A Hardware Solution for the HEVC Fractional Motion
Estimation Interpolation

Henrique Maich®, Vladimir Afonso*2, Denis Franco®, Marcelo Porto®, Luciano Agostini®

#Federal University of Pelotas (UFPel)
Pelotas, Brazil
hdamaich@inf.ufpel.edu.br
2yafonso@inf.ufpel.edu.br
3denis.franco@ufpel.edu.br
“porto@inf.ufpel.edu.br
Sagostini@inf.ufpel.edu.br

Abstract— Nowadays many devices can handle with digital
videos, especially with high definition, even for portable devices,
as smartphones and tablets. However, high definition videos
demand a high amount of information to be represented. The
current video coding standards use a set of new techniques to
increase its coding efficiency. One of these techniques, used by
H.264 and HEVC (High Efficiency Video Coding), is the
Fractional Motion Estimation (FME). One of the main steps of
the FME is the interpolation step, which is responsible for the
generation of the fractional positions. This paper presents a
hardware design focusing on the interpolation step of the FME
for the emerging HEVC standard. The designed architecture
was described in VHDL and synthesized for Altera Stratix 111
FPGA. The architecture is able to generate the fractional
samples for videos with QFHD (3840 x 2160 pixels) resolution in
real time at 48 frames per second.

Keywords— FME, Fractional Motion Estimation, FME HEVC,
Interpolation HEVC, FME Interpolation

. INTRODUCTION

Digital videos with high definition are used in many
devices, like DVD and Blu-Ray players, digital TV and
smartphones, among others. Since a great amount of data
should be processed, it is extremely important to compress
these videos. In addition, the real time processing of high
definition videos is associated with a high computational
complexity, principally due to these compression techniques
needed. Considering portable device applications, this high
complexity is a great restriction and a dedicated hardware
design is an efficient solution for this problem.

A video encoder uses different steps to reduce some types
of the data redundancy presented in a video sequence. The
inter-frame prediction identifies and reduces the temporal
redundancy existing in near temporal frames of a video
sequence. In the inter-frames prediction, there is a step called
motion estimation (ME), which is the most important step in
all video encoder since the ME is the one that brings more
compression gains [1]. For the application of the ME, each
video frame is subdivided in little blocks, called PUs

(Prediction Units), before of coding. After, the ME step
identifies in previously encoded frames (called reference
frames), which PU are more like the PU that is being encoded.
When this PU is identified on the reference frame, the ME
generates a motion vector from the PU position allowing its
localization. Therefore, it is necessary to calculate the
differences from the PUs that are been encoded and the PUs in
reference frames. Thus, only the vector and the difference
between these PUs are sent to the next step of the encoder.

In the HEVC (High Efficiency Video Coding), PUs can
have variable sizes, and the selection of size occurs according
the results of image quality and compression rates [2].
Furthermore, it is possible to apply a refinement step in the
ME, called Fractional Motion Estimation (FME). The FME
can increase ME gains using sub-pixels position beyond
integer positions [3]. Finally, the HEVC uses some innovative
techniques to compress the motion vectors [2] rising the
compression gains.

The FME step can be divided in: (a) the interpolation unit,
responsible to generate fractional positions, and (b) the search
for best match between the encoded block and previously
blocks considering these positions generated. This paper
presents the hardware design for the HEVC FME interpolation
unit, considering 8x8 blocks.

Il. EVALUATION WITH THE REFERENCE SOFTWARE

Since the HEVC inter-prediction complexity is very high,
strategies to reduce this complexity are a relevant research
topic, mainly for applications with processing and power
consumption restrictions. But these strategies must maintain
the quality and the compression rate in acceptable levels.

The main part of the HEVC inter-frames computational
complexity is related with the variable PU size, since each PU
size must be evaluated in terms of the rate-distortion cost [2]
to define which the best PU size is. There are 24 PU sizes
defined in the current version of HEVC, and this number can
rise to 25 when the 4x4 size is enabled [2]. Then, some
evaluations were done in this work aiming to discover which

are the most selected PU size in the HEVC encoding process.
The evaluations were done using the version HM-8.0rc2 of the
HM (HEVC Model) reference software [4].

The test configurations defined by the JCT-VC [5] were
used in the evaluation process. The JCT-VC defines 8
conditions to do the tests, with combinations of high efficient
and low complexity tools in 3 configurations: (a) intra-only,
(b) random-access and (c) low delay [2]. The evaluations were
done considering the main profile. All 24 video sequences
defined in [5] were encoded for the five classes in the random-
access and low-delay configurations. The intra-only
configuration was not used since ME is not employed in this
configuration. The results of this evaluation have shown that
the most used PU size was 8x8 in almost all scenarios,
followed by 16x16 and 32x32 PU sizes.

