Runtime Fault Recovery Protocol for NoC-based MPSoCs

Eduardo W. Wachter, Leonardo R. Juracy, Walter L. Neto, Alexandre M. Amory, Fernando G. Moraes
FACIN — PUCRS University — Av. Ipiranga 6681— Porto Alegre — RS — Brazil
{eduardo.wachter, leonardo.juracy, walter.lau}@acad.pucrs.br, {alexandre.amory, fernando.moraes}@pucrs.br

ABSTRACT

Mechanisms for fault-tolerance in MPSoCs are mandatory to cope
with faults during fabrication or product lifetime. For instance,
permanent faults on the interconnect network can stall or crash
applications even though the network has alternative fault-free paths
to a given destination. This paper presents a novel fault-tolerant
communication protocol that takes advantage of the NoC parallelism
to provide alternative paths between any source-target pair of
processors, even in the presence of multiple faults. The proposed
approach determines new paths quickly, and the costs of extra silicon
area and memory usage are small.

Keywords
NoC-based MPSoC; fault-tolerant communication protocol;
fault-tolerant message passing protocol.

1. INTRODUCTION

Aggressive scaling of CMOS process technology allows the
fabrication of highly integrated chips, enabling the design of
multiprocessor system-on-chip (MPSoC) connected by
network-on-chip (NoC), increasing the chip failure rate. This
paper proposes a novel fault recovery communication protocol
for MPSoCs. The method is built on top of a small specialized
network used to search fault-free paths, and an MPI-like
software protocol, implemented at the kernel layer, hidden
from the application layer. The software protocol detects
unresponsive processors via acknowledgment messages and
automatically fires the path search network, which can quickly
return a new path to the target processor. This approach has a
distributed nature, thus, there is no single point of failure in
the system, and provides complete reachability.

A reliable system must be able to mitigate, detect, locate
faults, reconfigure itself, and recover the affected logic. Fault
detection and location (i.e. fault diagnosis) are the first
challenge in the quest for dependable NoC-based MPSoC. As
surveyed in [1], the universe of online test approaches for
NoC-based designed includes the use of error control coding
schemes, BIST for NoC routers, and functional testing. The
second challenge toward a dependable MPSoC would be the
system reconfiguration, also surveyed in [1]. Basically, it
receives the fault location and changes the system
configuration, masking regions with permanent faults. The
predominant fault reconfiguration approaches are the use of
spare logic (spare links, routers, or entire PE), network
topology reconfiguration, and use of adaptive routing
algorithm [1]. As we move to a macro architectural view of
dependability in MPSoCs, there are two main communication
paradigms that must be taken into account: shared memory
and message passing, surveyed in [2] and [3]. Fault tolerant
message passing libraries were proposed in the context of fault
tolerant distributed systems, usually applied for cluster of
computers, like show in [4] and [5]. The use of fault tolerant
message passing libraries specifically designed for MPSoCs
and aiming fault reconfiguration are scarce, like show [6].
Methods for detect faults are surveyed in [7] and [8]. Router
architecture is present in [11].

2. REFERENCE ARCHITECTURE

Each MPSoC PE (Processing Element) contains an IP
connected to a NoC router. The IP has the following modules:
(i) a 32-bit processor (MIPS-like architecture); (ii) a local
memory; (iii) a DMA module, enabling parallelism between
computation and communication; (iv) a network interface. The
NoC adopts a 2D-mesh topology, with input buffering, credit-
based flow control, and duplicated physical channels (i.e. each
router has 10 ports). The distributed XY routing algorithm is
adopted as the standard routing mode between PEs. The
network also supports source routing such that it is possible to
determine alternative paths to circumvent hot spots or faulty
areas. At the software level, each processor executes a
microkernel, responsible for communication among tasks,
management services, and multi-task execution. Message
passing is the communication method adopted in this work.
Applications that adopt message passing are modeled as task
graphs, with vertices being tasks and edges the messages
between them.

