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ABSTRACT 
Mechanisms for fault-tolerance in MPSoCs are mandatory to cope 

with faults during fabrication or product lifetime. For instance, 

permanent faults on the interconnect network can stall or crash 

applications even though the network has alternative fault-free paths 

to a given destination. This paper presents a novel fault-tolerant 

communication protocol that takes advantage of the NoC parallelism 

to provide alternative paths between any source-target pair of 

processors, even in the presence of multiple faults. The proposed 

approach determines new paths quickly, and the costs of extra silicon 

area and memory usage are small. 
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1. INTRODUCTION
Aggressive scaling of CMOS process technology allows the 
fabrication of highly integrated chips, enabling the design of 
multiprocessor system-on-chip (MPSoC) connected by 
network-on-chip (NoC), increasing the chip failure rate. This 
paper proposes a novel fault recovery communication protocol 
for MPSoCs. The method is built on top of a small specialized 
network used to search fault-free paths, and an MPI-like 
software protocol, implemented at the kernel layer, hidden 
from the application layer. The software protocol detects 
unresponsive processors via acknowledgment messages and 
automatically fires the path search network, which can quickly 
return a new path to the target processor. This approach has a 
distributed nature, thus, there is no single point of failure in 
the system, and provides complete reachability.  
A reliable system must be able to mitigate, detect, locate 
faults, reconfigure itself, and recover the affected logic. Fault 
detection and location (i.e. fault diagnosis) are the first 
challenge in the quest for dependable NoC-based MPSoC. As 
surveyed in [1], the universe of online test approaches for 
NoC-based designed includes the use of error control coding 
schemes, BIST for NoC routers, and functional testing. The 
second challenge toward a dependable MPSoC would be the 
system reconfiguration, also surveyed in [1]. Basically, it 
receives the fault location and changes the system 
configuration, masking regions with permanent faults. The 
predominant fault reconfiguration approaches are the use of 
spare logic (spare links, routers, or entire PE), network 
topology reconfiguration, and use of adaptive routing 
algorithm [1]. As we move to a macro architectural view of 
dependability in MPSoCs, there are two main communication 
paradigms that must be taken into account: shared memory 
and message passing, surveyed in [2] and [3].  Fault tolerant 
message passing libraries were proposed in the context of fault 
tolerant distributed systems, usually applied for cluster of 
computers, like show in [4] and [5]. The use of fault tolerant 
message passing libraries specifically designed for MPSoCs 
and aiming fault reconfiguration are scarce, like show [6]. 
Methods for detect faults are surveyed in [7] and [8]. Router 
architecture is present in [11]. 

2. REFERENCE ARCHITECTURE
Each MPSoC PE (Processing Element) contains an IP 
connected to a NoC router. The IP has the following modules: 
(i) a 32-bit processor (MIPS-like architecture); (ii) a local 
memory; (iii) a DMA module, enabling parallelism between 
computation and communication; (iv) a network interface. The 
NoC adopts a 2D-mesh topology, with input buffering, credit-
based flow control, and duplicated physical channels (i.e. each 
router has 10 ports). The distributed XY routing algorithm is 
adopted as the standard routing mode between PEs. The 
network also supports source routing such that it is possible to 
determine alternative paths to circumvent hot spots or faulty 
areas. At the software level, each processor executes a 
microkernel, responsible for communication among tasks, 
management services, and multi-task execution. Message 
passing is the communication method adopted in this work. 
Applications that adopt message passing are modeled as task 
graphs, with vertices being tasks and edges the messages 
between them.  

3. FT COMMUNICATION PROTOCOL
The proposed method supports permanent faults only on the 

NoC, exploiting the redundant paths of the network. The faults 

can lead to payload error (detected by error detection codes) or 

packet-routing errors, detected by timeout approaches. This 

paper focuses on the second kind of fault effect because it is 

typically harder to recover than the first kind of fault. The 

proposed FT communication protocol is divided in three 

layers: 

 Application Layer: The task code responsible for calling
the execution of Send() and Receive() primitives. The 
application layer was not modified.  

 Kernel Layer: Transfers the messages from the task
memory space to the kernel memory space, and transmit 
messages from the NoC to the task memory space; 

 Hardware Layer: The hardware modules related to the
communication protocol are the network interfaces (NI) 
and the NoC routers. 

3.1 Kernel Layer 
When part of the NoC is isolated by faults, eventually some 
packet will not be delivered. The kernel layer has been 
modified to detect these undelivered messages and to perform 
retransmission. These were the main kernel modifications: 
All data packets are locally stored in the pipe before being sent 

to the NoC. This enables the packet retransmission since 
the source PE temporally keeps a local copy of the packet; 

For all delivered packets, an acknowledgment packet is 
transmitted from the target to the source PE; 

Each packet generated by a single PE receives a unique 
sequence number. 

