), is the 

Fractional Motion Estimation (FME). One of the main steps of 

the FME is the interpolation step, which is responsible for the 

generation of the fractional positions. This paper presents a 

hardware design focusing on the interpolation step of the FME 

for the emerging HEVC standard. The designed architecture 

was described in VHDL and synthesized for Altera Stratix III 

FPGA. The architecture is able to generate the fractional 

samples for videos with QFHD (3840 x 2160 pixels) resolution in 

real time at 48 frames per second. 
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I. INTRODUCTION 

Digital videos with high definition are used in many 
devices, like DVD and Blu-Ray players, digital TV and 
smartphones, among others. Since a great amount of data 
should be processed, it is extremely important to compress 
these videos. In addition, the real time processing of high 
definition videos is associated with a high computational 
complexity, principally due to these compression techniques 
needed. Considering portable device applications, this high 
complexity is a great restriction and a dedicated hardware 
design is an efficient solution for this problem. 

A video encoder uses different steps to reduce some types 
of the data redundancy presented in a video sequence. The 
inter-frame prediction identifies and reduces the temporal 
redundancy existing in near temporal frames of a video 
sequence. In the inter-frames prediction, there is a step called 
motion estimation (ME), which is the most important step in 
all video encoder since the ME is the one that brings more 
compression gains [1]. For the application of the ME, each 
video frame is subdivided in little blocks, called PUs 

(Prediction Units), before of coding. After, the ME step 
identifies in previously encoded frames (called reference 
frames), which PU are more like the PU that is being encoded.  
When this PU is identified on the reference frame, the ME 
generates a motion vector from the PU position allowing its 
localization. Therefore, it is necessary to calculate the 
differences from the PUs that are been encoded and the PUs in 
reference frames. Thus, only the vector and the difference 
between these PUs are sent to the next step of the encoder. 

In the HEVC (High Efficiency Video Coding), PUs can 
have variable sizes, and the selection of size occurs according 
the results of image quality and compression rates [2]. 
Furthermore, it is possible to apply a refinement step in the 
ME, called Fractional Motion Estimation (FME). The FME 
can increase ME gains using sub-pixels position beyond 
integer positions [3]. Finally, the HEVC uses some innovative 
techniques to compress the motion vectors [2] rising the 
compression gains. 

The FME step can be divided in: (a) the interpolation unit, 
responsible to generate fractional positions, and (b) the search 
for best match between the encoded block and previously 
blocks considering these positions generated. This paper 
presents the hardware design for the HEVC FME interpolation 
unit, considering 8x8 blocks. 

II. EVALUATION WITH THE REFERENCE SOFTWARE 

Since the HEVC inter-prediction complexity is very high, 
strategies to reduce this complexity are a relevant research 
topic, mainly for applications with processing and power 
consumption restrictions. But these strategies must maintain 
the quality and the compression rate in acceptable levels. 

The main part of the HEVC inter-frames computational 
complexity is related with the variable PU size, since each PU 
size must be evaluated in terms of the rate-distortion cost [2] 
to define which the best PU size is. There are 24 PU sizes 
defined in the current version of HEVC, and this number can 
rise to 25 when the 4x4 size is enabled [2]. Then, some 
evaluations were done in this work aiming to discover which 



are the most selected PU size in the HEVC encoding process. 
The evaluations were done using the version HM-8.0rc2 of the 
HM (HEVC Model) reference software [4]. 

The test configurations defined by the JCT-VC [5] were 
used in the evaluation process. The JCT-VC defines 8 
conditions to do the tests, with combinations of high efficient 
and low complexity tools in 3 configurations: (a) intra-only, 
(b) random-access and (c) low delay [2]. The evaluations were 
done considering the main profile. All 24 video sequences 
defined in [5] were encoded for the five classes in the random-
access and low-delay configurations. The intra-only 
configuration was not used since ME is not employed in this 
configuration. The results of this evaluation have shown that 
the most used PU size was 8x8 in almost all scenarios, 
followed by 16x16 and 32x32 PU sizes.  

Another test was done to evaluate the losses in terms of 
image quality and bit-rate when using only the 8x8 PU size in 
the HEVC ME. This evaluation shows average bit-rate losses 
lower than 13.18%. The average image quality losses were 
lower than 0.44dB.  

