
A New Algorithm to Implement Combinational Logic

Cells with Reduced Number of Switches

1Vinicius N. Possani, 2Vinicius Callegaro, 2André I. Reis,
2Renato P. Ribas, 1Felipe S. Marques, 1Leomar S. da Rosa Junior

1
Group of Architectures and Integrated Circuits, Federal University of Pelotas – UFPel, Pelotas, Brazil

2
Institute of Informatics, Federal University of Rio Grande do Sul – UFRGS, Porto Alegre, Brazil

{vnpossani, felipem, leomarjr}@inf.ufpel.edu.br {vcallegaro, andreis, rpribas}@inf.ufrgs.br

Abstract — This paper presents a new methodology to generate

efficient transistor networks. Transistor-level optimization

consists in an effective possibility to increase design quality

when generating CMOS logic gates to be inserted in standard

cell libraries. Starting from an input ISOP, the proposed method

is able to deliver series-parallel and non-series-parallel

arrangements with reduced transistor count. The experiments

performed over the set of 4-input P-class Booleans functions

have demonstrated the efficiency of the proposed approach.

Keywords— Logic synthesis, transistor networks, EDA, CMOS.

I. INTRODUCTION

In current VLSI design, the total number of transistors
necessary to implement a logic gate is strongly related to the
signal delay propagation, power consumption and area of
integrated circuits (ICs) [1-4]. Transistor netlists are of special
interest when designing standard cell libraries [5] or custom
gates for improving a design [6]. To increase design quality in
full-custom methodology, a handcraft generation of transistor
netlists for each functional block may be performed. However,
this is an extremely time-consuming task for larger ICs,
making the adoption of such strategy prohibitive. Thus, it
becomes crucial to have available efficient algorithms to
automatically generate optimized transistor arrangements.

In the last decades, several methods to generate and
optimize transistor networks have been proposed. The most
traditional solutions are based on algebraic and Boolean
factorization [7-9]. In a Boolean expression, every instance of
a variable is called literal, and a product of literals is formally
called cube. The factorization process manipulates a Boolean
expression in order to reduce the number of literals necessary
to represent a Boolean function. Afterwards, the factored
expression is directly translated to a transistor (switch)
network. In this case, only series and parallel (SP)
arrangements are obtained, related respectively to AND and
OR operations present in Boolean expression.

Alternative methods to generate transistor networks are
based on graph optimizations, where a Boolean expression is
translated to a graph. This graph can be optimized by edges
sharing [10-12] or can be gradually composed from an input
expression [13]. In some cases, these techniques are able to
deliver better results than factorization based methods if non-

series-parallel (NSP) arrangements are able to be found during
the graph manipulation process. Such optimization obtained
exploiting NSP topologies is due to the large sharing between
the paths that represent cubes of a function, so reducing the
total switch count and overcoming SP arrangements
[10,12,13].

This paper proposes a new graph-based method able to
generate optimized transistor networks. Our approach presents
a structural algorithm based on SP arrangements to avoid
unnecessary computation during the generation of transistor
networks. Different from the approach presented in [12], this
new method delivers the networks not only applying transistor
sharing, but also considering topological information during
the generation process. Moreover, this paper presents a
methodology based on SP kernels different from previous
method described in [14], in which the NSP Kernel concept
was introduced.

The remaining of this paper is organized as follows.
Section II introduces the synthesis methodology to generate
optimized switches networks. In Section III some
experimental results and comparisons are presented. Finally,
conclusions are outlined in Section IV.

II. SYNTHESIS METHODOLOGY

The proposed method starts from an irredundant sum-of-
products (ISOP), and tries to combine cubes to build SP
kernels. A SP kernel structure is illustrated in Fig. 1(a). The
synthesis methodology is divided in two steps. The first step
aims to build the SP kernels. The second one tries to merge
the kernels found in order to deliver an optimized switch
network. Thus, these steps are run in the following sequence:

(A) SP Kernel Finder.

(B) Kernel Composition.

Depending on the Boolean function (expressed through an
ISOP), the routines (A) cannot find any kernel. Therefore, the
switch network is generated during the step (B), applying
edges sharing technique presented in [12].

A. SP Kernel Finder

The SP Kernel Finder algorithm proposed herein can be
described as follows. For n=|cubes(f)|, four cubes are selected

by combinations
4

nC . Afterwards, the algorithm builds a graph

for each combination, as explained bellow.