Figure 1 details the proposed fault-tolerant protocol. The slot 
with the message being transmitted assumes the status waiting 
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acknowledgment (label 1 in ,Figure 1). When the message is 
received, its sequence number is verified. If it is the expected 
sequence number, the task can be scheduled to run, the 
message is consumed (2), and the acknowledgment packet 
with the sequence number is transmitted to the source PE (3). 
The last step of the protocol is to release the pipe slot, 
assigning to its position an empty state (4). 

Msg Delivery #1

Receive()

Msg Request

Send()

Task Status = WAITINGpipe[i].status = USED

Task Status = READY

pipe[i].status = EMPTY
Ack  Msg Delivery #1

pipe[i].status = WAITING_ACK

4

2

1

3

Task A Task B

,Figure 1 – Communication protocol modified to cope with the FT 
communication protocol. 

3.2 Hardware Layer 
At the hardware layer two modules were modified: NoC and 
NI. The NoC received the path search module, called seek 
module, briefly presented in this section and detailed in [9]1. 
This module performs three steps: (i) seek new path; (ii) 
backtrack the new path; (iii) clear the seek structures and 
compute the new path. The main feature of this routing 
method is the adoption of a small and dedicated network to 
discover the fault-free path. The new path search is executed 
only once, when the unresponsive task is detected, returning a 
new path to the source PE. This path must be stored for future 
packet transmissions, using source routing. In practice, each 
PE communicates with a limited amount of PEs, enabling to 
use small tables for path storage. Once the new path is 
determined, the application’s protocol latency returns to its 
original performance.  

3.3 FT to the Communication Protocol 
Faults in the network may interrupt the communication 
protocol in four main situations: (i) fault in the message 
delivery (section 3.3.1); (ii) fault in message acknowledgment 
(section 3.3.2); (iii) fault in message request (section 3.3.3); 
(iv) fault during the packet receive (section 3.3.4).  

3.3.1 Fault in the Message Delivery 
This scenario, illustrated in Figure 2, shows the protocol 
diagram when there is a fault in the path from A to B.  

Task A Task B

Msg Delivery #1

Receive()

Msg Request

Send()

Task Status = WAITING

pipe[i].status = WAITING_ACK

k*AVGS-A clock cycles 
Seek

Backtrack

Msg Delivery #1

Ack  Msg Delivery

RETRANSMISSION

Figure 2 – Protocol diagram of a message delivery fault. 

Task B requests the message to Task A. Task A sends the 
message delivery packet, and waits for the acknowledgement 
packet. An adaptive watchdog timer, detailed in Section 3.4, is 

1
[9] describes and evaluates the seek module (i.e. it details Section 3.2) while the 

present paper presents the protocol on top of the seek module. 

used. The average time between each send and 
acknowledgement is computed, being defined as AVGS-A. If 
the acknowledgement is not received after k*AVGS-A (k is 
discussed in Section 3.4), the target router is declared 
unreachable. Each time the processor schedules task A, the 
scheduler verifies if it has messages to task B in the pipe 
stored for more than k*AVGS-A clock cycles. If this condition 
is true, the fault-tolerant routing method is executed, and the 
faulty-free path stored in the NI. After computing the new 
path, the packet is retransmitted to task B, and the 
acknowledgement is received by task A. 

3.3.2 Fault in Message Acknowledgment 
In this scenario, illustrated in Figure 3, task B requests 
message from A, A sends the message to B, and B sends the 
acknowledgment back. However, the acknowledgment is not 
received due to a fault in the path from task B to task A. So, 
task B successfully received the message, but the problem is 
that task A cannot release the pipe slot having the consumed 
message. 

Task A Task B

Msg Delivery #1

Receive()

Msg Request

Send()

Ack  Msg Delivery

Task Status = WAITING

pipe[i].status = WAITING_ACK

Task Status = READY

Seek

Backtrack

Msg Delivery #1

Ack  Msg Delivery

Seek
Backtrack

Due to duplicated 
sequence number

K*AVGS-A clock cycles 
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Figure 3 – Protocol diagram of ack message fault. 

Therefore, from this fault, the adaptive watchdog timer will 

interrupt the PE holding task A (fault in the message delivery). 

