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Abstract — This paper presents a new methodology to generate 

efficient transistor networks. Transistor-level optimization 

consists in an effective possibility to increase design quality 

when generating CMOS logic gates to be inserted in standard 

cell libraries. Starting from an input ISOP, the proposed method 

is able to deliver series-parallel and non-series-parallel 

arrangements with reduced transistor count. The experiments 

performed over the set of 4-input P-class Booleans functions 

have demonstrated the efficiency of the proposed approach. 
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I. INTRODUCTION 

In current VLSI design, the total number of transistors 
necessary to implement a logic gate is strongly related to the 
signal delay propagation, power consumption and area of 
integrated circuits (ICs) [1-4]. Transistor netlists are of special 
interest when designing standard cell libraries [5] or custom 
gates for improving a design [6]. To increase design quality in 
full-custom methodology, a handcraft generation of transistor 
netlists for each functional block may be performed. However, 
this is an extremely time-consuming task for larger ICs, 
making the adoption of such strategy prohibitive. Thus, it 
becomes crucial to have available efficient algorithms to 
automatically generate optimized transistor arrangements.  

In the last decades, several methods to generate and 
optimize transistor networks have been proposed. The most 
traditional solutions are based on algebraic and Boolean 
factorization [7-9]. In a Boolean expression, every instance of 
a variable is called literal, and a product of literals is formally 
called cube. The factorization process manipulates a Boolean 
expression in order to reduce the number of literals necessary 
to represent a Boolean function. Afterwards, the factored 
expression is directly translated to a transistor (switch) 
network. In this case, only series and parallel (SP) 
arrangements are obtained, related respectively to AND and 
OR operations present in Boolean expression. 

Alternative methods to generate transistor networks are 
based on graph optimizations, where a Boolean expression is 
translated to a graph. This graph can be optimized by edges 
sharing [10-12] or can be gradually composed from an input 
expression [13]. In some cases, these techniques are able to 
deliver better results than factorization based methods if non-

series-parallel (NSP) arrangements are able to be found during 
the graph manipulation process. Such optimization obtained 
exploiting NSP topologies is due to the large sharing between 
the paths that represent cubes of a function, so reducing the 
total switch count and overcoming SP arrangements 
[10,12,13]. 

This paper proposes a new graph-based method able to 
generate optimized transistor networks. Our approach presents 
a structural algorithm based on SP arrangements to avoid 
unnecessary computation during the generation of transistor 
networks. Different from the approach presented in [12], this 
new method delivers the networks not only applying transistor 
sharing, but also considering topological information during 
the generation process. Moreover, this paper presents a 
methodology based on SP kernels different from previous 
method described in [14], in which the NSP Kernel concept 
was introduced. 

The remaining of this paper is organized as follows. 
Section II introduces the synthesis methodology to generate 
optimized switches networks. In Section III some 
experimental results and comparisons are presented. Finally, 
conclusions are outlined in Section IV. 

II. SYNTHESIS METHODOLOGY 

The proposed method starts from an irredundant sum-of-
products (ISOP), and tries to combine cubes to build SP 
kernels. A SP kernel structure is illustrated in Fig. 1(a). The 
synthesis methodology is divided in two steps. The first step 
aims to build the SP kernels. The second one tries to merge 
the kernels found in order to deliver an optimized switch 
network. Thus, these steps are run in the following sequence:  

(A) SP Kernel Finder. 

(B) Kernel Composition. 

Depending on the Boolean function (expressed through an 
ISOP), the routines (A) cannot find any kernel. Therefore, the 
switch network is generated during the step (B), applying 
edges sharing technique presented in [12].  

A. SP Kernel Finder 

The SP Kernel Finder algorithm proposed herein can be 
described as follows. For n=|cubes(f)|, four cubes are selected 

by combinations 
4

nC . Afterwards, the algorithm builds a graph 

for each combination, as explained bellow. 



We define an undirected graph G = (V,E) of a function H 
which is given by a SOP with exactly four cubes. The vertices 
in V = {v1,v2,v3,v4} represent different cubes in H, and |V| is 
the number of vertices in the set V. An edge e = (vi,vj) in E 
exists if and only if at least one literal appears in both vi and vj. 
The operation (vi ∩ vj) represents common literals in both vi 
and vj vertices. Thus, an edge e formally exists if and only if: 

(vi   vj)  Ø  (1) 

We define the label of e by using label(e) = (lit(vi) ∩ 
lit(vj)), where lit(vi) represents the set of literals present in vi. 
To ensure that the obtained graph is a valid SP kernel two 
rules must be checked: 

Rule 1 – Let Evi be the set of edges that are connected to 
vi. Each cube shares all its literals if the following equation is 
satisfied for all v   V: 

⋃        
 
 

     

   

       
 
  (2) 

Rule 2 – The obtained graph must be an isomorphic sub-
graph to the graph template illustrated in Fig. 1(a). In this 
work this structure is called SP kernel. 

