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Abstract — This work presents a hardware architecture design 
for a reference frame compression technique for Motion and 
Disparity Estimation (ME/DE) on Multiview Video Coding 
(MVC). The goal of the compression technique is to reduce the 
off-chip memory bandwidth during the ME/DE processing, 
reducing the power consumption related to memory, which is 
very restrictive in MVC encoders. This work proposes an 
architecture design to accelerate the compression/decompression 
of the reference data required for the ME/DE search. The 
compression technique is based on a (1) simplified intra–
prediction, adaptive (2) non-linear quantization and (3) 
Huffman-based entropy encoding. The hardware design is 
composed for an intra-prediction module that is responsible for 
generating the predicted samples, one module that produces the 
residue using the predicted samples previously generated and a 
module composed of non linear quantization and Huffman based 
entropy encoder. The synthesis results shows that the proposed 
hardware design accomplished the goal of accelerating the 
reference frame compression technique, arriving at a maximum 
operating frequency of 372 MHz, being able to process videos in 
high resolution. 
 
Keywords — Multiview Video Coding, MVC, reference frame 
compression. 

I. INTRODUCTION 

The concept of Multiview Video Coding (MVC) [1] is part 
of the 3D applications, where multiple independent cameras 
record the same scene from different observation points. The 
MVC standard, the state-of-the-art in multiview video coding, 
provides 20-50% increased coding efficiency in comparison to 
the H.264/AVC [2]. Together with the Motion Estimation 
(ME), the Disparity Estimation (DE) represents the most 
power consuming module in the MVC encoder (more than 
92% of the average power consumption) [3].  

The ME/DE goal is to search, for each current block of the 
frame that is being coded, for the most similar block (best 
match) in one or more reference frames (previously coded 
frames). The search is performed within a search window, 
which is accessed from the Decoded Picture Buffer (DPB). 
The DPB is generally mapped to external memory and the 
search window is typically stored in a local on-chip video 
memory. Previous studies prove that 90% of the ME/DE 
power consumption is related to the external and on-chip 
memory issues [3]. Due to the battery-powered nature of such 
devices, the power consumption must be smaller as possible to 
allow good battery usage with multiview video handling. 
Therefore, it is necessary minimize the external memory 
accesses related to the ME/DE on MVC in order to attend 
mobile devices power and performance restrictions. 

Previous works also aimed to implement hardware 
architectures to reduce the memory power consumption in the 

ME/DE by compressing the reference samples before storing 
them in the DPB external memory [4][5][6]. The solution 
presented in [4] is based on the compression of 2x2 blocks 
and utilize different prediction modes. This solution 
introduces extra complexity to the compress process, since the 
best prediction mode for each 2x2 block must be calculated. 
The solution proposed by [5] reduces the losses of the MMSQ 
[6] (that is previously proposed technique) process by storing 
them, so these errors can be returned to the correspondent 
blocks.  

The goal of this work is to design an efficient hardware 
architecture for a low-complexity reference frame 
compression algorithm that aim to reduce the memory traffic 
in the ME/DE on MVC encoders, during the access of search 
window in the DPB. With this algorithm in mind, a hardware 
architecture that efficiently implements this technique is 
proposed. This hardware implementation is promised to be an 
acceleration path to not limit the MVC encoder loop. The 
algorithm and the hardware in this paper are based on a 
simplified intra-prediction encoder defined [1].  This enables 
the exploitation of already existing information that was 
generated during the MVC encoding process. After the intra-
prediction, the residues are applied to a content-adaptive 
compressor path, which is composed of (a) non-linear 
quantization and (b) Huffman-based entropy encoder. 

The hardware architecture was completely described in 
VHDL using the ISE software tool, developed by Xilinx for 
synthesis and analysis of HDL designs. Thus, it was possible 
simulate the designed architecture. 

  This paper is organized as follows: Section 2 presents a 
description of the efficient compressor technique based in 
intra-prediction. The process is shown in steps that are 
explained one by one. Section 3 shows details of hardware 
architecture, also presenting each block with the respective 
explanation of its operation. Section 4 contains a brief analysis 
of results. Finally, Section 5 concludes the paper. 

