
Majority-based Library Generation for

QCA, SET and TPL Technologies
Mayler G. A. Martins

2
, Vinicius Callegaro

1
,Stephano Gonçalves

3
, Melissa Colvara

3
, Leomar S. da Rosa Jr.

 3
,

Felipe de Souza Marques
3,
 André I. Reis

1,2
, Renato P. Ribas

1,2

1
PPGC /

2
PGMICRO, Institute of Informatics, UFRGS, Porto Alegre, RS, Brazil

3
Group of Architectures and Integrated Circuits UFPEL, Pelotas, RS, Brazil

{mgamartins,vcallegaro,rpribas,andreis}@inf.ufrgs.br

{smmgoncalves,mcolvara,leomarjr,felipem}@inf.ufpel.edu.br

Abstract — CMOS technology scaling is reaching its physical

limits, and new nanometric devices are being considered. Some

of these technologies, such as quantum cellular automata (QCA),

single electron tunneling (SET) and tunneling phase logic (TPL),

use the majority voter and inverter as basic Boolean primitive

elements. Commercial tools seem to be not able to synthesize

circuits efficiently using only majority gates and inverters. In

order to overcome this bottleneck, we propose a new approach

that is able to generate cell libraries with up to 4-input Boolean

functions using only majority and inverter gates. Previous

approaches can only build libraries with up to 3-input Boolean

functions. Experimental results over MCNC benchmarks have

demonstrated that there is a significant reduction up to 41.7%,

19.6%, 16.2% and 79.6%, in logic depth, majority gate count,

gate inputs and inverters, respectively, compared to the existing

methods.

Keywords — Functional composition, digital circuits, QCA,

majority gate, cell library, logic gates.

I. INTRODUCTION

The complementary metal-oxide semiconductor (CMOS)

technology is reaching its physical limits. There are many

challenges, as short channel effect, variability and even the

difficulty to create masks at nano-scale. There are new

candidates to replace the CMOS technology, such as quantum

cellular automata (QCA) [1]. QCA can be used to design

general-purpose computational and memory circuits, and it is

expected to achieve high device density, extremely low power

consumption, and very high switching speed. Tunneling phase

logic (TPL) [2] and single electron tunneling (SET) [3] are

also good candidates to replace the current CMOS technology.

Those technologies are illustrated in Fig. 1.

All such technologies use majority gates as primitive logic

elements. A majority gate is a simplified version of a

threshold logic gate, where the input weights have the same

value and the output goes to ‘1’ when more than a half of

inputs presents the logic level ‘1’. The output goes to ‘0’,

otherwise. A minority gate is the complemented version of a

majority gate. The basic logic elements in these technologies

are the inverters, common for all technologies (QCA, SET,

TPL), and the majority gate for QCA and the minority gate for

SET and TPL.

Figure 1: QCA majority gate (a), TPL minority gate (b), and SET minority

gate (c) [4].

The majority logic synthesis is a sub-area from the

threshold logic synthesis. Threshold logic synthesis research

dates back to 1960’s when Akers [12], Miller and Winder [5]

and Muroga [6] employed several logic synthesis methods and

techniques to generate threshold/majority gate circuits

efficiently. Modern logic synthesis algorithms start from 2-

level expressions (that can be generated by tools such as

ESPRESSO [7]) represented as sum-of-products (SOP) or

product-of-sums (POS) to generate a reduced factored

expression. Factored expressions are used to reduce the final

area of the circuit. Unfortunately, the SOP/POS cannot be

used to effectively generate majority circuits due to the lack of

algorithms that efficiently convert a two level expression in a

majority circuit. In this sense, it is critical an efficient

technique to synthesize circuits using majority gates as

primitive elements, in order to enable further development of

QCA, SET, TPL, and other emergent technologies.

This paper explores the Functional Composition (FC)

paradigm [8] to generate a library to synthesize circuits using

only majority gates and inverters as primitive logic elements.

There are two possible approaches for circuit synthesis using

majority gates: using or not a cell library to aid the circuit

synthesis. This paper addresses a cell library based technique.

The cell-library based technique is an interesting approach,

since there are several commercial tools that perform

technology mapping exploiting the such methodology. In this

sense, almost all synthesis flow can be maintained, with only

minor adjustments. Unfortunately, there is no algorithm

capable of generating optimal synthesis for functions with

more than 3 inputs. This paper proposes a novel technique to

generate a library having optimal cells with up to 4-input

functions.

II. RELATED WORK

Recently, some majority logic reduction methods targeting

QCA, TPL and SET circuits have been proposed. All these

technologies use majority or minority gates as primitive

elements.

In [9], Zhang et al. pointed out a set of 13 functions of 3

variables implemented using only majority gates and inverters.

