
1

Runtime Fault Recovery Protocol for NoC-based MPSoCs
Eduardo W. Wächter, Leonardo R. Juracy, Walter L. Neto, Alexandre M. Amory, Fernando G. Moraes

FACIN – PUCRS University – Av. Ipiranga 6681– Porto Alegre – RS – Brazil

{eduardo.wachter, leonardo.juracy, walter.lau}@acad.pucrs.br, {alexandre.amory, fernando.moraes}@pucrs.br

ABSTRACT
Mechanisms for fault-tolerance in MPSoCs are mandatory to cope

with faults during fabrication or product lifetime. For instance,

permanent faults on the interconnect network can stall or crash

applications even though the network has alternative fault-free paths

to a given destination. This paper presents a novel fault-tolerant

communication protocol that takes advantage of the NoC parallelism

to provide alternative paths between any source-target pair of

processors, even in the presence of multiple faults. The proposed

approach determines new paths quickly, and the costs of extra silicon

area and memory usage are small.

Keywords
NoC-based MPSoC; fault-tolerant communication protocol;

fault-tolerant message passing protocol.

1. INTRODUCTION
Aggressive scaling of CMOS process technology allows the
fabrication of highly integrated chips, enabling the design of
multiprocessor system-on-chip (MPSoC) connected by
network-on-chip (NoC), increasing the chip failure rate. This
paper proposes a novel fault recovery communication protocol
for MPSoCs. The method is built on top of a small specialized
network used to search fault-free paths, and an MPI-like
software protocol, implemented at the kernel layer, hidden
from the application layer. The software protocol detects
unresponsive processors via acknowledgment messages and
automatically fires the path search network, which can quickly
return a new path to the target processor. This approach has a
distributed nature, thus, there is no single point of failure in
the system, and provides complete reachability.
A reliable system must be able to mitigate, detect, locate
faults, reconfigure itself, and recover the affected logic. Fault
detection and location (i.e. fault diagnosis) are the first
challenge in the quest for dependable NoC-based MPSoC. As
surveyed in [1], the universe of online test approaches for
NoC-based designed includes the use of error control coding
schemes, BIST for NoC routers, and functional testing. The
second challenge toward a dependable MPSoC would be the
system reconfiguration, also surveyed in [1]. Basically, it
receives the fault location and changes the system
configuration, masking regions with permanent faults. The
predominant fault reconfiguration approaches are the use of
spare logic (spare links, routers, or entire PE), network
topology reconfiguration, and use of adaptive routing
algorithm [1]. As we move to a macro architectural view of
dependability in MPSoCs, there are two main communication
paradigms that must be taken into account: shared memory
and message passing, surveyed in [2] and [3]. Fault tolerant
message passing libraries were proposed in the context of fault
tolerant distributed systems, usually applied for cluster of
computers, like show in [4] and [5]. The use of fault tolerant
message passing libraries specifically designed for MPSoCs
and aiming fault reconfiguration are scarce, like show [6].
Methods for detect faults are surveyed in [7] and [8]. Router
architecture is present in [11].

2. REFERENCE ARCHITECTURE
Each MPSoC PE (Processing Element) contains an IP
connected to a NoC router. The IP has the following modules:
(i) a 32-bit processor (MIPS-like architecture); (ii) a local
memory; (iii) a DMA module, enabling parallelism between
computation and communication; (iv) a network interface. The
NoC adopts a 2D-mesh topology, with input buffering, credit-
based flow control, and duplicated physical channels (i.e. each
router has 10 ports). The distributed XY routing algorithm is
adopted as the standard routing mode between PEs. The
network also supports source routing such that it is possible to
determine alternative paths to circumvent hot spots or faulty
areas. At the software level, each processor executes a
microkernel, responsible for communication among tasks,
management services, and multi-task execution. Message
passing is the communication method adopted in this work.
Applications that adopt message passing are modeled as task
graphs, with vertices being tasks and edges the messages
between them.

