
Hardware Design for a Reference Frame
Compression Technique for Multiview Video Coding

Rafael Justo
#1

, Felipe Sampaio
#2

, Sergio Bampi
#3

#
PPGC/PGMICRO, Instituto de Informática, Universidade Federal do Rio Grande do Sul

Porto Alegre, RS - Brasil
rafael.justo@inf.ufrgs.br

felipe.sampaio@inf.ufrgs.br

bampi@inf.ufrgs.br

Abstract — This work presents a hardware architecture design
for a reference frame compression technique for Motion and
Disparity Estimation (ME/DE) on Multiview Video Coding
(MVC). The goal of the compression technique is to reduce the
off-chip memory bandwidth during the ME/DE processing,
reducing the power consumption related to memory, which is
very restrictive in MVC encoders. This work proposes an
architecture design to accelerate the compression/decompression
of the reference data required for the ME/DE search. The
compression technique is based on a (1) simplified intra–
prediction, adaptive (2) non-linear quantization and (3)
Huffman-based entropy encoding. The hardware design is
composed for an intra-prediction module that is responsible for
generating the predicted samples, one module that produces the
residue using the predicted samples previously generated and a
module composed of non linear quantization and Huffman based
entropy encoder. The synthesis results shows that the proposed
hardware design accomplished the goal of accelerating the
reference frame compression technique, arriving at a maximum
operating frequency of 372 MHz, being able to process videos in
high resolution.

Keywords — Multiview Video Coding, MVC, reference frame
compression.

I. INTRODUCTION

The concept of Multiview Video Coding (MVC) [1] is part
of the 3D applications, where multiple independent cameras
record the same scene from different observation points. The
MVC standard, the state-of-the-art in multiview video coding,
provides 20-50% increased coding efficiency in comparison to
the H.264/AVC [2]. Together with the Motion Estimation
(ME), the Disparity Estimation (DE) represents the most
power consuming module in the MVC encoder (more than
92% of the average power consumption) [3].

The ME/DE goal is to search, for each current block of the
frame that is being coded, for the most similar block (best
match) in one or more reference frames (previously coded
frames). The search is performed within a search window,
which is accessed from the Decoded Picture Buffer (DPB).
The DPB is generally mapped to external memory and the
search window is typically stored in a local on-chip video
memory. Previous studies prove that 90% of the ME/DE
power consumption is related to the external and on-chip
memory issues [3]. Due to the battery-powered nature of such
devices, the power consumption must be smaller as possible to
allow good battery usage with multiview video handling.
Therefore, it is necessary minimize the external memory
accesses related to the ME/DE on MVC in order to attend
mobile devices power and performance restrictions.

Previous works also aimed to implement hardware
architectures to reduce the memory power consumption in the

ME/DE by compressing the reference samples before storing
them in the DPB external memory [4][5][6]. The solution
presented in [4] is based on the compression of 2x2 blocks
and utilize different prediction modes. This solution
introduces extra complexity to the compress process, since the
best prediction mode for each 2x2 block must be calculated.
The solution proposed by [5] reduces the losses of the MMSQ
[6] (that is previously proposed technique) process by storing
them, so these errors can be returned to the correspondent
blocks.

The goal of this work is to design an efficient hardware
architecture for a low-complexity reference frame
compression algorithm that aim to reduce the memory traffic
in the ME/DE on MVC encoders, during the access of search
window in the DPB. With this algorithm in mind, a hardware
architecture that efficiently implements this technique is
proposed. This hardware implementation is promised to be an
acceleration path to not limit the MVC encoder loop. The
algorithm and the hardware in this paper are based on a
simplified intra-prediction encoder defined [1]. This enables
the exploitation of already existing information that was
generated during the MVC encoding process. After the intra-
prediction, the residues are applied to a content-adaptive
compressor path, which is composed of (a) non-linear
quantization and (b) Huffman-based entropy encoder.

The hardware architecture was completely described in
VHDL using the ISE software tool, developed by Xilinx for
synthesis and analysis of HDL designs. Thus, it was possible
simulate the designed architecture.