This set is also the set of functions called 3-NPN. A NPN set

is a class of functions equivalent to each other, considering the

permutation of its inputs, complementation (negation) of its

inputs, and/or inversion (negation) of its output. This set aims

to reduce the hardware requirements for a QCA design,

working as a cell library, but the 13 cells implementing the set

of 3-NPN class of functions are not in minimal form, i.e., the

minimal number of majority gates.

In [4], Zhang et al. proposed a different flow. First of all,

the circuit is decomposed in subcircuits having 3 or less inputs,

and each subcircuit is optimized using factoring algorithms to

synthesize the functions, instead of using a cell library.

However, in the most of time the algorithm convert AND/OR

gates from a factored expression to majority gates, which can

negatively impact the total number of majority gates in a

circuit.

Momenzadeh et al., in [10], optimized two functions of [9]

that were not implemented in minimal number of majority

gates, and proposed an And-Or-Inverter (AOI) structure

composed by 2 majority gates connected in series to reduce

even more the number of majority gates present in a circuit.

In [11], Kong et al., in turn, improved the library provided

in [9], ensuring and proving optimality for 3 variable

functions. The algorithm is divided in three steps. The first is

a decomposition of the circuit in Boolean networks having at

most three inputs. The second step is the matching, generating

best implementations for each Boolean network. The last step

is a post-optimization, eliminating Boolean networks that have

the same complemented or uncomplemented functions.

However, those methods only support three variable

Boolean functions. In order to synthesize arbitrary multi-

variable Boolean functions, a QCA majority synthesis

methodology was introduced in [9]. In majority logic

synthesis, there are still some important aspects that have not

been solved or considered by the existing methods [4-6][9-12].

For instance, those methods are not capable to generate

optimal structures with majority gates with more than 3

variables. The 4-NPN function class has 222 functions, and

the 4-P function class has 3984 functions, so making the

generation of these libraries unfeasible without computational

aiding. For this reason, it is important to have available an

automated method which can synthesize more than 3 inputs.

Table I compares the previous works and the majority-

based circuit synthesis algorithm proposed in this paper. The

column “Majority generation” indicates how the algorithm

performs the circuit, or by real time synthesis or using a

library to perform technology mapping. It is interesting to use

a library, since the generation of the cells is a pre-computation

effort, saving CPU time in the synthesis flow. The column

“Allowed templates” shows the allowed primitive elements

(beside inverters) in the method.

TABLE I: COMPARISON BETWEEN MAJORITY-BASED SYNTHESIS ALGORITHMS.

Method Exactness Max inputs
Allowed

templates

Majority

generation

[9] heuristic 3 MAJ library

[10] exact 3 MAJ,AOI library

[4] heuristic 3 MAJ,MIN synthesis

[11] exact 3 MAJ,MIN synthesis

This paper exact 4 any library

III. MAJORITY-BASED LIBRARY GENERATION

Functional Composition (FC) [8] is a novel synthesis

paradigm that performs bottom-up association of Boolean

functions as opposed to the top-down functional

decomposition approach. By performing such a bottom-up

approach, the costs of initial functions are necessarily known,

the logic operations are simple, the subfunctions have sub-

optimal and optimal implementations, and a control cost can

be easily set.

The FC paradigm is based on some general principles.

These principles include the use of bonded-pair representation,

the use of initial functions set, the association between simple

functions to create more complex functions, the control of

costs achieved by using a partial order that enables dynamic

programming, and the restriction of allowed functions to

reduce execution time/memory consumption. Each principle is

explained detailed in [17].

The flexibility of FC allows taking advantage of bonded-

pairs complex association to generate structures

(implementations) with only majority gates and inverters.

In this paper, a majority function will represent a 3-input

majority gate function. The optimal factored form of a

majority function (MF) is expressed as:

cbcbacbamaj )(),,(

(1)

A method to compose a MF using Boolean functions needs

four logic operations, the same number of operators in the

Equation 1. Since all variables of MF are positive unate, there

is the necessity of inverters to represent negative unate and

binate variables in the functions. The MF is symmetric, thus

changing the order of inputs does not change the logic

function. If a MF has one of its variables assigned the constant

ZERO (ONE), it represents the logic function AND (OR). In

this sense, all functions can be represented with majority gates

and inverters.

Another interesting property of a MF is to be a self-dual

function. This property allows easy conversion from majority-

based circuits to minority-based circuits. If a majority gate has

the output negated, the majority gate acts as a minority gate. If

the minority gate has the inputs complemented, the minority

gate act as majority gate and vice-versa.

Considering all MF properties, the bonded-pair association

needs to be performed using three bonded-pairs. The circuit

structure (implementation) stores the majority gates and its

connections. This information is important, since it allows a

traverse backward in the structure, having control of all

criterions of the circuit that implements the function.