As can be observed, the search for the new path would not be 

needed, since the path AB is faulty-free, but it is impossible 

for task A to know why the acknowledgment was not 

received. This step corresponds to the “retransmission” label 

in Figure 3. Task B, in this case, receives the same packet with 

the same sequence number. This packet is therefore discarded 

by task B. Then PE holding task B starts the seek process to 

the PE holding task A, to find a faulty-free path for the 

acknowledgment packet. Once the new path to task A is 

received, the acknowledgment packet is transmitted. 

3.3.3 Fault in Message Request 
Figure 4 shows the protocol diagram for a message request 

that was not received Figure 2. The solution to detect a fault in 

this case is to adopt an adaptive watchdog timer at the task B 

side. The average time between requests is recorded in the 

variable AVGreq. Elapsed k*AVGreq clock cycles the seek 

process is executed, and the last message request is 

retransmitted using the new path. 
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Task A Task B

Msg Delivery #1

Receive()

Msg Request

Send()

Task Status = WAITING

pipe[i].status = WAITING_ACK

Ack  Msg Delivery

Msg Request

Seek
Backtrack

Msg Request

message takes too 
long to be received

Figure 4 – Protocol diagram of message request fault. 

3.3.4 Fault Receiving Packets 
In wormhole networks, a packet might use several routers 
ports simultaneously along the path. If a faulty port is blocked 
while a packet is crossing it, the packet is cut in two pieces. 
The result of the fault is two flows being transmitted inside the 
NoC: “F1” from task A to the faulty router; and “F2” from the 
faulty router to the task B. 

A

B

F1

F2

Figure 5 – Example of a faulty router in the middle of a message being 
delivered 

The practical outcome is that all flits of flow F1 are virtually 
consumed by the faulty port, avoiding fault propagation. This 
ensures that any data sent to a faulty port is immediately 
dropped, and F1, in this case, disappears. 
The flits belonging to the flow F2 reach the target PE. The 
target PE starts reading the packet, the kernel configures its 
DMA module to receive a message. The solution to discard the 
incomplete packet was implemented in the NI. The number of 
clock cycles between flits is computed. Here a fixed threshold 
was used, since the behavior of the NoC is predictable. If this 
threshold is reached during the reception of a given packet, the 
NI signalizes an incomplete packet reception to the kernel, and 
the kernel drops this packet. 

3.4 Adaptive Watchdog Timers 
The adoption of adaptive watchdog timers at both sides of the 

communication has as main advantage to adapt the timers to 

the application profile. Figure 6 represents six protocol 

transactions and their respective protocol latencies, assuming a 

faulty and a fault-free transaction. These protocol latencies are 

used to calculate the AVG, the average protocol latency. The 

term AVG refers to both AVGS-A and AVGreq. K is a constant 

defined at design time per application. Once the threshold of 

k*AVG is reached, the proposed method is fired to determine a 

new path and to retransmit the packet via this new route. 

Figure 6 also illustrates the main components of the protocol 

latency when a fault is detected (PLf). It can be seen that most 

time is spent in k*AVG. Next, the proposed method is fired, 

spending a small amount of time to find the alternative path 

(TFAP). Equation 1 summarizes the components of PLf. 

PLf = k*AVG + TFAP + retransmission        (1) 
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Figure 6 – Comparing faulty and fault-free protocol latency. 

4. RESULTS
This section presents the experimental setup, detailing the 

evaluation flow and the applications used as case study. The 

first part (Section 4.2) presents the results obtained from a 

functional validation of the proposed approach, demonstrating 

its functionality. The last part (Section 4.3) evaluates the 

silicon area overhead and the memory used to implement the 

software (kernel) part.  

4.1 Experimental Setup 

4.1.1 Evaluation Flow 
A small 3x3 network has 48 ports (excluding the ports in the 

chip’s boundary) in total. The number of possible fault 

scenarios grows exponentially with the number of 

simultaneous faults. For instance, 1 fault requires C(48,1) = 48 

scenarios and 2 faults requires C(48,2) = 1128 scenarios. For 

this reason we created an automatic and parallel fault analysis 

flow, divided into five main phases.The first phase, MPSoC 

Generation, is responsible for generating and compiling the 

hardware and software of the MPSoC. The processor and local 

memory are described in cycle accurate SystemC and the other 

modules are described in RTL VHDL. The Simulation 

Scenario, which consists of the compiled kernel, the compiled 

application, and the MPSoC hardware model. The fault 

scenario generation phase generates a database of faults 

scenarios to be evaluated. The fault simulation phase 

executes a fault simulation for each scenario in the database. A 

grid computing resource is used to distribute the simulation 

jobs in parallel among workstations. Each simulation 

generates logfiles with the results. These log files are parsed in 

the result analysis phase, extracting the useful performance 

information and checking whether the application was able to 

execute with faults. This phase also generates regression 

reports, charts, and tables used to compare each fault scenario. 