Another test was done to evaluate the losses in terms of
image quality and bit-rate when using only the 8x8 PU size in
the HEVC ME. This evaluation shows average bit-rate losses
lower than 13.18%. The average image quality losses were
lower than 0.44dB.

The last test was done to evaluate the relevance of the
fractional ME when only the 8x8 block size was used. Then,
the FME was disabled and all tests were done again. As result
was possible to conclude that the use of FME provides an
important gain in bit-rate and quality. The bit-rate gain was
near to 9.73% and the quality gain was near to 0.18dB.

Considering the presented results, it was possible to verify
that the FME is a very important tool in the HEVC encoder.
Other important point about the FME is that it presents a low
complexity when all encoder is considered. The FME
calculations can be done in parallel with the integer ME of the
next block and no other encoder loops are necessary. On the
other hand, even providing expressive gains in compression
and quality, the use of variable PU sizes increases a lot the
encoder complexity, since all PU sizes must be evaluated.
When only one PU size is evaluated the complexity is
drastically reduced, since only one block size must be
processed by further encoder steps and the decision of which
is the best block is unnecessary. In this scenario, the global
encoder complexity is reduced in more than 24 times, since
the HEVC defines at least 24 PU sizes and also many intra-
prediction modes. So, the losses in quality and compression
are justified, especially for applications with processing and
energy consumption restrictions.

After the analysis presented in this section, this work
focused in a hardware design of the HEVC FME interpolation
unit using a fixed block size of 8x8 samples.

I1l. FRACTIONAL ME IN THE HEVC

The most recent HEVC FME definitions is present in
documents [2] and [6]. Those documents define the process to
generate the sub-pixels positions according to the HEVC
standard. Fig. 1 shows the samples of luminance in integer
positions, as well as in fractional positions for the
interpolation with precision of quarter pixel defined in the
HEVC standard, considering 8x8 block size.

>T=1=1c1>
3 EEARIE
-
elelzlelse
B EERE
NEERE

2>
a

Aqz Aoz | @az | boz | Coz [Anz Az

Fig. 1 Samples at integer positions (shaded squares and with uppercase) and
at fractional positions (with lowercase)

According with the FME defined in the HEVC [6], it is
possible to generate the fractional positions aoo, boo, Coo, do,,
hoo and noo in Fig. 1, with the application of an 8-tap FIR
filter using only the integer positions. The generation of the
fractional positions eo,, fo.0, oo, i0,0, jo,0, Koo, Po,o, Qoo and roo
requires, firstly, the calculation of the fractional positions aoi,
boi and co,i, where i varies from -3 to 4 in vertical direction.
Then, the fractional positions generated in the vertical
direction are used to generate these samples also using an 8-
tap FIR filter. The used FIR filter coefficients depend on the
sample position, as shown in Table I.

TABLE |
FIR FILTER COEFFICIENTS
Fractional Positions FIR Filter Coefficients
aij, dij, €ij, fij. Oij {-1,4,-10,58,17,-5,1, 0}
bij, hij, i, dij . Kij {-1, 4,-11, 40, 40, -11, 4, -1}
Cij, Nij, Pijs Gijs N {O, 1 y 75’ 17, 58, 710, 4, ,1}

IV. HARDWARE DESIGN

An analysis of the interpolation algorithm was done in
order to reduce the complexity of the hardware design. Firstly,
was possible to observe a similarity among some fractional
positions generation, where the FIR filter coefficients were the
same in some cases. Therefore, in order to reduce the cost of
the designed hardware, the sub-pixel positions were divided in
3 groups, according to the FIR filter coefficients and their
positions related to the integer positions, following the same
distribution presented in Table I. The names of these 3 types
of filters are: Up, Middle and Down. Fig. 2, presents the
location of these filters considering the interpolated positions.

Agp | 3o || bop | Cop Ago | 300 | 00ofl Coo Agp | B0 | Dop | Con

dop ‘ €00 ‘ foo | Goo doo | €00 | oo | oo oo | €oo | Ton | oo

Nop | Too | Joo | Koo Noo | boo | Joo | Koo Ngg | Toa | Joo | Koo

Nop | Poo | Qoo | oo Noo | Poo | Qo0 | Foo Ngo | Poo | oo | Too
(@) (b) ©

Fig. 2 Filter types (a) Up, (b) Middle and (c) Down

The next step was to optimize the filters with some
algebraic manipulations. The multiplications by constants
were transformed in shift-adds and common sub-expressions
sharing were also considered.