II. REFERENCE FRAME COMPRESSION TECHNIQUE 

The content-adaptive frame compressor technique goal is 
to compress the samples after they are completely encoded 
and reconstructed (Inverse Transforms and Quantization, 
Reconstruction). After that, the reconstructed samples are 
stored in the Decoded Picture Buffer (DPB), mapping in the 
external memory, to be used as reference for future ME/DE 
operations. The proposed content-adaptive compressor 
technique is described as a pseudo-code in Fig.  1. As inputs, 
the algorithm expects:  (a) the sixteen already selected intra-
prediction modes, (b) the original samples of the current 4x4 
block and (c) the reconstructed reference samples.  
 



Algorithm: Content-Adaptive Reference Frame Compression  
1. // inputs: predModes[]: sixteen RDO MVC encoder intra prediction modes 
2. //origBlock4x4[]: original 4x4 block samples 
3. //reconBlock4x4[]: reconstructed 4x4 block samples 
4. // outputs: codedBlock4x4[]: compressed bitstream to send to the DPB 
5. function compressBlk4x4(predModes[ ], origBlock4x4[ ], reconBlock4x4[ ])  
6.    codedBlock4x4 ← 0 
7.    foreach reconSample, origSample in reconBlock4x4, origBlock4x4 loop 
8.          predictSample ← intraPrediction(neighbors, predModes[reconSample]) 
9.          residueSample ← predictSample - reconSample 
10.        quantizedSample ← quantization(residueSample) 
11.        huffmanSample ← staticHuffman(quantizedSample, huffTable) 
12.        codedSample ← packer(huffmanSample) 
13.   end loop 
14.   return codedBlock4x4 
15.end function 

Fig.1. Content-adaptive compression technique 

The algorithm is applied for each sample that composes 
the entire 4x4 block (line 7). The first step is a simplified 
intra-prediction (line 8) with the goal of eliminating the spatial 
redundancies intrinsic to the reconstructed reference samples. 
The technique uses the best 4x4 intra mode selected by the 
MVC mode decision, in order to decrease the computational 
effort, requiring the calculation of only one predicted block. 
The simplified intra-prediction algorithm for the predicted 
samples is the same of the H.264/AVC definition for 4x4 
blocks, where 9 possible modes using thirteen neighboring 
samples, at maximum [2]. Then, the residue sample is 
calculated (line 9) by the difference between the predicted 
sample and the reconstructed sample. Then, the non-uniform 
quantization is applied (line 10) to further minimize the range 
of representation, becoming the residue distribution much 
more concentrated compared to the reconstructed samples.  

By definition, the non-linear quantization applies smaller 
quantization steps (distance between two quantization levels) 
for the higher probability regions along the statistical 
distribution (near the average). Exploiting the concentered 
distribution of the residue, Huffman based entropy encoder is 
applied (line 11) with the goal to assign the smaller codes to 
the most likely symbols. The last step (line 12) is to pack the 
residue, generated by quantization and Huffman process, and 
the prediction modes for all 4x4 into  fixed-sized packages to 
be sent to the external memory (line 14). 

Experimental results show that the proposed content-
adaptive compression scheme is able to reduce the external 
memory accesses by up to 63% along with negligible losses in 
the MVC encoder rate-distortion performance. At the best of 
the authors’ acknowledgement, this is the best results when 
compared to the available related works. 

III. HARDWARE ARCHITECTURE 

The proposed architectural design for the reference frame 
compression hardware is shown in Fig. 2. The system is 
divided into four main stages that will be described with more 
details in the following subsections. 

The architecture receives, as input: (a) the prediction mode 
previously used during the MVC mode decision, (b) the 
original neighbors samples, (c) the reconstructed samples and 
(d) the quantization factor. First, the original neighbors 
samples are stored in the Neighboring Sample Buffer (NSB) 
and this happens when the control send the We signal, 
allowing the write operation in the buffer. Then, the next step 
is to generate the predicted samples. For this, we have two 
types of intra-prediction (DC Prediction and Sample 
Prediction). At the same time that NSB receives the samples, 
the register bank also receives the eight necessary samples to 
perform the DC mode. Thus, DC Prediction and Sample 

Prediction can work in parallel. Then, the control, that has 
previously received the prediction mode, sends the signal 
(selPrediction) signal to the multiplexer that chooses the 
predicted sample valid. Now, the residue is generated by the 
subtraction between the predict sample and the reconstructed 
sample. The Huffman tables and the quantization steps were 
statically defined based on statistics taken by using real video 
test sequences. They were implemented as a memory which is 
addressed by the residue sample. After the Huffman encoder 
and quantization are applied over the residue, the coded 
residue is packed into 16-bit fixed sized packages and stored 
in the external memory. In the next sections we have a 
detailed description of each module in a separated way.  