A. Logic Depth Approach

According to [11], the most important criterions to optimize

a majority gate circuit (in QCA) are (from most important to

least important): logic depth, majority gate count, gate inputs

and inverter count. Logic depth is the maximum number of

gates (in this algorithm, majority gates) a signal needs to

travel from the input to output. The logic depth is related to

the delay of a logic gate. The gate inputs is the number of

majority gate inputs that are not connected to constant ‘0’ or

constant ‘1’. Reducing gate input count makes the routing task

easier and should reduce the final area. These criterions are

adopted in this work. The partial order used is the logic depth,

considering only majority gates to compute the logic depth. If

there is a tie (two implementations representing the same

function with the same logic depth), the other criterions are

then used as tiebreakers.

B. Synthesizing a library

A library is a finite set of primitive logic gates, including

combinational, sequential (e.g. flip-flops) and interface (e.g.

drivers) elements. The interest in this work is only the

combinational part, where each element implements a

Boolean function. There are some papers that discuss

sequential elements as [14] and [15], but those elements are

not in the scope of this work.

It is interesting to have the maximum number of functions,

allowing flexibility in the technology mapping. The majority

gate based library is composed of cells implemented with

majority gates and inverters as primitive structure to represent

the Boolean functions.

In [11], Kong used an algorithm based on an initial set of

40 functions/implementations that need at most 1 majority

gate to implement. If the targeted function is not in this set,

the algorithm analysis all minterms to check if three functions

selected from the set can generate the target function. In the

worst case a 3-combination of all functions will be needed to

generate the resulting function. This can be computationally

costly and does not scale for 4 variables. The approach in this

work is the opposite. All function up to ‘n’ variables are

generated in one execution and can be stored in a look-up

table to be used afterwards, reducing greatly the

computational effort and allowing the algorithm scale up to 4

variables. Another difference is the use of Boolean functions

represented using a CPU word (an integer number, for

example), being faster than minterms traversal and

comparison. Further optimizations in the algorithm include

reducing the number of combinations using some logic depth

properties.

C. Library Results

The proposed algorithm generated all 4-input functions.

That is the first algorithm to synthesize functions with 4-

inputs minimally in logic depth. The results are not guaranteed

minimal for majority gate count. The “number of majority

gates” partial order approach will be implemented in a future

work to compare an optimal logic depth library and an optimal

majority gate count library.

The distribution of the majority gates is shown in Figure 22.

The histogram is shown in log scale for better visualization. It

is worth to mention that only the XOR4 and XNOR4 are the

only ones having logic depth equal 4. All functions can be

synthesized with 11 or less majority gates. The distribution of

logic depth in the 4-P and 4-NPN is shown in Figure 3. Only

XOR4 and XNOR4 need 4-depth, all others 3-depth or less.

Figure 2: Histogram for 4-input library, considering the number of majority

gates to implement the functions.

Figure 3: Histogram for 4-input library, considering the logic depth of the

functions.

D. MCNC Benchmark Results

The experimental results and a comparison to the other

methods are presented herein. The platform was an Intel Core

i5 processor with 2GB main memory. The benchmarks used

are MCNC [16].

The first step is to decompose and remove redundancies.

The decomposition and redundancy elimination scripts are

based in scripts presented in [11], with the main difference of

being decomposed in 4-feasible functions. After the

decomposition and elimination, there is a matching step,

which consists in search each 4-feasible function in a lookup

table. This lookup table is generated by the proposed

algorithm, containing all functions up to 4 inputs, and is used

to update the Boolean network with its implementation.

The experiments were conducted in 40 MCNC benchmarks

[16] in order to compare with [11] results. Unfortunately, it

was not possible to recreate the results from [11]. A reason is

that there is not an official repository for the benchmark. The

authors found at least three different versions of this

benchmark, all these versions providing different results.

Another possible reason is the version of SIS tool used in this

work, being different from the SIS used to create the results in

[11], probably affecting the decomposition algorithms and

impacting in the final circuit.

In order to have a fair comparison, the authors implemented

an in-house version of [11] and select one of the possible sets

for the MCNC benchmark suite. All decomposition methods

implemented by [11] were used and the best decomposition

for each benchmark was selected and compared with the best

result of [11]. According to this comparison, it is clear that the

benchmark description impacts greatly the final results, e.g.

the ‘k2’ benchmark, having a difference of 31,6%, -30,9% -

30,9% and -34,9% in levels (logic depth), majority count, gate

inputs and inverters, respectively. The ‘vda’ circuit have

similar results of ‘k2’ one. This turns impossible a fair

comparison of results, since the authors circuit description

differs greatly of [11].