The optimizations applied in the Middle filter are
presented in this paper as an example, but the same process
was done to the Up and Down filters. The interpolation input
and output are represented as ao-az and s, respectively, as
presented in equation (1). The first optimization was to
transform the multiplications by constants in shift-adds, where
all constants are represented as numbers in base 2, as
presented in equation (2). This strategy allows a multiplierless
design, decreasing the interpolator hardware cost and
increasing its global performance. Since each constant can be
replaced by many sets of shift-adds, the selected set of shift-
adds considered the lowest use of additions and, consequently,
the lowest cost of hardware. Then, the multiplications by the
same factors were grouped, as can be seen in equation (3).
This optimization allows a reduction in the number of shifts
and a reduction in the adders bit width, since the additions are
done first and the multiplications are done later. Other
optimization is the sub-expression share. In this case, the
common calculations Ry and Rz, presented in equation (4) are
done only once and the result is reused as presented in
equation (5). Finally, equation (6) presents the result of the
optimization process, with the multiplications changed to
shifts.

S =[- a0+ 4*a1 — 11*a2 + 40*as + 40*a4 — 11%*as +
+4*as—a7] >>6 @)

s =[—ao + 4*a1 — (8%az + 2*az + az) + (32*az + 8*ag) +
+ (32*a4 + 8*a4) — (8*as + 2*as + as) + 4*as —a7] >>6 (2)

S=[1*(—ao— a2 —as—ar) + 2*(— a2 — as) + 4*(a1 + ae) +

+8*(—az + a3 + as — as) + 32*(as + a4)] >> 6 (3)
Ri= a+a and Rz=as+as 4)
s=[1*(-ao—ar—R1) —2*R1 + 4*(a1 + as) +

+8*(R2—R1) + 32*Rz] >>6 (5)
s={(—a—ar—R1)— (Ri<< 1)+ [(a1 + as) << 2] +

+[(Rz2—R1) << 3] + (Rz2 << 5)} >>6 (6)

The hardware design of the interpolation filters started
considering the optimized equations. Three architectural
versions were designed considering structural and behavioral
descriptions: (a) purely combinational; (b) using 2 pipeline
stages and (c) using 4 pipeline stages. All designed
architectures consume in one clock cycle the input data
necessary to generate one new interpolated sample. Then, the
architectures are able to generate one sample per clock cycle
(when the pipeline is full for those solutions which use
pipeline). The integer input samples are 8 bit-wide but the
input fractional positions are 10 bit-wide. This way, as the
same filter could receive integer and fractional inputs, the bit
width of the filters inputs were defined as 10 bits.

The pipeline versions were designed trying to best balance
the stages, splitting the adders accordingly. Fig. 3 shows the
architectural design of the Middle filter using 4 pipeline
stages. The other filters used the same architectural template.

e
Yipeline
j :H]
10
(D
« 1
10
10 1
2 11
:.—:)
10
16
10
4 11
...::()
10
’ 12 <3 15
Fas|
A\

Fig. 3 Hardware architecture for the Middle filter type

The complete architecture designed for the FME
interpolation is presented in Fig. 4 and it uses some instances
of the three filters presented bellow and 4 buffers. Since the
main goal of this work is to design a high throughput FME
interpolation unit, the global architecture was designed
targeting the generation of one complete line or column of
fractional positions per clock cycle.

One buffer is used to store the input samples at integer
positions, and the other 3 buffers are used to store the filters
outputs in fractional positions. These buffers were
implemented using register banks and are presented in Fig. 4,
integrated with the interpolation filters. The information stored
in the output filters are used in the next FME step, which is the
search for the best match inside the interpolated area. The
output information of the three filters is reordered inside the
H-type (horizontal positions), V-type (vertical positions) and
D-type (diagonal positions) buffers to be used in the next FME
step. Fig. 4 also presents the filters inputs which are provided
by the first buffer, containing the integer position samples, and
by the H-type buffer, containing the interpolated positions
used in the generation of the next interpolated samples.

Integer pixel w
buffer
(16x16) [)

|U-lype filters [9)' |M-type filters (9)] ID-lype filters (9)

! =]

H-type buffer V-type buffer D-type buffer

(27x16) (8x27) (27x27)
Oy Ov Op

Fig. 4 Hardware architecture for the FME interpolation

The integer pixel buffer presented in Fig. 4 is able to store
256 positions with 8 bits each, because, besides the 8x8 block,
it is necessary to store 4 additional samples around the block
edge to allow the filtering process. Then the stored blocks with
integer positions concerns 16x16 samples.

To allow the desired global architecture throughput, 9
instances of each one of the three filters (Up, Middle and
Down) were used, as presented in Fig. 4. Then, it is possible to
calculate 9 fractional positions per clock cycle in each group
of filters. This means that 27 fractional positions (one line or
column) are generated per clock cycle. It is important to notice
that one 8x8 block with integer pixels generates 432 horizontal
fractional position, 216 vertical fractional positions and 729
diagonal fractional positions.