3. FT COMMUNICATION PROTOCOL
The proposed method supports permanent faults only on the

NoC, exploiting the redundant paths of the network. The faults

can lead to payload error (detected by error detection codes) or

packet-routing errors, detected by timeout approaches. This

paper focuses on the second kind of fault effect because it is

typically harder to recover than the first kind of fault. The

proposed FT communication protocol is divided in three

layers:

 Application Layer: The task code responsible for calling
the execution of Send() and Receive() primitives. The
application layer was not modified.

 Kernel Layer: Transfers the messages from the task
memory space to the kernel memory space, and transmit
messages from the NoC to the task memory space;

 Hardware Layer: The hardware modules related to the
communication protocol are the network interfaces (NI)
and the NoC routers.

3.1 Kernel Layer
When part of the NoC is isolated by faults, eventually some
packet will not be delivered. The kernel layer has been
modified to detect these undelivered messages and to perform
retransmission. These were the main kernel modifications:
All data packets are locally stored in the pipe before being sent

to the NoC. This enables the packet retransmission since
the source PE temporally keeps a local copy of the packet;

For all delivered packets, an acknowledgment packet is
transmitted from the target to the source PE;

Each packet generated by a single PE receives a unique
sequence number.

Figure 1 details the proposed fault-tolerant protocol. The slot
with the message being transmitted assumes the status waiting

2

acknowledgment (label 1 in ,Figure 1). When the message is
received, its sequence number is verified. If it is the expected
sequence number, the task can be scheduled to run, the
message is consumed (2), and the acknowledgment packet
with the sequence number is transmitted to the source PE (3).
The last step of the protocol is to release the pipe slot,
assigning to its position an empty state (4).

Msg Delivery #1

Receive()

Msg Request

Send()

Task Status = WAITINGpipe[i].status = USED

Task Status = READY

pipe[i].status = EMPTY
Ack Msg Delivery #1

pipe[i].status = WAITING_ACK

4

2

1

3

Task A Task B

,Figure 1 – Communication protocol modified to cope with the FT
communication protocol.

3.2 Hardware Layer
At the hardware layer two modules were modified: NoC and
NI. The NoC received the path search module, called seek
module, briefly presented in this section and detailed in [9]1.
This module performs three steps: (i) seek new path; (ii)
backtrack the new path; (iii) clear the seek structures and
compute the new path. The main feature of this routing
method is the adoption of a small and dedicated network to
discover the fault-free path. The new path search is executed
only once, when the unresponsive task is detected, returning a
new path to the source PE. This path must be stored for future
packet transmissions, using source routing. In practice, each
PE communicates with a limited amount of PEs, enabling to
use small tables for path storage. Once the new path is
determined, the application’s protocol latency returns to its
original performance.

3.3 FT to the Communication Protocol
Faults in the network may interrupt the communication
protocol in four main situations: (i) fault in the message
delivery (section 3.3.1); (ii) fault in message acknowledgment
(section 3.3.2); (iii) fault in message request (section 3.3.3);
(iv) fault during the packet receive (section 3.3.4).

3.3.1 Fault in the Message Delivery
This scenario, illustrated in Figure 2, shows the protocol
diagram when there is a fault in the path from A to B.

Task A Task B

Msg Delivery #1

Receive()

Msg Request

Send()

Task Status = WAITING

pipe[i].status = WAITING_ACK

k*AVGS-A clock cycles
Seek

Backtrack

Msg Delivery #1

Ack Msg Delivery

RETRANSMISSION

Figure 2 – Protocol diagram of a message delivery fault.

Task B requests the message to Task A. Task A sends the
message delivery packet, and waits for the acknowledgement
packet. An adaptive watchdog timer, detailed in Section 3.4, is

1
[9] describes and evaluates the seek module (i.e. it details Section 3.2) while the

present paper presents the protocol on top of the seek module.

used. The average time between each send and
acknowledgement is computed, being defined as AVGS-A. If
the acknowledgement is not received after k*AVGS-A (k is
discussed in Section 3.4), the target router is declared
unreachable. Each time the processor schedules task A, the
scheduler verifies if it has messages to task B in the pipe
stored for more than k*AVGS-A clock cycles. If this condition
is true, the fault-tolerant routing method is executed, and the
faulty-free path stored in the NI. After computing the new
path, the packet is retransmitted to task B, and the
acknowledgement is received by task A.