 This paper is organized as follows: Section 2 presents a
description of the efficient compressor technique based in
intra-prediction. The process is shown in steps that are
explained one by one. Section 3 shows details of hardware
architecture, also presenting each block with the respective
explanation of its operation. Section 4 contains a brief analysis
of results. Finally, Section 5 concludes the paper.

II. REFERENCE FRAME COMPRESSION TECHNIQUE

The content-adaptive frame compressor technique goal is
to compress the samples after they are completely encoded
and reconstructed (Inverse Transforms and Quantization,
Reconstruction). After that, the reconstructed samples are
stored in the Decoded Picture Buffer (DPB), mapping in the
external memory, to be used as reference for future ME/DE
operations. The proposed content-adaptive compressor
technique is described as a pseudo-code in Fig. 1. As inputs,
the algorithm expects: (a) the sixteen already selected intra-
prediction modes, (b) the original samples of the current 4x4
block and (c) the reconstructed reference samples.

Algorithm: Content-Adaptive Reference Frame Compression
1. // inputs: predModes[]: sixteen RDO MVC encoder intra prediction modes
2. //origBlock4x4[]: original 4x4 block samples
3. //reconBlock4x4[]: reconstructed 4x4 block samples
4. // outputs: codedBlock4x4[]: compressed bitstream to send to the DPB
5. function compressBlk4x4(predModes[], origBlock4x4[], reconBlock4x4[])
6. codedBlock4x4 ← 0
7. foreach reconSample, origSample in reconBlock4x4, origBlock4x4 loop
8. predictSample ← intraPrediction(neighbors, predModes[reconSample])
9. residueSample ← predictSample - reconSample
10. quantizedSample ← quantization(residueSample)
11. huffmanSample ← staticHuffman(quantizedSample, huffTable)
12. codedSample ← packer(huffmanSample)
13. end loop
14. return codedBlock4x4
15.end function

Fig.1. Content-adaptive compression technique

The algorithm is applied for each sample that composes
the entire 4x4 block (line 7). The first step is a simplified
intra-prediction (line 8) with the goal of eliminating the spatial
redundancies intrinsic to the reconstructed reference samples.
The technique uses the best 4x4 intra mode selected by the
MVC mode decision, in order to decrease the computational
effort, requiring the calculation of only one predicted block.
The simplified intra-prediction algorithm for the predicted
samples is the same of the H.264/AVC definition for 4x4
blocks, where 9 possible modes using thirteen neighboring
samples, at maximum [2]. Then, the residue sample is
calculated (line 9) by the difference between the predicted
sample and the reconstructed sample. Then, the non-uniform
quantization is applied (line 10) to further minimize the range
of representation, becoming the residue distribution much
more concentrated compared to the reconstructed samples.

By definition, the non-linear quantization applies smaller
quantization steps (distance between two quantization levels)
for the higher probability regions along the statistical
distribution (near the average). Exploiting the concentered
distribution of the residue, Huffman based entropy encoder is
applied (line 11) with the goal to assign the smaller codes to
the most likely symbols. The last step (line 12) is to pack the
residue, generated by quantization and Huffman process, and
the prediction modes for all 4x4 into fixed-sized packages to
be sent to the external memory (line 14).

Experimental results show that the proposed content-
adaptive compression scheme is able to reduce the external
memory accesses by up to 63% along with negligible losses in
the MVC encoder rate-distortion performance. At the best of
the authors’ acknowledgement, this is the best results when
compared to the available related works.

III. HARDWARE ARCHITECTURE

The proposed architectural design for the reference frame
compression hardware is shown in Fig. 2. The system is
divided into four main stages that will be described with more
details in the following subsections.