We define an undirected graph G = (V,E) of a function H
which is given by a SOP with exactly four cubes. The vertices
in V = {v1,v2,v3,v4} represent different cubes in H, and |V| is
the number of vertices in the set V. An edge e = (vi,vj) in E
exists if and only if at least one literal appears in both vi and vj.
The operation (vi ∩ vj) represents common literals in both vi
and vj vertices. Thus, an edge e formally exists if and only if:

(vi  vj)  Ø (1)

We define the label of e by using label(e) = (lit(vi) ∩
lit(vj)), where lit(vi) represents the set of literals present in vi.
To ensure that the obtained graph is a valid SP kernel two
rules must be checked:

Rule 1 – Let Evi be the set of edges that are connected to
vi. Each cube shares all its literals if the following equation is
satisfied for all v  V:

⋃

 (2)

Rule 2 – The obtained graph must be an isomorphic sub-
graph to the graph template illustrated in Fig. 1(a). In this
work this structure is called SP kernel.

 (a) (b) (c)

Figure 1. Vertices merging (b) and edge reordering process (c) on a SP

kernel (a).

After building SP kernels, the algorithm must apply some
transformations over the graph to map each found kernel to a
switch network. Therefore, the first step consists in merging
the rounded vertices of the template shown in Fig. 1(a) in a
single vertex, as shown in Fig. 1(b). Afterwards, the edges
reordering routine is applied over the graph illustrated in Fig.
1(b), resulting in the switch network illustrated in Fig. 1(c).
This kernel structure, illustrated in Fig. 1(a), was chosen
because it leads to arrangements with a large sharing between
the paths that compose the network, as shown in Fig. 1(b). It is
interesting because the cubes from the input ISOP can be
implemented with a reduced number of switches. This way, if
this kind of arrangement may be built, our method finds it in
the first step of the optimization process, avoiding unnecessary
computation.

To a better understanding of such process, consider the
following equation as input of the algorithm:

f = a.c + a.d + b.c + b.d (3)

Due to the characteristics of this function, there is only one
possible combination to select the cubes and to try to build a
kernel. Thus, the algorithm found the kernel illustrated in Fig.
2(a). It can be mapped directly to the switch network
illustrated in Fig. 2(b), through the vertices merging and the
edges reordering routines.

Notice that the vertices merging and the edges reordering
routines are necessary to implement the sharing between the
paths of the network that represent the cubes from Equation
(3).

 (a) (b)

Figure 2. SP kernel (a) derived from the Equation (3) and network (b)
obtained after applying vertices merging and edges reordering routines.

As demonstrated above, through this kind of SP
arrangements, a set of four cubes can be implemented with a
reduction of 50% in the number of literals (switches) when
compared to Equation (3). This optimization rate tends to
increase when multiple kernels are found and merged by the
edges sharing technique applied in the step (B).

B. Kernel Composition

It is important to notice that, depending on the input ISOP,
multiple kernels can be found. Moreover, some cubes from the
input ISOP cannot compose any kernel. Thus, five possible
cases can occur when generating the transistor networks: (i) a
network can be composed by just one SP kernel; (ii) a network
can be composed by a SP kernel, and one or more cubes that
are implemented as parallel transistor associations to this
kernel; (iii) a network can be composed by multiple SP
kernels in a parallel association; (iv) a network can be
composed by multiple SP kernels, and one or more cubes that
are implemented as parallel transistor associations; (v) there is
no SP kernels and the network is implemented through the
edges sharing algorithm. For each of these five cases, such
topological composition is done gradually until achieving a
network that is logically equivalent to the input Boolean
function. During the composition process, the edges sharing
procedure is applied to the network in order to eliminate
redundant switches [12]. Such strategy allows a reduction in
the total number of switches.

As an example of network generation composed by a SP
kernel and a remaining cube associated in parallel, let us
consider the following equation:

f = !a.!b.!c.!d + !a.b.!c.d + !a.b.c.!d + a.!b.!c.d +

a.!b.c.!d

(4)

For such ISOP, the SP Kernel Finder routine founds the
SP kernel illustrated in Fig. 3(a). This kernel may be mapped
to the transistor network illustrated in Fig. 3(b). Besides that,
the cube !a.!b.!c.!d was not implemented through the found
kernel. Hence, this cube must be associated in parallel with
such kernel as shown in Fig. 4(a).

In the next, the SP kernel and the remaining cube are
gradually merged, by applying the edges sharing procedure,
resulting in the sharing of the switch !a depicted by the Fig.

e1

e3e2

e4

e2 e1

e4 e3

e2 e1

e4 e3

c

ba

d

a c

d b

a.c

b.c

d.b

a.d

4(b). Afterwards, the redundant switch !c is shared, resulting
in the optimized switch network presented in Fig. 5.