3. FT COMMUNICATION PROTOCOL
The proposed method supports permanent faults only on the
NoC, exploiting the redundant paths of the network. The faults
can lead to payload error (detected by error detection codes) or
packet-routing errors, detected by timeout approaches. This
paper focuses on the second kind of fault effect because it is
typically harder to recover than the first kind of fault. The
proposed FT communication protocol is divided in three
layers:

e Application Layer: The task code responsible for calling
the execution of Send() and Receive() primitives. The
application layer was not modified.

o Kernel Layer: Transfers the messages from the task
memory space to the kernel memory space, and transmit
messages from the NoC to the task memory space;

e Hardware Layer: The hardware modules related to the
communication protocol are the network interfaces (NI)
and the NoC routers.

3.1 Kernel Layer

When part of the NoC is isolated by faults, eventually some

packet will not be delivered. The kernel layer has been

modified to detect these undelivered messages and to perform
retransmission. These were the main kernel modifications:

All data packets are locally stored in the pipe before being sent
to the NoC. This enables the packet retransmission since
the source PE temporally keeps a local copy of the packet;

For all delivered packets, an acknowledgment packet is
transmitted from the target to the source PE;

Each packet generated by a single PE receives a unique
sequence number.

Figure 1 details the proposed fault-tolerant protocol. The slot

with the message being transmitted assumes the status waiting

acknowledgment (label 1 in ,Figure 1). When the message is
received, its sequence number is verified. If it is the expected
sequence number, the task can be scheduled to run, the
message is consumed (2), and the acknowledgment packet
with the sequence number is transmitted to the source PE (3).
The last step of the protocol is to release the pipe slot,
assigning to its position an empty state (4).

Task A Task B
Send() Receive()
pipel[i].status = USED Task Status = WAITING
uest
Red!
Ms9
pipel[i].status = WAITING_ACK
Msq Deliver, #19

| Task Status = READY
Ack Msg pelivery #
e pipe[i].status = EMPTY
,Figure 1 — Communication protocol modified to cope with the FT
communication protocol.

3.2 Hardware Layer

At the hardware layer two modules were modified: NoC and
NI. The NoC received the path search module, called seek
module, briefly presented in this section and detailed in [9].
This module performs three steps: (i) seek new path; (ii)
backtrack the new path; (iii) clear the seek structures and
compute the new path. The main feature of this routing
method is the adoption of a small and dedicated network to
discover the fault-free path. The new path search is executed
only once, when the unresponsive task is detected, returning a
new path to the source PE. This path must be stored for future
packet transmissions, using source routing. In practice, each
PE communicates with a limited amount of PEs, enabling to
use small tables for path storage. Once the new path is
determined, the application’s protocol latency returns to its
original performance.

3.3 FT to the Communication Protocol

Faults in the network may interrupt the communication
protocol in four main situations: (i) fault in the message
delivery (section 3.3.1); (ii) fault in message acknowledgment
(section 3.3.2); (iii) fault in message request (section 3.3.3);
(iv) fault during the packet receive (section 3.3.4).

3.3.1 Fault in the Message Delivery
This scenario, illustrated in Figure 2, shows the protocol
diagram when there is a fault in the path from Ato B.

Task A Task B

Send() Receive()

Task Status = WAITING

pipel[i].status = WAITING_ACK

k*AVGs 5 clock cycles|-..__

RETRANSMISSION{
Figure 2 — Protocol diagram of a message delivery fault.

Task B requests the message to Task A. Task A sends the
message delivery packet, and waits for the acknowledgement
packet. An adaptive watchdog timer, detailed in Section 3.4, is

! [9] describes and evaluates the seek module (i.e. it details Section 3.2) while the

present paper presents the protocol on top of the seek module.

2

used. The average time between each send and
acknowledgement is computed, being defined as AVGg.a. If
the acknowledgement is not received after k*AVGs.a (K is
discussed in Section 3.4), the target router is declared
unreachable. Each time the processor schedules task A, the
scheduler verifies if it has messages to task B in the pipe
stored for more than k*AVGs_a clock cycles. If this condition
is true, the fault-tolerant routing method is executed, and the
faulty-free path stored in the NI. After computing the new
path, the packet is retransmitted to task B, and the
acknowledgement is received by task A.