3.3.2 Fault in Message Acknowledgment
In this scenario, illustrated in Figure 3, task B requests
message from A, A sends the message to B, and B sends the
acknowledgment back. However, the acknowledgment is not
received due to a fault in the path from task B to task A. So,
task B successfully received the message, but the problem is
that task A cannot release the pipe slot having the consumed
message.

Task A Task B

Msg Delivery #1

Receive()

Msg Request

Send()

Ack Msg Delivery

Task Status = WAITING

pipe[i].status = WAITING_ACK

Task Status = READY

Seek

Backtrack

Msg Delivery #1

Ack Msg Delivery

Seek
Backtrack

Due to duplicated
sequence number

K*AVGS-A clock cycles

RETRANSMISSION

Figure 3 – Protocol diagram of ack message fault.

Therefore, from this fault, the adaptive watchdog timer will

interrupt the PE holding task A (fault in the message delivery).

As can be observed, the search for the new path would not be

needed, since the path AB is faulty-free, but it is impossible

for task A to know why the acknowledgment was not

received. This step corresponds to the “retransmission” label

in Figure 3. Task B, in this case, receives the same packet with

the same sequence number. This packet is therefore discarded

by task B. Then PE holding task B starts the seek process to

the PE holding task A, to find a faulty-free path for the

acknowledgment packet. Once the new path to task A is

received, the acknowledgment packet is transmitted.

3.3.3 Fault in Message Request
Figure 4 shows the protocol diagram for a message request

that was not received Figure 2. The solution to detect a fault in

this case is to adopt an adaptive watchdog timer at the task B

side. The average time between requests is recorded in the

variable AVGreq. Elapsed k*AVGreq clock cycles the seek

process is executed, and the last message request is

retransmitted using the new path.

3

Task A Task B

Msg Delivery #1

Receive()

Msg Request

Send()

Task Status = WAITING

pipe[i].status = WAITING_ACK

Ack Msg Delivery

Msg Request

Seek
Backtrack

Msg Request

message takes too
long to be received

Figure 4 – Protocol diagram of message request fault.

3.3.4 Fault Receiving Packets
In wormhole networks, a packet might use several routers
ports simultaneously along the path. If a faulty port is blocked
while a packet is crossing it, the packet is cut in two pieces.
The result of the fault is two flows being transmitted inside the
NoC: “F1” from task A to the faulty router; and “F2” from the
faulty router to the task B.

A

B

F1

F2

Figure 5 – Example of a faulty router in the middle of a message being
delivered

The practical outcome is that all flits of flow F1 are virtually
consumed by the faulty port, avoiding fault propagation. This
ensures that any data sent to a faulty port is immediately
dropped, and F1, in this case, disappears.
The flits belonging to the flow F2 reach the target PE. The
target PE starts reading the packet, the kernel configures its
DMA module to receive a message. The solution to discard the
incomplete packet was implemented in the NI. The number of
clock cycles between flits is computed. Here a fixed threshold
was used, since the behavior of the NoC is predictable. If this
threshold is reached during the reception of a given packet, the
NI signalizes an incomplete packet reception to the kernel, and
the kernel drops this packet.

3.4 Adaptive Watchdog Timers
The adoption of adaptive watchdog timers at both sides of the

communication has as main advantage to adapt the timers to

the application profile. Figure 6 represents six protocol

transactions and their respective protocol latencies, assuming a

faulty and a fault-free transaction. These protocol latencies are

used to calculate the AVG, the average protocol latency. The

term AVG refers to both AVGS-A and AVGreq. K is a constant

defined at design time per application. Once the threshold of

k*AVG is reached, the proposed method is fired to determine a

new path and to retransmit the packet via this new route.

Figure 6 also illustrates the main components of the protocol

latency when a fault is detected (PLf). It can be seen that most

time is spent in k*AVG. Next, the proposed method is fired,

spending a small amount of time to find the alternative path

(TFAP). Equation 1 summarizes the components of PLf.