The interpolation flow starts processing one line of the
integer samples, where all horizontal fractional positions are
calculated for this line (a, b, c samples in Fig. 1). This process
is repeated for the 16 lines stored in the input buffer. The next
step is the use of the columns of integer samples to generate
the vertical fractional positions (d, h, n samples in Fig. 1) for
this column. This process is repeated 8 times, because only 8
columns must be processed. The last step considers the
horizontal fractional positions as inputs to generate the last
fractional positions, called diagonal positions in this work. In
this case, a total of 27 additional columns must be processed.
According with the number of lines and columns that must be
processed, it is possible to estimate an execution rate of 51
clock cycles to complete the interpolation of an 8x8 block.

V. SYNTHESIS RESULTS AND RELATED WORKS

Table Il presents the synthesis results achieved with the
designed hardware architectures for the FME interpolation
unit. These results considered all 27 filters used in Fig. 4, with
9 filters of each type (Up, Down and Middle). The VHDL
description of these filters considering the three architectural
versions designed in this work (combinational, two-stage
pipeline and 4-stage pipeline) were synthesized targeting a
Stratix 11l EP3SE50F484C2 FPGA device [7]. The used
synthesis tool was the Altera Quartus Il [7].

TABLE Il
SYNTHESIS RESULTS FOR THE INTERPOLATION UNIT VERSIONS
Interpolation Filter | Combinational Total Frequency
\ersion ALUTs Registers (MHz)
Combinational 10,327 16,534 131.91
Pipeline and 2 steps 10,327 17,764 208.42
Pipeline and 4 steps 10,327 19,130 317.36

Based on the operation frequency reached by the different
filter versions it is possible to estimate the number of frames
per second that can be processed, considering different
resolutions. This estimation is presented in Table Il
considering Full HD (1920x1080 pixels) and QFHD
(3840x2160 pixels) resolutions. Considering these results it is
possible to conclude that all developed filters can process Full
HD videos in real time (at least 30 frames per second), but
considering QFHD videos, the combinational version did not
reach the needed performance.

TABLE 11l
ESTIMATION OF FRAMES PER SECOND USING THE ARCHITECTURES

DEVELOPED
Developed Architecture Full HD (1920x1080) | QFHD (3840x2160)
(fps) (fps)
With Combinational Filters 79 19
With Pipeline Filters and 2 steps 126 31
With Pipeline Filters and 4 steps 192 48

To the best of our knowledge, there’s no other published
work targeting the hardware design for the last HEVC
interpolation definitions [6]. The work [8] presents a hardware
design for the HEVC FME, but it is based on an older version
of the standard. The latest standardization documents
presented a lot of modifications in the FME, then a fairly
comparison is not possible.

VI. CONCLUSION

This works presents a hardware solution for the FME step
considering the HEVC emerging video coding standard. This
hardware design considered PU blocks with 8x8 samples,
allowing a reduction in the global encoder complexity.

An analysis was done to find out which optimizations
could be made in the interpolation filters. With these
optimizations was possible to generate a multiplierless and
high throughput architecture. The synthesis results show that
this design was able to interpolate QFHD videos (3840 x
2160) in real time.

The next step of this work consists in focus on the full
FME architecture, which will use the interpolation architecture
design presented in this work and integrate it with the search
and comparison step, which is currently at development, also
considering real time processing on high definition videos for
the HEVC standard.

REFERENCES

[1] A. Puri, X. Chen and A. Luthra, “Video Coding Using the
H.264/MPEG-4 AVC Compression Standard,” Elsevier Signal
Processing: Image Communication, n. 19, pp. 793-849, 2004.

[2] I. Kim, K. McCann, K. Sugimoto, B. Bross and W. Han, HM8: High
Efficiency Video Coding (HEVC) Test Model 8 Encoder Description
(JCTVC-J1002), 2012.

[3] I Richardson, H.264 and MPEG-4 Video Compression: Video Coding
for Next-Generation Multimedia. Chichester: John Wiley and Sons,
2003.

[4] High Efficiency Video Coding (HEVC) Reference Software. Oct,
2012; https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/

[5] F. Bossen, Common Test Conditions and Software Reference
Configurations (JCTVC-J1100), 2012.

[6] B. Bross, W. Han, J. Ohm, G. Sullivan and T. Wiegand, High
Efficiency Video Coding (HEVC) text specification draft 8 (JCTVC-
J1003), 2012.

[71 ALTERA. FPGA CPLD and ASIC from Altera. Altera Web Site. Oct,
2012; www.altera.com

[8] Z. Guo, D. Zhou, and S. Goto, “An optimized MC interpolation
architecture for HEVC,” IEEE International Conference on Acoustics,
Speech and Signal Processing, March 2012.