The last test was done to evaluate the relevance of the 
fractional ME when only the 8x8 block size was used. Then, 
the FME was disabled and all tests were done again. As result 
was possible to conclude that the use of FME provides an 
important gain in bit-rate and quality. The bit-rate gain was 
near to 9.73% and the quality gain was near to 0.18dB. 

Considering the presented results, it was possible to verify 
that the FME is a very important tool in the HEVC encoder. 
Other important point about the FME is that it presents a low 
complexity when all encoder is considered. The FME 
calculations can be done in parallel with the integer ME of the 
next block and no other encoder loops are necessary. On the 
other hand, even providing expressive gains in compression 
and quality, the use of variable PU sizes increases a lot the 
encoder complexity, since all PU sizes must be evaluated. 
When only one PU size is evaluated the complexity is 
drastically reduced, since only one block size must be 
processed by further encoder steps and the decision of which 
is the best block is unnecessary. In this scenario, the global 
encoder complexity is reduced in more than 24 times, since 
the HEVC defines at least 24 PU sizes and also many intra-
prediction modes. So, the losses in quality and compression 
are justified, especially for applications with processing and 
energy consumption restrictions. 

After the analysis presented in this section, this work 
focused in a hardware design of the HEVC FME interpolation 
unit using a fixed block size of 8x8 samples.  

III. FRACTIONAL ME IN THE HEVC 

The most recent HEVC FME definitions is present in 
documents [2] and [6]. Those documents define the process to 
generate the sub-pixels positions according to the HEVC 
standard. Fig. 1 shows the samples of luminance in integer 
positions, as well as in fractional positions for the 
interpolation with precision of quarter pixel defined in the 
HEVC standard, considering 8x8 block size.  

 
Fig. 1  Samples at integer positions (shaded squares and with uppercase) and 

at fractional positions (with lowercase) 

According with the FME defined in the HEVC [6], it is 
possible to generate the fractional positions a0,0, b0,0, c0,0, d0,0, 
h0,0 and n0,0 in Fig. 1, with the application of an 8-tap FIR 
filter using only the integer positions. The generation of the 
fractional positions e0,0, f0,0, g0,0, i0,0, j0,0, k0,0, p0,0, q0,0 and r0,0 
requires, firstly, the calculation of the fractional positions a0,i, 
b0,i and c0,i, where i varies from -3 to 4 in vertical direction. 
Then, the fractional positions generated in the vertical 
direction are used to generate these samples also using an 8-
tap FIR filter. The used FIR filter coefficients depend on the 
sample position, as shown in Table I. 

TABLE I 
FIR FILTER COEFFICIENTS 

Fractional Positions FIR Filter Coefficients 

ai,j , di,j , ei,j , fi,j , gi,j {–1, 4, –10, 58, 17, –5, 1, 0} 

bi,j , hi,j , ii,j , ji,j , ki,j {–1, 4, –11, 40, 40, –11, 4, –1} 

ci,j , ni,j , pi,j , qi,j , ri,j {0, 1 , –5, 17, 58, –10, 4, –1} 

 

IV. HARDWARE DESIGN 

An analysis of the interpolation algorithm was done in 
order to reduce the complexity of the hardware design. Firstly, 
was possible to observe a similarity among some fractional 
positions generation, where the FIR filter coefficients were the 
same in some cases. Therefore, in order to reduce the cost of 
the designed hardware, the sub-pixel positions were divided in 
3 groups, according to the FIR filter coefficients and their 
positions related to the integer positions, following the same 
distribution presented in Table I. The names of these 3 types 
of filters are: Up, Middle and Down. Fig. 2, presents the 
location of these filters considering the interpolated positions. 

   
(a) (b) © 

Fig. 2   Filter types (a) Up, (b) Middle and (c) Down 

The next step was to optimize the filters with some 
algebraic manipulations. The multiplications by constants 
were transformed in shift-adds and common sub-expressions 
sharing were also considered.  