3.3.2 Fault in Message Acknowledgment

In this scenario, illustrated in Figure 3, task B requests
message from A, A sends the message to B, and B sends the
acknowledgment back. However, the acknowledgment is not
received due to a fault in the path from task B to task A. So,
task B successfully received the message, but the problem is
that task A cannot release the pipe slot having the consumed
message.

Task A Task B

send() H] H] Receive()
le_ Msg Request— Task Status = WAITING

pipel[i].status = WAITING_ACK |—Msg Deljy,
ery #1— |

Task Status = READY
l—Ack nf ;Delivery*—’

K*AVGs clock cycles

|l Backtrack
RETRANSMISSION { | M9 Delivery 4, |
— Seek--— Due to duplicated

Bﬂcktrqck\ sequence number

leAck Msg Delivery—|

Figure 3 — Protocol diagram of ack message fault.

Therefore, from this fault, the adaptive watchdog timer will
interrupt the PE holding task A (fault in the message delivery).
As can be observed, the search for the new path would not be
needed, since the path A->B is faulty-free, but it is impossible
for task A to know why the acknowledgment was not
received. This step corresponds to the “retransmission” label
in Figure 3. Task B, in this case, receives the same packet with
the same sequence number. This packet is therefore discarded
by task B. Then PE holding task B starts the seek process to
the PE holding task A, to find a faulty-free path for the
acknowledgment packet. Once the new path to task A is
received, the acknowledgment packet is transmitted.

3.3.3 Fault in Message Request

Figure 4 shows the protocol diagram for a message request
that was not received Figure 2. The solution to detect a fault in
this case is to adopt an adaptive watchdog timer at the task B
side. The average time between requests is recorded in the
variable AVG,y. Elapsed k*AVG,, clock cycles the seek
process is executed, and the last message request is
retransmitted using the new path.

Task A Task B
Send() H] H] Receive()
. Msg Request—] Task Status = WAITING

- _ -
pipeli].status = WAITING_ACK Msg Delive,y #
«Ack Msg Delivery—

e Mmsgl squest— |

P Seek-—--"" message takes too
Bac long to be received
/\’l‘ruck\> g

le Msg Request—|

Figure 4 — Protocol diagram of message request fault.

3.3.4 Fault Receiving Packets

In wormhole networks, a packet might use several routers
ports simultaneously along the path. If a faulty port is blocked
while a packet is crossing it, the packet is cut in two pieces.
The result of the fault is two flows being transmitted inside the
NoC: “F1” from task A to the faulty router; and “F2” from the
faulty router to the task B.

Figure 5 — Example of a faulty router in the middle of a message being

delivered
The practical outcome is that all flits of flow F1 are virtually
consumed by the faulty port, avoiding fault propagation. This
ensures that any data sent to a faulty port is immediately
dropped, and F1, in this case, disappears.
The flits belonging to the flow F2 reach the target PE. The
target PE starts reading the packet, the kernel configures its
DMA module to receive a message. The solution to discard the
incomplete packet was implemented in the NI. The number of
clock cycles between flits is computed. Here a fixed threshold
was used, since the behavior of the NoC is predictable. If this
threshold is reached during the reception of a given packet, the
NI signalizes an incomplete packet reception to the kernel, and
the kernel drops this packet.

3.4 Adaptive Watchdog Timers
The adoption of adaptive watchdog timers at both sides of the
communication has as main advantage to adapt the timers to
the application profile. Figure 6 represents six protocol
transactions and their respective protocol latencies, assuming a
faulty and a fault-free transaction. These protocol latencies are
used to calculate the AVG, the average protocol latency. The
term AVG refers to both AVGs.4 and AVG, K is a constant
defined at design time per application. Once the threshold of
k*AVG is reached, the proposed method is fired to determine a
new path and to retransmit the packet via this new route.
Figure 6 also illustrates the main components of the protocol
latency when a fault is detected (PLy). It can be seen that most
time is spent in k*AVG. Next, the proposed method is fired,
spending a small amount of time to find the alternative path
(TFAP). Equation 1 summarizes the components of PL;.