 

     (a) (b)            (c) 

Figure 1. Vertices merging (b) and edge reordering process (c) on a SP 

kernel (a). 

After building SP kernels, the algorithm must apply some 
transformations over the graph to map each found kernel to a 
switch network. Therefore, the first step consists in merging 
the rounded vertices of the template shown in Fig. 1(a) in a 
single vertex, as shown in Fig. 1(b). Afterwards, the edges 
reordering routine is applied over the graph illustrated in Fig. 
1(b), resulting in the switch network illustrated in Fig. 1(c). 
This kernel structure, illustrated in Fig. 1(a), was chosen 
because it leads to arrangements with a large sharing between 
the paths that compose the network, as shown in Fig. 1(b). It is 
interesting because the cubes from the input ISOP can be 
implemented with a reduced number of switches. This way, if 
this kind of arrangement may be built, our method finds it in 
the first step of the optimization process, avoiding unnecessary 
computation. 

To a better understanding of such process, consider the 
following equation as input of the algorithm: 

f = a.c + a.d + b.c + b.d (3) 

Due to the characteristics of this function, there is only one 
possible combination to select the cubes and to try to build a 
kernel. Thus, the algorithm found the kernel illustrated in Fig. 
2(a). It can be mapped directly to the switch network 
illustrated in Fig. 2(b), through the vertices merging and the 
edges reordering routines.  

Notice that the vertices merging and the edges reordering 
routines are necessary to implement the sharing between the 
paths of the network that represent the cubes from Equation 
(3). 

 

          (a)        (b) 

Figure 2. SP kernel (a) derived from the Equation (3) and network (b) 
obtained after applying vertices merging and edges reordering routines. 

As demonstrated above, through this kind of SP 
arrangements, a set of four cubes can be implemented with a 
reduction of 50% in the number of literals (switches) when 
compared to Equation (3). This optimization rate tends to 
increase when multiple kernels are found and merged by the 
edges sharing technique applied in the step (B). 

B. Kernel Composition 

It is important to notice that, depending on the input ISOP, 
multiple kernels can be found. Moreover, some cubes from the 
input ISOP cannot compose any kernel. Thus, five possible 
cases can occur when generating the transistor networks: (i) a 
network can be composed by just one SP kernel; (ii) a network 
can be composed by a SP kernel, and one or more cubes that 
are implemented as parallel transistor associations to this 
kernel; (iii) a network can be composed by multiple SP 
kernels in a parallel association; (iv) a network can be 
composed by multiple SP kernels, and one or more cubes that 
are implemented as parallel transistor associations; (v) there is 
no SP kernels and the network is implemented through the 
edges sharing algorithm. For each of these five cases, such 
topological composition is done gradually until achieving a 
network that is logically equivalent to the input Boolean 
function. During the composition process, the edges sharing 
procedure is applied to the network in order to eliminate 
redundant switches [12]. Such strategy allows a reduction in 
the total number of switches. 

As an example of network generation composed by a SP 
kernel and a remaining cube associated in parallel, let us 
consider the following equation: 

f = !a.!b.!c.!d + !a.b.!c.d + !a.b.c.!d + a.!b.!c.d +  

a.!b.c.!d 

(4) 

For such ISOP, the SP Kernel Finder routine founds the 
SP kernel illustrated in Fig. 3(a). This kernel may be mapped 
to the transistor network illustrated in Fig. 3(b). Besides that, 
the cube !a.!b.!c.!d was not implemented through the found 
kernel. Hence, this cube must be associated in parallel with 
such kernel as shown in Fig. 4(a).  

In the next, the SP kernel and the remaining cube are 
gradually merged, by applying the edges sharing procedure, 
resulting in the sharing of the switch !a depicted by the Fig. 
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4(b). Afterwards, the redundant switch !c is shared, resulting 
in the optimized switch network presented in Fig. 5. 

 

(a)                (b) 

Figure 3. SP kernel (a) obtained from the Equation (4) and resultant network 
(b). 