The optimizations applied in the Middle filter are 
presented in this paper as an example, but the same process 
was done to the Up and Down filters. The interpolation input 
and output are represented as a0-a7 and s, respectively, as 
presented in equation (1). The first optimization was to 
transform the multiplications by constants in shift-adds, where 
all constants are represented as numbers in base 2, as 
presented in equation (2). This strategy allows a multiplierless 
design, decreasing the interpolator hardware cost and 
increasing its global performance. Since each constant can be 
replaced by many sets of shift-adds, the selected set of shift-
adds considered the lowest use of additions and, consequently, 
the lowest cost of hardware. Then, the multiplications by the 
same factors were grouped, as can be seen in equation (3). 
This optimization allows a reduction in the number of shifts 
and a reduction in the adders bit width, since the additions are 
done first and the multiplications are done later. Other 
optimization is the sub-expression share. In this case, the 
common calculations R1 and R2, presented in equation (4) are 
done only once and the result is reused as presented in 
equation (5). Finally, equation (6) presents the result of the 
optimization process, with the multiplications changed to 
shifts.  

S = [– a0 + 4*a1 – 11*a2 + 40*a3 + 40*a4 – 11*a5 +  

+ 4*a6 – a7] >> 6  (1) 

s = [– a0 + 4*a1 – (8*a2 + 2*a2 + a2) + (32*a3 + 8*a3) +  

+ (32*a4 + 8*a4) – (8*a5 + 2*a5 + a5) + 4*a6 – a7] >> 6  (2) 

s = [1*(– a0 – a2 – a5 – a7) + 2*(– a2 – a5) + 4*(a1 + a6) +  

+ 8*(– a2 + a3 + a4 – a5) + 32*(a3 + a4)] >> 6  (3) 

R1 =  a2 + a5       and     R2 = a3 + a4  (4) 

s = [1*(– a0 – a7 – R1) – 2*R1 + 4*(a1 + a6) +  

+ 8*(R2 – R1) + 32*R2] >> 6  (5) 

s = {(– a0 – a7 – R1) – (R1<< 1) + [(a1 + a6) << 2] +  

+ [(R2 – R1) << 3] + (R2 << 5)} >> 6  (6) 

The hardware design of the interpolation filters started 
considering the optimized equations. Three architectural 
versions were designed considering structural and behavioral 
descriptions: (a) purely combinational; (b) using 2 pipeline 
stages and (c) using 4 pipeline stages. All designed 
architectures consume in one clock cycle the input data 
necessary to generate one new interpolated sample. Then, the 
architectures are able to generate one sample per clock cycle 
(when the pipeline is full for those solutions which use 
pipeline). The integer input samples are 8 bit-wide but the 
input fractional positions are 10 bit-wide. This way, as the 
same filter could receive integer and fractional inputs, the bit 
width of the filters inputs were defined as 10 bits.  

The pipeline versions were designed trying to best balance 
the stages, splitting the adders accordingly. Fig. 3 shows the 
architectural design of the Middle filter using 4 pipeline 
stages. The other filters used the same architectural template. 

 

Fig. 3   Hardware architecture for the Middle filter type 

The complete architecture designed for the FME 
interpolation is presented in Fig. 4 and it uses some instances 
of the three filters presented bellow and 4 buffers. Since the 
main goal of this work is to design a high throughput FME 
interpolation unit, the global architecture was designed 
targeting the generation of one complete line or column of 
fractional positions per clock cycle. 

One buffer is used to store the input samples at integer 
positions, and the other 3 buffers are used to store the filters 
outputs in fractional positions. These buffers were 
implemented using register banks and are presented in Fig. 4, 
integrated with the interpolation filters. The information stored 
in the output filters are used in the next FME step, which is the 
search for the best match inside the interpolated area. The 
output information of the three filters is reordered inside the 
H-type (horizontal positions), V-type (vertical positions) and 
D-type (diagonal positions) buffers to be used in the next FME 
step. Fig. 4 also presents the filters inputs which are provided 
by the first buffer, containing the integer position samples, and 
by the H-type buffer, containing the interpolated positions 
used in the generation of the next interpolated samples.  

 
Fig. 4   Hardware architecture for the FME interpolation 

The integer pixel buffer presented in Fig. 4 is able to store 
256 positions with 8 bits each, because, besides the 8x8 block, 
it is necessary to store 4 additional samples around the block 
edge to allow the filtering process. Then the stored blocks with 
integer positions concerns 16x16 samples. 