 
      Fig. 2. Overall Architecture Block Diagram 

A. Intra-Prediction Sample and Residue Generator 

The prediction module is designed to be simple. It is a 
combinational logic composed of adders, multiplexers and a 
shift module. The Fig. 3 shows the hardware architecture 
responsible for the intra-prediction of one sample. This 
module of the architecture needs to be able to calculate nine 
modes of prediction, depending on the constant received from 
the control and the neighbors that area available. This 
hardware is able to calculate every mode, with the exception 
of DC mode that needs a separate hardware. We chose shifters 
and multiplexers instead of using multipliers, due to the high 
delay propagation caused by the multipliers. Fig. 3 also shows 
the Switch Mode module, which is responsible to deal with 
non-regular predicted samples that are not generated using the 
general formula (modes 3 and 8). This module performs this 
decision based on the selMode signal from the control unit. 
The hardware for DC mode is quite similar. In this module, 
the mean of the left and upper samples is used to predict the 
entire block. The Fig. 4 shows the hardware for intra-
prediction on DC mode. As it is possible to see on the Fig. 3 
and Fig. 4, three pipeline stages are implemented in both 
modules. This allows that three different predicted samples 
can be processed at the same time. Besides, the architecture is 
able to produce results of both at the same time and, causing 
no time wasting. This hardware was chosen since we have a 
simple combinational logic with four stages and the sums can 
be process in parallel (with exception of dependent stages). 
This way, the results in DC mode or others modes are 
available at same time and the choice is made by a signal that 
say if the intra-prediction mode is DC or others. 
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Fig. 3. Predict Sample Module 

 
Fig. 4. Predict Sample Module for DC mode 

The residue module is a simple module composed by a 
subtractor that calculates the difference between the predict 
sample and the reconstructed sample. This stage receives the 
predicted sample (from prediction sample module) and the 
reconstructed samples (external input of the compressor 
architecture). The output residue is immediately sent to be 
compress as much as possible. 

B. Neighboring Samples Buffer 

The thirteen neighbors required for the processing of one 
4x4 block are stored in a memory, where they will be 
available to be used on during prediction. The Fig. 5a shows 
the memory design and the position of the neighboring 
samples of a 4x4 block (Fig. 5a).  

Due to the large power consumption of a memory access, 
both off/on-chip, the reduction of the number of accesses is 
essential. Then, each memory position is composed of three 
consecutive neighbors. So, when one access is performed, 
three neighboring samples are accessed at the same time and 

using only one cycle. Each memory position in the NSB 
occupies 24 bits (3 x 8bits). 
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Fig. 5. Neighbors Sample Buffer and 4x4 block          

C. Non-linear Quantization and Huffman Encoder 

The static Huffman relates the input code (residue, in our 
case) with the fixed conversion table that is predetermined by 
the values of input code. In this hardware architecture, the 
quantization and Huffman table was mapped to a memory that 
was previously loaded with the correspondent codes for each 
input value. This was possible because both the quantization 
and Huffman algorithm are static, and then can be mapped in 
the same memory, first decreasing the range of input (residue) 
and then applying Huffman process. These two steps happen 
directly, depending of quantization factor (external output).   

The Huffman codes packing, that is the last stage of this 
compressor, is shown in the Fig. 6. 

 
Fig.6. Huffman Packing Process 

The Decoder module receives the number of valid bits on 
the Huffman code, and then this value is added to the 
accumulator which stores the sum of valid bits, that is send to 
Mask module. The Mask module receives the Huffman code 
from Huffman Table, as well as the size of valid code and is 
responsible for packing these valid codes with others until 
formed a word of 16 to 32 bits. Then, the 16 most significant 
bits are sent to the output buffer, delivering them to the 
external memory. The rest of valid bits (that are stored in 16 
least significant bits) are sending to the Mask module and the 
process begins again. 

 

D. Control Unit and Pipeline Schedule 

The control unit is a regular state machine that was 
programmed to send a series of control words, depending of 
prediction mode and the samples being processed. This 
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control word has a length of 15 bits and is composed by 
different information as address of NSB, constants for intra 
prediction and a signal to DC or others modes.            

The composition of a control word is as follows: The 4 
most significant bits match the address that will be accessed in 
NSB. The 8 following bits are the constants (c1, c2, c3 and 
c4) that are necessary for intra-prediction module. The 2 
following bits are used for a small select module that is 
present inside of intra-prediction module and it chooses the 
correct input for the prediction, depending of prediction mode. 
The least significant bit is to choose between the two types of 
intra prediction (sample prediction and prediction DC). 