PL¢= k*AVG + TFAP + retransmission (1)

D faulty transaction D fault free transaction

=

5 retransmission time

o

X time to find alternative _
3| KAG ~__ _path (TFAP) 2
j= E ~
2 =5
= 5 &
© Q o
(e T HTW SSRL
<] S
& - >

protocol transactions

Figure 6 — Comparing faulty and fault-free protocol latency.

4, RESULTS

This section presents the experimental setup, detailing the
evaluation flow and the applications used as case study. The
first part (Section 4.2) presents the results obtained from a
functional validation of the proposed approach, demonstrating
its functionality. The last part (Section 4.3) evaluates the
silicon area overhead and the memory used to implement the
software (kernel) part.

4.1 Experimental Setup

4.1.1 Evaluation Flow

A small 3x3 network has 48 ports (excluding the ports in the
chip’s boundary) in total. The number of possible fault
scenarios grows exponentially with the number of
simultaneous faults. For instance, 1 fault requires C(48,1) = 48
scenarios and 2 faults requires C(48,2) = 1128 scenarios. For
this reason we created an automatic and parallel fault analysis
flow, divided into five main phases.The first phase, MPSoC
Generation, is responsible for generating and compiling the
hardware and software of the MPSoC. The processor and local
memory are described in cycle accurate SystemC and the other
modules are described in RTL VHDL. The Simulation
Scenario, which consists of the compiled kernel, the compiled
application, and the MPSoC hardware model. The fault
scenario generation phase generates a database of faults
scenarios to be evaluated. The fault simulation phase
executes a fault simulation for each scenario in the database. A
grid computing resource is used to distribute the simulation
jobs in parallel among workstations. Each simulation
generates logfiles with the results. These log files are parsed in
the result analysis phase, extracting the useful performance
information and checking whether the application was able to
execute with faults. This phase also generates regression
reports, charts, and tables used to compare each fault scenario.

4.1.2 Evaluated Applications

Consists in two synthetic applications (called basic and
synthetic applications), used mainly for validation purposes,
and a third real application (with actual computation) that
implements part of an MPEG encoder. These three
applications were decomposed into communicating tasks
which are illustrated in Figure 7.

@a:j* @

basic synthetic

mpeg

Figure 7 — Three evaluated applications.

4.2 Validating the Proposed Approach
These first set of experiments were designed to validate the
proposed approach. Scenarios with 1 and 2 simultaneous faults
were generated. Since the first goal is functional validation,
we initially assume k = 12 for each application because this
value is large enough such that false seek requests are not
fired. Table 1 summarizes the validation process for single
fault scenarios. The evaluated criteria are:

e scenarios: number of simulated scenarios;

e scenarios(%): the percentage of possible scenarios. 100
means that all possible fault scenarios were simulated;

e affected-scenarios: number of scenarios affected by faults.
In this context, affected means that at least one task fires a
seek request;

e faulty-scenarios: the number of fault scenarios which
caused system stall;

e AET,: the Application Execution Time (in ms) assuming a
fault-free system;

o AETaxr the maximal Application Execution Time (in ms)
obtained considering the scenarios affected by faults;

o time(%): the overhead in simulation time caused by the
faults defined as AET s /AET,.

Table 1 — Validation results with 1 fault.

basic synth mpeg
scenarios 48 48 48
scenarios (%) 100 100 100
affected-scenarios 8 12 8
faulty-scenarios 0 0 0
AET, (ms) 0.9061 3.0767 5.2302
AETmaxt (MS) 1.5174 4.1840 8.8116
time(%) 67.46 35.99 68.47

Table 1 demonstrates that at least 8 fault injections affected
the application execution (affected-scenarios row), however,
the proposed approach was able to find an alternative path,
enabling the application to finish (faulty-scenarios row) its
execution. The maximal application execution time (AET max.f
row) of these affected scenarios were 1.51, 4.18, 8.81
milliseconds for each application. Likewise, Table 2 details
similar information, but assuming two faults per scenario.
Thus, 17% of the scenarios were simulated for basic,
synthetic, and mpeg.