(a) (b)

Figure 3. SP kernel (a) obtained from the Equation (4) and resultant network
(b).

Notice that, the proposed method starts from SP
arrangements and can achieve NSP arrangements, as
illustrated in Fig. 5, through the composition procedure and
the edges sharing technique. This final network is composed
by 10 switches, saving 2 switches when compared to the exact
factorization that needs 12 switches to implement the function
described by Equation (4).

 (a) (b)

Figure 4. Network derived from the SP kernel and the remaining cube
associated in parallel (a), and the intermediate network (b) after sharing the
switch !a.

Figure 5. Final network delivered by the proposed approach for Equation (4).

To demonstrate the network generation with multiple SP
kernels, let us consider the equation of the 4-input XOR
function:

f = !a.!b.!c.d + !a.!b.c.!d + !a.b.!c.!d + !a.b.c.d +

a.!b.!c.!d + a.!b.c.d + a.b.!c.d + a.b.c.!d
(5)

The proposed method is able to find two SP kernels. These
kernels are illustrated in Fig. 6(a) and in Fig. 7(a). Each kernel
may be mapped to a correspondent switch network, as
illustrated in Fig. 6(b) and in Fig. 7(b), respectively.

Afterwards, during the kernel composition procedure,
these kernels are associated in parallel resulting in the network
illustrated by the Fig. 8. Notice that there are some redundant

switches between these kernels. Hence, in order to remove the
redundancies of the network, the edges sharing routine is
applied resulting in a network with a large sharing of the
switches, as shown in Fig. 9. The obtained solution represents
the minimal switch network to implement the 4-input XOR
function.

 (a) (b)

Figure 6. First SP kernel (a) obtained from Equation (5), and the switch
network (b) derived from such kernel.

 (a) (b)

Figure 7. Second SP kernel (a) obtained from Equation (5), and the switch
network (b) derived from such kernel.

Figure 8. Parallel association of the networks built through the SP kernels
found from the Equation (5).

Figure 9. Final switch network to implements the 4-input XOR function.

III. EXPERIMENTAL RESULTS

In order to provide a comparison of our methodology to
other available solutions described in the literature, the
experiments were performed over the set of 4-input P-class
logic functions. This set, composed by 3982 functions, was
chosen because it contains simple functions that are more

a.!b c.!d

!c.d !a.b

a.!b.c.!d

!a.b.c.!d

!a.b.!c.d

a.!b.!c.d

a

b!b

d

!a

!d

c !c

a

b!b

d

!a

!d

c !c

!b

!d

!a

!c

a b

!b

!d

c

!b

!d

!a

!cd !c

a b

!b

d

!d

c

!b

!d

!a

!c

a.!b c.d

!c.!d !a.b

a.!b.c.d

!a.b.c.d

!a.b.!c.!d

a.!b.!c.!d

!a

!bb

c

a

c

!d d

!a

b!b

c

a

!c

d !d

!a

!bb

c

a

c

!d d

!a

!b!b

!c

a

!c

d !d

b b

c c

likely to be used as logic gates in real designs. We have
generated gates for each function of this set, and compared
them to other methods available in the literature. Table I
shows the obtained results when considering the total switch
count to compute the logic gates. These results also
summarize the inverters needed to implement the gates.
Inverters are needed to generate the complementary signal for
input variables that appears in both polarities. As presented in
Table I, our method compares favorably with past approaches.

TABLE I. TOTAL SWITCH COUNT TO COMPUTE LOGIC GATES FOR THE SET

OF 4-INPUT P-CLASS LOGIC FUNCTIONS.

 [4] [9] [11] [13]
Proposed

Method

Total number of

switches
106,162 102,668 103,049 97,174 96,484

Fig. 10 shows the distribution of gains and losses of our
approach when comparing to other solutions. This distribution
for the set of 4-input P-class logic functions is not available in
[13]. Thus, it was not possible to perform the comparison with
such technique. As can be seen, the proposed method is able
to reduce up to 10 transistors in some generated networks
from the set of 3982 logic functions. In general, the gains
remain around 1 to 4 switches per network.

Figure 10. Distribution of switch count when comparing the proposed
approach to the other methods available in the literature, considering the set of
4-input P-class logic functions.

Moreover, it is important to notice that for a small number
of logic functions that compose this set, our method delivers
networks with an increasing in the switch count. In these
cases, the main reason for that is the bad choice when merging
edges during the multiple kernels merging process. An
efficient heuristic to choose the edges that should be firstly
merged would help to improve the results.