The architecture receives, as input: (a) the prediction mode
previously used during the MVC mode decision, (b) the
original neighbors samples, (c) the reconstructed samples and
(d) the quantization factor. First, the original neighbors
samples are stored in the Neighboring Sample Buffer (NSB)
and this happens when the control send the We signal,
allowing the write operation in the buffer. Then, the next step
is to generate the predicted samples. For this, we have two
types of intra-prediction (DC Prediction and Sample
Prediction). At the same time that NSB receives the samples,
the register bank also receives the eight necessary samples to
perform the DC mode. Thus, DC Prediction and Sample

Prediction can work in parallel. Then, the control, that has
previously received the prediction mode, sends the signal
(selPrediction) signal to the multiplexer that chooses the
predicted sample valid. Now, the residue is generated by the
subtraction between the predict sample and the reconstructed
sample. The Huffman tables and the quantization steps were
statically defined based on statistics taken by using real video
test sequences. They were implemented as a memory which is
addressed by the residue sample. After the Huffman encoder
and quantization are applied over the residue, the coded
residue is packed into 16-bit fixed sized packages and stored
in the external memory. In the next sections we have a
detailed description of each module in a separated way.

 Fig. 2. Overall Architecture Block Diagram

A. Intra-Prediction Sample and Residue Generator

The prediction module is designed to be simple. It is a
combinational logic composed of adders, multiplexers and a
shift module. The Fig. 3 shows the hardware architecture
responsible for the intra-prediction of one sample. This
module of the architecture needs to be able to calculate nine
modes of prediction, depending on the constant received from
the control and the neighbors that area available. This
hardware is able to calculate every mode, with the exception
of DC mode that needs a separate hardware. We chose shifters
and multiplexers instead of using multipliers, due to the high
delay propagation caused by the multipliers. Fig. 3 also shows
the Switch Mode module, which is responsible to deal with
non-regular predicted samples that are not generated using the
general formula (modes 3 and 8). This module performs this
decision based on the selMode signal from the control unit.
The hardware for DC mode is quite similar. In this module,
the mean of the left and upper samples is used to predict the
entire block. The Fig. 4 shows the hardware for intra-
prediction on DC mode. As it is possible to see on the Fig. 3
and Fig. 4, three pipeline stages are implemented in both
modules. This allows that three different predicted samples
can be processed at the same time. Besides, the architecture is
able to produce results of both at the same time and, causing
no time wasting. This hardware was chosen since we have a
simple combinational logic with four stages and the sums can
be process in parallel (with exception of dependent stages).
This way, the results in DC mode or others modes are
available at same time and the choice is made by a signal that
say if the intra-prediction mode is DC or others.

Control

NSB

Predict DC

-

Quant. and
HuffTable

DDR External Memory

Huffman
Packing

c1 .. c4

n1 .. n3

Intra Mode

Addr

P i
Codec
Coeff

.

Size

selMode

Coded
Block

SelPrediction

Register
Block

Sample
Prediction

m1 .. m8 Residue

We

Reconstructed

Sample

Quantizaztion

Factor
Neighbors

Fig. 3. Predict Sample Module

Fig. 4. Predict Sample Module for DC mode

The residue module is a simple module composed by a
subtractor that calculates the difference between the predict
sample and the reconstructed sample. This stage receives the
predicted sample (from prediction sample module) and the
reconstructed samples (external input of the compressor
architecture). The output residue is immediately sent to be
compress as much as possible.

B. Neighboring Samples Buffer

The thirteen neighbors required for the processing of one
4x4 block are stored in a memory, where they will be
available to be used on during prediction. The Fig. 5a shows
the memory design and the position of the neighboring
samples of a 4x4 block (Fig. 5a).

Due to the large power consumption of a memory access,
both off/on-chip, the reduction of the number of accesses is
essential. Then, each memory position is composed of three
consecutive neighbors. So, when one access is performed,
three neighboring samples are accessed at the same time and

using only one cycle. Each memory position in the NSB
occupies 24 bits (3 x 8bits).