Table 2 — Validation results with 2 faults.

basic synth mpeg
scenarios 191 191 191
scenarios (%) 17 17 17
affected-scenarios 40 67 50
faulty-scenarios 2 3 3
AET, (ms) 0.9061 3.0767 5.2302
AETmaxs (MS) 1.5174 4.2700 8.8154
time(%) 67.46 38.79 68.55

The results in Table 2 show increased number of affected fault
scenarios (affected-scenarios row) but, for most of them, the
proposed approach was able to determine an alternative path.
However, there were some system stalls (faulty-scenarios
row). The reason is that tasks might be isolated by faults such
that the router is unreachable.

4.3 Silicon Area and Memory Usage

Table 3 shows the area overhead comparing our approach to
the baseline MPSoC [10]. There are two scenarios to be
considered: the new path vector implemented in software, in

4

the kernel space memory; or it can be implemented in
hardware, in the Network Interface.

Table 3 — Area overhead (with and without hardware tables)
compared to baseline MPSoC. Target device: xilinx
xc5vIx330tff1738-2.

Module MPSoCJ[10] | FT wo/ | overh. FT w/ overh.
table table

NI LUTs 225 308 37% 943 319%

FFs 137 171 25% 420 207%

DMA LUTs 157 166 6% 167 6%

FFs 121 123 2% 123 2%

router | LUTs 1702 2326 37% 2345 38%

FFs 450 690 53% 690 53%

PE LUTs 4395 4999 14% 5604 28%

FFs 1156 1440 25% 1720 49%

The memory usage overhead for the kernel with the
proposed FT is 6.5 KB. The memory usage overhead in [8] is
8.1 KB.

o. CONCLUSION

This work presented a FT communication protocol for NoC-
based MPSoCs. Both supporting hardware and software were
fully integrated and validated on an existing MPSoC design
described in RTL. The proposed method was evaluated with
synthetic and real applications with permanent faults. The
protocol automatically detects the unreachable tasks and
launches the search for a faulty-free path to target PE. The
overhead in silicon area and kernel’s memory are acceptable.

6. REFERENCES

[1] Cota, E.; Amory, AM.; and Lubaszewski, M.S. “Reliability,
Auvailability and Serviceability of Networks-on-Chip”.
Springer, 2012, p. 209.

[2] F. Fu; et al. “MMPI: A Flexible and Efficient Multiprocessor
Message Passing Interface for NoC-based MPSoC”. In: SOCC
2010, pp. 359-362.

[3] Mahr, P.; etal. “SoC-MPI: A Flexible Message Passing Library
for Multiprocessor Systems-on-Chips”. In: International
Conference on Reconfigurable Computing and FPGAs, 2008,
pp. 187-192.

[4] R. Aulwes and D. Daniel. “Architecture of LA-MPI, a
Network-Fault-Tolerant MPI”. In: Parallel and Distributed
Processing Symposium. 2004.

[5] R. Batchu; et al. “MPI/FT: A Model-Based Approach to Low-
Overhead Fault Tolerant Message-Passing Middleware”.
Cluster Computing, vol. 7(4), pp. 303—-315, 2004.

[6] Kariniemi, H. and Nurmi, J. “Fault-Tolerant Communication
over Micronmesh NOC with Micron Message-Passing
Protocol”. In: Symposium on SoC, 2009, pp. 005-012.

[71 Zhu, X. and Qin, W. “Prototyping a Fault-Tolerant
Multiprocessor SoC with Run-Time Fault Recovery”. In: DAC
2006, pp. 53-56.

[8] Hebert, N.; et al. “Evaluation of a Distributed Fault Handler
Method for MPSoC”. In: ISCAS 2011, pp. 2329-2332.

[9] Waéchter, E.; et al. "Topology-Agnostic Fault-Tolerant NoC
Routing Method". In: DATE 2013. to appear.

[10] Carara, E.; Moraes, F. “Flow Oriented Routing for NOCS”. In:
SOCC 2010, pp. 367-370.

[11] Rodrigo, S.; et al. “Cost-Efficient On-Chip Routing
Implementations for CMP and MPSoC Systems,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 30(4), pp. 534-547, 2011.