The total execution time to generate all the 3982 networks
was less than one second when running in an Intel Core i5 at
2.8GHz with 4 GB of RAM. It demonstrates the feasibility of
the proposed method to increase design quality when
generating digital CMOS circuits.

IV. CONCLUSIONS

This paper proposed a new graph-based method to
generate optimized transistor (switch) networks. The proposed
method results in a reduction of transistor count when
compared to previous approaches. It is known that reducing

transistor count in a logic gate it is possible to achieve better
results in terms of signal delay propagation and power
consumption. These associated gains were not explicitly
investigated in this work, and they are being left as future
work at gate, library and circuit design level.

ACKNOWLEDGMENT

Research partially supported by Brazilian funding agencies
CAPES, CNPq and FAPERGS.

REFERENCES

[1] Y. Lai; Y. Jiang; H. Chu, “BDD Decomposition for Mixed

CMOS/PTL Logic Circuit Synthesis”, In: IEEE Int. Symp. on Circuits

and Systems (ISCAS 2005), p. 5649-5652.

[2] H. Al-Hertani, D. Al-Khalili and C. Rozon, “Accurate total static

leakage current estimation in transistor stacks”, In Proc. Int. Conf. on

Computer Systems and Applications, 2006, pp. 262-65.

[3] T. J. Thorp, G. S Yee, C. M Sechen, “Design and synthesis of

dynamic circuits”. IEEE Trans. on VLSI Systems, v. 11, n. 1, p. 141-

149, Feb. 2003.

[4] L. S. Da Rosa Junior, F. S. Marques, T. M. G. Cardoso, R. P. Ribas,

S. Sapatnekar, A. I. Reis, "Fast Disjoint Transistor Networks from

BDDs", In: 19th Symp. on Integrated Circuits and Systems Design

(SBCCI 2006), p. 137-142.

[5] A. I. Reis, O. C. Anderson. Library Sizing. US Patent number:

8015517, Filing date: Jun 5, 2009, Issue date: Sep 6, 2011,

Application number: 12/479,603.

[6] R. Roy, D. Bhattacharya, V. Boppana, "Transistor-level optimization

of digital designs with flex cells," IEEE Trans. on Computers , vol.38,

no.2, pp. 53- 61, Feb. 2005.

[7] M. C. Golumbic, A. Mintz, U. Rotics, “An improvement on the

complexity of factoring read-once Boolean functions”, Discrete Appl.

Math, 2008, Vol. 156, n. 10, p. 1633-1636.

[8] E. Sentovich et al, “SIS: A system for sequential circuit synthesis”,

Technical Report No. UCB/ERL M92/41, EECS Department,

University of California, Berkeley, 1992.

[9] M. G. A. Martins, L. S. Da Rosa Junior, A. Rasmussen, R. P. Ribas,

A. I. Reis, “Boolean Factoring with Multi-Objective Goals”. In: IEEE

Int. Conf. on Computer Design (ICCD 2010), p. 229-234.

[10] J. Zhu, M. Abd-El-Barr, “On the optimization of MOS circuits”. IEEE

Trans. on Circuits and Systems: Fundamental Theory and

Applications, Theory Appl., vol. 40, no. 6, pp. 412–422, 1993.

[11] L. S. Da Rosa Junior, F. S. Marques, F. Schneider, R. P. Ribas, A. I.

Reis, “A Comparative Study of CMOS Gates with Minimum

Transistor Stacks”. In: 20th Symp. on Integrated Circuits and Systems

Design (SBCCI 2007), p. 93-98.

[12] V. N. Possani, R. S. Souza, J. S. Domingues Junior, L. V. Agostini, F.

S. Marques, L. S. Da Rosa Junior, “Optimizing Transistor Networks

Using a Graph-Based Technique”. Journal of Analog Integrated

Circuits and Signal Processing (ALOG), May 2012.

[13] D. Kagaris, T. Haniotakis, “A Methodology for Transistor-Efficient

Supergate Design”, IEEE Trans. on Very Large Scale Integration

(VLSI) Systems, p. 488-492, 2007.

[14] V. N. Possani, V. Callegaro, A. I. Reis, R. P. Ribas, F. Marques, L. S.

Da Rosa Junior, “NSP Kernel Finder - A Methodology to Find and to

Build Non-Series-Parallel Transistor Arrangements”. In: 25th Symp.

on Integrated Circuits and Systems Design (SBCCI 2012), p. 1-6.

0

200

400

600

800

1000

1200

1400

1600

1800

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10

N
u

m
b

er
 o

f
 B

o
o

le
an

 f
u

n
ct

io
n

s

Increasing or decreasing of switch count

[4] [9] [11]