To allow the desired global architecture throughput, 9 
instances of each one of the three filters (Up, Middle and 
Down) were used, as presented in Fig. 4. Then, it is possible to 
calculate 9 fractional positions per clock cycle in each group 
of filters. This means that 27 fractional positions (one line or 
column) are generated per clock cycle. It is important to notice 
that one 8x8 block with integer pixels generates 432 horizontal 
fractional position, 216 vertical fractional positions and 729 
diagonal fractional positions. 

The interpolation flow starts processing one line of the 
integer samples, where all horizontal fractional positions are 
calculated for this line (a, b, c samples in Fig. 1). This process 
is repeated for the 16 lines stored in the input buffer. The next 
step is the use of the columns of integer samples to generate 
the vertical fractional positions (d, h, n samples in Fig. 1) for 
this column. This process is repeated 8 times, because only 8 
columns must be processed. The last step considers the 
horizontal fractional positions as inputs to generate the last 
fractional positions, called diagonal positions in this work. In 
this case, a total of 27 additional columns must be processed. 
According with the number of lines and columns that must be 
processed, it is possible to estimate an execution rate of 51 
clock cycles to complete the interpolation of an 8x8 block. 

V. SYNTHESIS RESULTS AND RELATED WORKS 

Table II presents the synthesis results achieved with the 
designed hardware architectures for the FME interpolation 
unit. These results considered all 27 filters used in Fig. 4, with 
9 filters of each type (Up, Down and Middle). The VHDL 
description of these filters considering the three architectural 
versions designed in this work (combinational, two-stage 
pipeline and 4-stage pipeline) were synthesized targeting a 
Stratix III EP3SE50F484C2 FPGA device [7]. The used 
synthesis tool was the Altera Quartus II [7]. 

TABLE II 
SYNTHESIS RESULTS FOR THE INTERPOLATION UNIT VERSIONS 

Interpolation Filter 

Version 

Combinational 

ALUTs  

Total 

Registers 

Frequency 

(MHz) 

Combinational 10,327 16,534 131.91 

Pipeline and 2 steps 10,327 17,764 208.42 

Pipeline and 4 steps 10,327 19,130 317.36 

 

Based on the operation frequency reached by the different 
filter versions it is possible to estimate the number of frames 
per second that can be processed, considering different 
resolutions. This estimation is presented in Table III 
considering Full HD (1920x1080 pixels) and QFHD 
(3840x2160 pixels) resolutions. Considering these results it is 
possible to conclude that all developed filters can process Full 
HD videos in real time (at least 30 frames per second), but 
considering QFHD videos, the combinational version did not 
reach the needed performance.  

 

 

 

 

TABLE III 
ESTIMATION OF FRAMES PER SECOND USING THE ARCHITECTURES 

DEVELOPED 

Developed Architecture 
Full HD (1920x1080) 

(fps) 

QFHD (3840x2160) 

(fps) 

With Combinational Filters 79 19 

With Pipeline Filters and 2 steps 126 31 

With Pipeline Filters and 4 steps 192 48 

 
To the best of our knowledge, there´s no other published 

work targeting the hardware design for the last HEVC 
interpolation definitions [6]. The work [8] presents a hardware 
design for the HEVC FME, but it is based on an older version 
of the standard. The latest standardization documents 
presented a lot of modifications in the FME, then a fairly 
comparison is not possible.  

VI. CONCLUSION 

This works presents a hardware solution for the FME step 
considering the HEVC emerging video coding standard. This 
hardware design considered PU blocks with 8x8 samples, 
allowing a reduction in the global encoder complexity. 

An analysis was done to find out which optimizations 
could be made in the interpolation filters. With these 
optimizations was possible to generate a multiplierless and 
high throughput architecture. The synthesis results show that 
this design was able to interpolate QFHD videos (3840 x 
2160) in real time. 

The next step of this work consists in focus on the full 
FME architecture, which will use the interpolation architecture 
design presented in this work and integrate it with the search 
and comparison step, which is currently at development, also 
considering real time processing on high definition videos for 
the HEVC standard. 
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