NSB

0 0 0 0 LKJ

0 0 0 1 KJI

0 0 1 0 JIM

0 0 1 1 IMA

0 1 0 0 MAB

0 1 0 1 ABC

0 1 1 0 BCD

0 1 1 1 CDE

1 0 0 0 DEF

1 0 0 1 EFG

1 0 1 0 FGH

A B C D E F G H M

I

J

K

L

(a) (b)
Fig. 5. Neighbors Sample Buffer and 4x4 block

C. Non-linear Quantization and Huffman Encoder

The static Huffman relates the input code (residue, in our
case) with the fixed conversion table that is predetermined by
the values of input code. In this hardware architecture, the
quantization and Huffman table was mapped to a memory that
was previously loaded with the correspondent codes for each
input value. This was possible because both the quantization
and Huffman algorithm are static, and then can be mapped in
the same memory, first decreasing the range of input (residue)
and then applying Huffman process. These two steps happen
directly, depending of quantization factor (external output).

The Huffman codes packing, that is the last stage of this
compressor, is shown in the Fig. 6.

Fig.6. Huffman Packing Process

The Decoder module receives the number of valid bits on
the Huffman code, and then this value is added to the
accumulator which stores the sum of valid bits, that is send to
Mask module. The Mask module receives the Huffman code
from Huffman Table, as well as the size of valid code and is
responsible for packing these valid codes with others until
formed a word of 16 to 32 bits. Then, the 16 most significant
bits are sent to the output buffer, delivering them to the
external memory. The rest of valid bits (that are stored in 16
least significant bits) are sending to the Mask module and the
process begins again.

D. Control Unit and Pipeline Schedule

The control unit is a regular state machine that was
programmed to send a series of control words, depending of
prediction mode and the samples being processed. This

Mask Decoder

InputBuffer

Accumulator

Size Huffman Code

Output
Buffer

Coded
Bitstream

n5

+

+

+

Shifter Right 3

P i

+ +

+

+

n1

Shift Left Shift Left Shift Left

+ +

+

Shift Right

n1 n2 n3

0 1 0 1 0 1 s1 s0 s2

c3
c2

c1

c4

P i

Switch
Mode

selMode

n2 n3 n7 n8 n6 n4

control word has a length of 15 bits and is composed by
different information as address of NSB, constants for intra
prediction and a signal to DC or others modes.

The composition of a control word is as follows: The 4
most significant bits match the address that will be accessed in
NSB. The 8 following bits are the constants (c1, c2, c3 and
c4) that are necessary for intra-prediction module. The 2
following bits are used for a small select module that is
present inside of intra-prediction module and it chooses the
correct input for the prediction, depending of prediction mode.
The least significant bit is to choose between the two types of
intra prediction (sample prediction and prediction DC).

The Fig. 7 shows the pipeline schedule for the
compression of one 4x4 block. Besides, the time that each
module of compressor takes is represented in the x-axis.

Fig. 7. Pipeline schedule of the proposed hardware architecture.
As can be seen, 11 cycles are taken for the neighboring

samples loading. After this, these neighboring samples are
going to be used to process the entire 4x4 block. Each sample
is completely processed in 7 clock cycles. When the pipeline
is full, we have one sample per cycle until the entire 4x4 block
has been processed. It also can be noted that only with
pipeline, without further parallelism technique, three samples
can be processed at the same time during the intra-prediction.

IV. RESULTS AND DISCUSSIONS

The compressor architecture was described in VHDL and
synthesized looking for a FPGA implementation using the
Xilinx ISE synthesis tool. The target FPGA device was the
Virtex 5 XC5VLX50T. The performance evaluation takes into
account the number of clock cycles that are required to
compress one 4x4 block: 33 cycles. The compressor is applied
to all reconstructed blocks before they are stored in the DPB
(external memory). In another words, the architecture will
process every 4x4 reconstructed block that will be required for
future ME/DE operations. Tab. 1 presents the synthesis results
considering: the number of (a) LUTs (Look-Up Tables), (b)
FFs (Flip-Flops), (c) Slice FFs, (d) BRAMs (Block Random
Access Memory) and (e) maximum operation frequency.