PLf = k*AVG + TFAP + retransmission (1)

AVG

k*AVG

time to find alternative

path (TFAP)

protocol transactions

fault free transactionfaulty transaction

p
ro

to
c
o

l
la

te
n
c
y
 (

K
 c

lo
c
k
)

retransmission time

p
ro

to
c
o

l
la

te
n
c
y

u
n
d

e
r

fa
u
lt
 (

P
L

f)

..
.

Figure 6 – Comparing faulty and fault-free protocol latency.

4. RESULTS
This section presents the experimental setup, detailing the

evaluation flow and the applications used as case study. The

first part (Section 4.2) presents the results obtained from a

functional validation of the proposed approach, demonstrating

its functionality. The last part (Section 4.3) evaluates the

silicon area overhead and the memory used to implement the

software (kernel) part.

4.1 Experimental Setup

4.1.1 Evaluation Flow
A small 3x3 network has 48 ports (excluding the ports in the

chip’s boundary) in total. The number of possible fault

scenarios grows exponentially with the number of

simultaneous faults. For instance, 1 fault requires C(48,1) = 48

scenarios and 2 faults requires C(48,2) = 1128 scenarios. For

this reason we created an automatic and parallel fault analysis

flow, divided into five main phases.The first phase, MPSoC

Generation, is responsible for generating and compiling the

hardware and software of the MPSoC. The processor and local

memory are described in cycle accurate SystemC and the other

modules are described in RTL VHDL. The Simulation

Scenario, which consists of the compiled kernel, the compiled

application, and the MPSoC hardware model. The fault

scenario generation phase generates a database of faults

scenarios to be evaluated. The fault simulation phase

executes a fault simulation for each scenario in the database. A

grid computing resource is used to distribute the simulation

jobs in parallel among workstations. Each simulation

generates logfiles with the results. These log files are parsed in

the result analysis phase, extracting the useful performance

information and checking whether the application was able to

execute with faults. This phase also generates regression

reports, charts, and tables used to compare each fault scenario.

4.1.2 Evaluated Applications
Consists in two synthetic applications (called basic and

synthetic applications), used mainly for validation purposes,

and a third real application (with actual computation) that

implements part of an MPEG encoder. These three

applications were decomposed into communicating tasks

which are illustrated in Figure 7.

A B

basic

A

B

C

D

E

F

synthetic

start ivlc

iquant

idctprint

mpeg
Figure 7 – Three evaluated applications.

4

4.2 Validating the Proposed Approach
These first set of experiments were designed to validate the

proposed approach. Scenarios with 1 and 2 simultaneous faults

were generated. Since the first goal is functional validation,

we initially assume k = 12 for each application because this

value is large enough such that false seek requests are not

fired. Table 1 summarizes the validation process for single

fault scenarios. The evaluated criteria are:

 scenarios: number of simulated scenarios;

 scenarios(%): the percentage of possible scenarios. 100
means that all possible fault scenarios were simulated;

 affected-scenarios: number of scenarios affected by faults.
In this context, affected means that at least one task fires a
seek request;

 faulty-scenarios: the number of fault scenarios which
caused system stall;

 AETn: the Application Execution Time (in ms) assuming a
fault-free system;

 AETmax-f: the maximal Application Execution Time (in ms)
obtained considering the scenarios affected by faults;

 time(%): the overhead in simulation time caused by the
faults defined as AETmax-f /AETn.

Table 1 – Validation results with 1 fault.

basic synth mpeg

scenarios 48 48 48

scenarios (%) 100 100 100

affected-scenarios 8 12 8

faulty-scenarios 0 0 0

AETn (ms) 0.9061 3.0767 5.2302

AETmax-f (ms) 1.5174 4.1840 8.8116

time(%) 67.46 35.99 68.47

Table 1 demonstrates that at least 8 fault injections affected

the application execution (affected-scenarios row), however,

the proposed approach was able to find an alternative path,

enabling the application to finish (faulty-scenarios row) its

execution. The maximal application execution time (AETmax-f

row) of these affected scenarios were 1.51, 4.18, 8.81

milliseconds for each application. Likewise, Table 2 details

similar information, but assuming two faults per scenario.

Thus, 17% of the scenarios were simulated for basic,

synthetic, and mpeg.