4.1.2 Evaluated Applications 
Consists in two synthetic applications (called basic and 

synthetic applications), used mainly for validation purposes, 

and a third real application (with actual computation) that 

implements part of an MPEG encoder. These three 

applications were decomposed into communicating tasks 

which are illustrated in Figure 7. 

A B

basic 

A

B

C

D

E
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synthetic 

start ivlc

iquant

idctprint

mpeg 
Figure 7 – Three evaluated applications. 
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4.2 Validating the Proposed Approach 
These first set of experiments were designed to validate the 

proposed approach. Scenarios with 1 and 2 simultaneous faults 

were generated. Since the first goal is functional validation, 

we initially assume k = 12 for each application because this 

value is large enough such that false seek requests are not 

fired. Table 1 summarizes the validation process for single 

fault scenarios. The evaluated criteria are:  

 scenarios: number of simulated scenarios;

 scenarios(%): the percentage of possible scenarios. 100
means that all possible fault scenarios were simulated; 

 affected-scenarios: number of scenarios affected by faults.
In this context, affected means that at least one task fires a 
seek request; 

 faulty-scenarios: the number of fault scenarios which
caused system stall; 

 AETn: the Application Execution Time (in ms) assuming a
fault-free system; 

 AETmax-f: the maximal Application Execution Time (in ms)
obtained considering the scenarios affected by faults; 

 time(%): the overhead in simulation time caused by the
faults defined as AETmax-f /AETn. 

Table 1 – Validation results with 1 fault. 

basic synth mpeg 

scenarios 48 48 48 

scenarios (%) 100 100 100 

affected-scenarios 8 12 8 

faulty-scenarios 0 0 0 

AETn (ms) 0.9061 3.0767 5.2302 

AETmax-f (ms) 1.5174 4.1840 8.8116 

time(%) 67.46 35.99 68.47 

Table 1 demonstrates that at least 8 fault injections affected 

the application execution (affected-scenarios row), however, 

the proposed approach was able to find an alternative path, 

enabling the application to finish (faulty-scenarios row) its 

execution. The maximal application execution time (AETmax-f 

row) of these affected scenarios were 1.51, 4.18, 8.81 

milliseconds for each application. Likewise, Table 2 details 

similar information, but assuming two faults per scenario. 

Thus, 17% of the scenarios were simulated for basic, 

synthetic, and mpeg.  

Table 2 – Validation results with 2 faults. 

basic synth mpeg 

scenarios 191 191 191 

scenarios (%) 17 17 17 

affected-scenarios 40 67 50 

faulty-scenarios 2 3 3 

AETn (ms) 0.9061 3.0767 5.2302 

AETmax-f (ms) 1.5174 4.2700 8.8154 

time(%) 67.46 38.79 68.55 

The results in Table 2 show increased number of affected fault 

scenarios (affected-scenarios row) but, for most of them, the 

proposed approach was able to determine an alternative path. 

However, there were some system stalls (faulty-scenarios 

row). The reason is that tasks might be isolated by faults such 

that the router is unreachable.  

4.3 Silicon Area and Memory Usage 
Table 3 shows the area overhead comparing our approach to 
the baseline MPSoC [10]. There are two scenarios to be 
considered: the new path vector implemented in software, in 

the kernel space memory; or it can be implemented in 
hardware, in the Network Interface. 

Table 3 – Area overhead (with and without hardware tables) 
compared to baseline MPSoC. Target device: xilinx 

xc5vlx330tff1738-2. 

Module MPSoC[10] FT wo/ 
table 

overh. FT w/ 
table 

overh. 

NI LUTs 225 308 37% 943 319% 

FFs 137 171 25% 420 207% 

DMA LUTs 157 166 6% 167 6% 

FFs 121 123 2% 123 2% 

router LUTs 1702 2326 37% 2345 38% 

FFs 450 690 53% 690 53% 

PE LUTs 4395 4999 14% 5604 28% 

FFs 1156 1440 25% 1720 49% 

The memory usage overhead for the kernel with the 
proposed FT is 6.5 KB. The memory usage overhead in [8] is 
8.1 KB.  

5. CONCLUSION
This work presented a FT communication protocol for NoC-
based MPSoCs. Both supporting hardware and software were 
fully integrated and validated on an existing MPSoC design 
described in RTL. The proposed method was evaluated with 
synthetic and real applications with permanent faults. The 
protocol automatically detects the unreachable tasks and 
launches the search for a faulty-free path to target PE. The 
overhead in silicon area and kernel’s memory are acceptable.  
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