TABLE I
SYNTHESIS RESULTS FOR THE FPGA IMPLEMENTATION

Logic Utilization Summary

#LUTs 98 (1%)
#FFs 89

#Slice FFs 89
#BRAMs 1

Frequency[MHz] 372

The memories, required for the NSB and the Huffman-
quantization design, were mapped to only one BRAM,
impacting in a low memory usage. The maximum operation

frequency that the hardware implementation is able to achieve
is 372 MHz (2,687ns of critical delay). This high frequency
was enabled due to the pipeline states that reduces the critical
path to one adder plus a shift operation (multiplexer based).

Tab. 2 presents a performance evaluation of the designed
hardware architecture. The first part of the evaluation presents
the minimum frequency required to reach real time processing
(30 frames per second) for several scenarios: (a) 2, 4 and 8
views and (b) VGA (640x480), XGA (1024x768) and
HD1080 (1920x1080) video resolution. The rightmost part of
Tab. 2 shows the maximum throughput (in frames per second)
allowed by the compressor implementation over the FPGA
device for the same scenarios.

TABLE II
ARCHITECTURE PERFORMANCE EVALUATION

Resolution
Frequency [MHz]

for 30fps
Throughput [fps]

@max. freq.

2-view 4-view 8-view 2-view 4-view 8-view

VGA 38 76 152 293 146 73
XGA 97 194 389 114 57 28

HD1080 256 513 1026 43 21 10

Considering the Tab. 2, it can be seen that the hardware
architecture developed on this work is capable to meet real
time processing capability for the tested resolutions as
follows: (1) 2 views in the HD1080 videos, (2) 4 views for the
XGA resolution and (3) 8 views when coding VGA videos.
When the compressor works at the maximum operation
frequency, it is able to process (1) 8-view VGA video running
at 73 fps, (2) 2-view HD1080 videos running at 43 fps, and (3)
XGA videos with 4 views at 57 fps and with 8 views at 28 fps
(also acceptable for real time applications).

V. CONCLUSIONS

This work presented a hardware architecture design for a
reference frame compression technique for Motion and
Disparity Estimation (ME/DE) on MVC. This hardware was
based on a simplified intra-prediction, where the spatial
redundancy is exploited. The compression also use a path
composed of quantization and Huffman-based entropy
encoder in order to obtain a higher compression ratio. The
goal was to optimize the hardware architecture in order to
achieve better compression ratios and the construction of a
reference frame decompression to implement together the
compressor presented in this paper. The synthesis results
showed that the proposed hardware design obtained the
performance expected, arriving at a maximum operating
frequency of 372 MHz and is capable of processing video
with high resolutions.

REFERENCES

[1] Joint Draft 8.0 on Multiview Video Coding, JVT-AB204, 2008.
[2] P. Merkle, et al. “Efficient Prediction Structures for Multiview Video

Coding.” In: IEEE TCSVT, v. 17, n. 11, pp. 1461-1473, nov. 2007.
[3] B. Zatt, M. Shafique, F. Sampaio, L. Agostini, S. Bampi, J. Henkel,

"Run-time adaptive power-aware motion and disparity estimation in
multiview video coding", IEEE DAC, pp. 1026-1031, 2011.

[4] Y. V. Ivanov and D. Moloney, “Reference Frame Compression
Patterns for H.264|AVC Decoder”. ICDT 2008, pp. 168-173, July
2008, Bucharest, Romania.

[5] A. D. Gupte, et al “Memory Bandwidth and Power Reduction Using
Lossy Reference Frame Compression in Video Encoding”, IEEE
TCSVT , vol. 21, no. 2, pp.225-230, February 2011, Bengaluru, India.

[6] M. Budagavi, M. Zhou. “Video Coding Using Compressed Reference
Frames”. IEEE ICASSP 2008, pp. 1165-1168 May 2008, Las Vegas,
NV, USA.

.

.

.

Cycles

Samples

11 12 15 16 17 18 33

(0,0)
(0,1)

(0,2)
(0,3)

(3,1)
(3,2)
(3,3)

.

.

.

Neighbors Loading

NSB Access

Prediction Module

Residue Generation

Quant. and Huffman

Packing