Notice that, the proposed method starts from SP 
arrangements and can achieve NSP arrangements, as 
illustrated in Fig. 5, through the composition procedure and 
the edges sharing technique. This final network is composed 
by 10 switches, saving 2 switches when compared to the exact 
factorization that needs 12 switches to implement the function 
described by Equation (4). 

 

        (a) (b) 

Figure 4. Network derived from the SP kernel and the remaining cube 
associated in parallel (a), and the intermediate network (b) after sharing the 
switch !a. 

 

Figure 5. Final network delivered by the proposed approach for Equation (4). 

To demonstrate the network generation with multiple SP 
kernels, let us consider the equation of the 4-input XOR 
function: 

f = !a.!b.!c.d + !a.!b.c.!d + !a.b.!c.!d + !a.b.c.d +  

a.!b.!c.!d + a.!b.c.d + a.b.!c.d + a.b.c.!d 
(5) 

The proposed method is able to find two SP kernels. These 
kernels are illustrated in Fig. 6(a) and in Fig. 7(a). Each kernel 
may be mapped to a correspondent switch network, as 
illustrated in Fig. 6(b) and in Fig. 7(b), respectively.  

Afterwards, during the kernel composition procedure, 
these kernels are associated in parallel resulting in the network 
illustrated by the Fig. 8. Notice that there are some redundant 

switches between these kernels. Hence, in order to remove the 
redundancies of the network, the edges sharing routine is 
applied resulting in a network with a large sharing of the 
switches, as shown in Fig. 9. The obtained solution represents 
the minimal switch network to implement the 4-input XOR 
function. 

 

             (a)              (b) 

Figure 6. First SP kernel (a) obtained from Equation (5), and the switch 
network (b) derived from such kernel. 

 

              (a)    (b) 

Figure 7. Second SP kernel (a) obtained from Equation (5), and the switch 
network (b) derived from such kernel. 

 

Figure 8. Parallel association of the networks built through the SP kernels 
found from the Equation (5). 

 

Figure 9. Final switch network to implements the 4-input XOR function. 

III. EXPERIMENTAL RESULTS 

In order to provide a comparison of our methodology to 
other available solutions described in the literature, the 
experiments were performed over the set of 4-input P-class 
logic functions. This set, composed by 3982 functions, was 
chosen because it contains simple functions that are more 
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likely to be used as logic gates in real designs. We have 
generated gates for each function of this set, and compared 
them to other methods available in the literature. Table I 
shows the obtained results when considering the total switch 
count to compute the logic gates. These results also 
summarize the inverters needed to implement the gates. 
Inverters are needed to generate the complementary signal for 
input variables that appears in both polarities. As presented in 
Table I, our method compares favorably with past approaches. 

TABLE I.  TOTAL SWITCH COUNT TO COMPUTE LOGIC GATES FOR THE SET 

OF 4-INPUT P-CLASS LOGIC FUNCTIONS. 

 [4]  [9]  [11]  [13] 
Proposed 

Method 

Total number of 

switches 
106,162 102,668 103,049 97,174 96,484 

Fig. 10 shows the distribution of gains and losses of our 
approach when comparing to other solutions. This distribution 
for the set of 4-input P-class logic functions is not available in 
[13]. Thus, it was not possible to perform the comparison with 
such technique. As can be seen, the proposed method is able 
to reduce up to 10 transistors in some generated networks 
from the set of 3982 logic functions. In general, the gains 
remain around 1 to 4 switches per network. 

 

Figure 10. Distribution of switch count when comparing the proposed 
approach to the other methods available in the literature, considering the set of 
4-input P-class logic functions. 

Moreover, it is important to notice that for a small number 
of logic functions that compose this set, our method delivers 
networks with an increasing in the switch count. In these 
cases, the main reason for that is the bad choice when merging 
edges during the multiple kernels merging process. An 
efficient heuristic to choose the edges that should be firstly 
merged would help to improve the results. 

The total execution time to generate all the 3982 networks 
was less than one second when running in an Intel Core i5 at 
2.8GHz with 4 GB of RAM. It demonstrates the feasibility of 
the proposed method to increase design quality when 
generating digital CMOS circuits. 

IV. CONCLUSIONS 

This paper proposed a new graph-based method to 
generate optimized transistor (switch) networks. The proposed 
method results in a reduction of transistor count when 
compared to previous approaches. It is known that reducing 

transistor count in a logic gate it is possible to achieve better 
results in terms of signal delay propagation and power 
consumption. These associated gains were not explicitly 
investigated in this work, and they are being left as future 
work at gate, library and circuit design level. 
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