The Fig. 7 shows the pipeline schedule for the 
compression of one 4x4 block. Besides, the time that each 
module of compressor takes is represented in the x-axis. 

 
Fig. 7. Pipeline schedule of the proposed hardware architecture. 
As can be seen, 11 cycles are taken for the neighboring 

samples loading. After this, these neighboring samples are 
going to be used to process the entire 4x4 block. Each sample 
is completely processed in 7 clock cycles. When the pipeline 
is full, we have one sample per cycle until the entire 4x4 block 
has been processed. It also can be noted that only with 
pipeline, without further parallelism technique, three samples 
can be processed at the same time during the intra-prediction. 

IV. RESULTS AND DISCUSSIONS 

The compressor architecture was described in VHDL and 
synthesized looking for a FPGA implementation using the 
Xilinx ISE synthesis tool. The target FPGA device was the 
Virtex 5 XC5VLX50T. The performance evaluation takes into 
account the number of clock cycles that are required to 
compress one 4x4 block: 33 cycles. The compressor is applied 
to all reconstructed blocks before they are stored in the DPB 
(external memory). In another words, the architecture will 
process every 4x4 reconstructed block that will be required for 
future ME/DE operations. Tab. 1 presents the synthesis results 
considering: the number of (a) LUTs (Look-Up Tables), (b) 
FFs (Flip-Flops), (c) Slice FFs, (d) BRAMs (Block Random 
Access Memory) and (e) maximum operation frequency. 

TABLE I 
SYNTHESIS RESULTS FOR THE FPGA IMPLEMENTATION 

Logic Utilization Summary 

#LUTs 98 (1%) 
#FFs 89 

#Slice FFs 89 
#BRAMs 1 

Frequency[MHz] 372 

The memories, required for the NSB and the Huffman-
quantization design, were mapped to only one BRAM, 
impacting in a low memory usage. The maximum operation 

frequency that the hardware implementation is able to achieve 
is 372 MHz (2,687ns of critical delay). This high frequency 
was enabled due to the pipeline states that reduces the critical 
path to one adder plus a shift operation (multiplexer based). 

Tab. 2 presents a performance evaluation of the designed 
hardware architecture. The first part of the evaluation presents 
the minimum frequency required to reach real time processing 
(30 frames per second) for several scenarios: (a) 2, 4 and 8 
views and (b) VGA (640x480), XGA (1024x768) and 
HD1080 (1920x1080) video resolution. The rightmost part of 
Tab. 2 shows the maximum throughput (in frames per second) 
allowed by the compressor implementation over the FPGA 
device for the same scenarios. 

TABLE II 
ARCHITECTURE PERFORMANCE EVALUATION 

Resolution 
Frequency [MHz]  

for 30fps 
Throughput [fps]  

@max. freq. 

2-view 4-view 8-view 2-view 4-view 8-view 

VGA 38 76 152 293 146 73 
XGA 97 194 389 114 57 28 

HD1080 256 513 1026 43 21 10 

Considering the Tab. 2, it can be seen that the hardware 
architecture developed on this work is capable to meet real 
time processing capability for the tested resolutions as 
follows: (1) 2 views in the HD1080 videos, (2) 4 views for the 
XGA resolution and (3) 8 views when coding VGA videos. 
When the compressor works at the maximum operation 
frequency, it is able to process (1) 8-view VGA video running 
at 73 fps, (2) 2-view HD1080 videos running at 43 fps, and (3) 
XGA videos with 4 views at 57 fps and with 8 views at 28 fps 
(also acceptable for real time applications).    

V. CONCLUSIONS 

This work presented a hardware architecture design for a 
reference frame compression technique for Motion and 
Disparity Estimation (ME/DE) on MVC. This hardware was 
based on a simplified intra-prediction, where the spatial 
redundancy is exploited. The compression also use a path 
composed of quantization and Huffman-based entropy 
encoder in order to obtain a higher compression ratio. The 
goal was to optimize the hardware architecture in order to 
achieve better compression ratios and the construction of a 
reference frame decompression to implement together the 
compressor presented in this paper. The synthesis results 
showed that the proposed hardware design obtained the 
performance expected, arriving at a maximum operating 
frequency of 372 MHz and is capable of processing video 
with high resolutions.  
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