Table 2 – Validation results with 2 faults.

basic synth mpeg

scenarios 191 191 191

scenarios (%) 17 17 17

affected-scenarios 40 67 50

faulty-scenarios 2 3 3

AETn (ms) 0.9061 3.0767 5.2302

AETmax-f (ms) 1.5174 4.2700 8.8154

time(%) 67.46 38.79 68.55

The results in Table 2 show increased number of affected fault

scenarios (affected-scenarios row) but, for most of them, the

proposed approach was able to determine an alternative path.

However, there were some system stalls (faulty-scenarios

row). The reason is that tasks might be isolated by faults such

that the router is unreachable.

4.3 Silicon Area and Memory Usage
Table 3 shows the area overhead comparing our approach to
the baseline MPSoC [10]. There are two scenarios to be
considered: the new path vector implemented in software, in

the kernel space memory; or it can be implemented in
hardware, in the Network Interface.

Table 3 – Area overhead (with and without hardware tables)
compared to baseline MPSoC. Target device: xilinx

xc5vlx330tff1738-2.

Module MPSoC[10] FT wo/
table

overh. FT w/
table

overh.

NI LUTs 225 308 37% 943 319%

FFs 137 171 25% 420 207%

DMA LUTs 157 166 6% 167 6%

FFs 121 123 2% 123 2%

router LUTs 1702 2326 37% 2345 38%

FFs 450 690 53% 690 53%

PE LUTs 4395 4999 14% 5604 28%

FFs 1156 1440 25% 1720 49%

The memory usage overhead for the kernel with the
proposed FT is 6.5 KB. The memory usage overhead in [8] is
8.1 KB.

5. CONCLUSION
This work presented a FT communication protocol for NoC-
based MPSoCs. Both supporting hardware and software were
fully integrated and validated on an existing MPSoC design
described in RTL. The proposed method was evaluated with
synthetic and real applications with permanent faults. The
protocol automatically detects the unreachable tasks and
launches the search for a faulty-free path to target PE. The
overhead in silicon area and kernel’s memory are acceptable.

6. REFERENCES
[1] Cota, É.; Amory, A.M.; and Lubaszewski, M.S. “Reliability,

Availability and Serviceability of Networks-on-Chip”.
Springer, 2012, p. 209.

[2] F. Fu; et al. “MMPI: A Flexible and Efficient Multiprocessor
Message Passing Interface for NoC-based MPSoC”. In: SOCC
2010, pp. 359–362.

[3] Mahr, P.; et al. “SoC-MPI: A Flexible Message Passing Library
for Multiprocessor Systems-on-Chips”. In: International
Conference on Reconfigurable Computing and FPGAs, 2008,
pp. 187–192.

[4] R. Aulwes and D. Daniel. “Architecture of LA-MPI, a
Network-Fault-Tolerant MPI”. In: Parallel and Distributed
Processing Symposium. 2004.

[5] R. Batchu; et al. “MPI/FT: A Model-Based Approach to Low-
Overhead Fault Tolerant Message-Passing Middleware”.
Cluster Computing, vol. 7(4), pp. 303–315, 2004.

[6] Kariniemi, H. and Nurmi, J. “Fault-Tolerant Communication
over Micronmesh NOC with Micron Message-Passing
Protocol”. In: Symposium on SoC, 2009, pp. 005–012.

[7] Zhu, X. and Qin, W. “Prototyping a Fault-Tolerant
Multiprocessor SoC with Run-Time Fault Recovery”. In: DAC
2006, pp. 53–56.

[8] Hebert, N.; et al. “Evaluation of a Distributed Fault Handler
Method for MPSoC”. In: ISCAS 2011, pp. 2329–2332.

[9] Wächter, E.; et al. "Topology-Agnostic Fault-Tolerant NoC
Routing Method". In: DATE 2013. to appear.

[10] Carara, E.; Moraes, F. “Flow Oriented Routing for NOCS”. In:
SOCC 2010, pp. 367–370.

[11] Rodrigo, S.; et al. “Cost-Efficient On-Chip Routing
Implementations for CMP and MPSoC Systems,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 30(4), pp. 534–547, 2011.