Comparing two different libraries, 70% of the benchmarks

had a logic depth improvement, with gains up to 41.7% as

seen in i1 benchmark. Only one benchmark, the ‘9symml’

circuit had a slight worsening of 7.7% in logic depth. As the

algorithm proposed optimizes first logic depth, there is a

penalty in the other criterions. As expected, 50% of the

benchmarks have an increase in majority gate count, but there

are only 17.5% of these benchmarks with a majority gate

count increase greater than 10%. Optimizing a circuit without

reducing logic depth is possible, as seen in ‘cht’ benchmark,

reducing 16.6%, 16.2% and 79.6% in majority gate count,

gate inputs and inverters respectively. Reducing logic depth

and majority gate count at same time is not uncommon,

occurring in 30% of the benchmarks.

IV. CONCLUSIONS

In this paper, an algorithm was introduced for synthesizing

circuits using only majority gates and inverters, suitable for

use in new technologies, as QCA, SET and TPL. This

algorithm generates the optimal structure of majority gates,

given a function and can generate a library in an automated

way, using the functional composition paradigm. All

techniques in the literature can only handle 3-input functions

and this algorithm can handle 4-inputs. The results in MCNC

show that there is a significant reduction up to 41.7%, 19.6%,

16.2% and 79.6%, in logic depth, majority gate count, gate

inputs and inverters, respectively.

ACKNOWLEDGMENT

Research funded by the Brazilian funding agencies CAPES,

CNPq and FAPERGS, under grant 11/2053-9 (Pronem), and

by the European Community’s Seventh Framework

Programme under grant 248538-Synaptic.

REFERENCES.

[1] C. S. Lent, P. D. Tougaw, W. Porod and G. H. Bernstein, “Quantum
cellular automata”, Nanotechnology vol 4 pp.49, 1993.

[2] H. A. H. Faluny, and R. A. Kiehl, “Complete logic family using

tunneling-phase-logic devices”, Microelectronics, 1999. ICM '99. The
Eleventh International Conference on , vol., no., pp. 153- 156, 22-24

Nov. 1999

[3] D. V. Averin and K. K. Likharev,. “Coulomb blockade of single-
electron tunneling, and coherent oscillations in small tunnel junctions”,

Journal of Low Temperature Physics, vol. 62, pp. 345-373, Fev. 1986.

[4] R. Zhang, P. Gupta and N. K. Jha, “Synthesis of Majority and
Minority Networks and Its Applications to QCA, TPL and SET Based

Nanotechnologies”, Proceedings of the 18th International Conference

on VLSI Design 2005 pp. 229- 234.
[5] H. S. Miller and R. O. Winder. “Majority logic synthesis by geometric

methods”, IRE Trans. Electron. Comput., vol. EC-11, no. 1, pp. 89–90,

Feb. 1962.
[6] S. Muroga, “Threshold logic and its applications”. Wiley Interscience,

New York, 1971.

[7] R. K. Brayton,, A. L. Sangiovanni-Vincentelli, C. T. McMullen and G.
D. Hachtel. “Logic Minimization Algorithms for VLSI Synthesis”.

Kluwer Academic Publishers, Norwell, MA, USA. 1984.

[8] M. G. A. Martins, V. Callegaro, L. Machado, R. P. Ribas and A. I. Reis,
“Functional Composition Paradigm and Applications”. International

Workshop on Logic and Synthesis (IWLS’2012). Berkeley, CA. 2012

[9] R. Zhang, K. Walus, K., W. Wang and G. A. Jullien, “A method of
majority logic reduction for quantum cellular automata”, IEEE

Transactions on Nanotechnology, vol.3, no.4, pp. 443- 450, 2004.

[10] M. Momenzadeh, J. Huang and M. B. Tahoori and F. Lombardi,
“Characterization, test, and logic synthesis of and-or-inverter (AOI)

gate design for QCA implementation”, IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol.24,
no.12, pp. 1881- 1893, 2005.

[11] K. Kong, Y. Shang and L. Ruqian, “An Optimized majority Logic
Synthesis Methodology for Quantum-Dot Cellular Automata,

Nanotechnology”, IEEE Transactions on , vol.9, no.2, pp.170-183,

March 2010
[12] S. B. Akers, “Synthesis of combinational logic using three-input

majority gates”, in Proc. 3rd Annu. Symp. Switching Circuit Theory

and Logical Des., Oct. 1962, pp. 149–157.
[13] S. Chatterjee, A. Mishchenko, R. Brayton, X. Wang, T. Kam,

“Reducing structural bias in technology mapping”, ICCAD-2005, pp.

519- 526.
[14] M. Torabi, “A new architecture for T flip flop using quantum-dot

cellular automata”, (ASQED), vol., no., pp.296-300, 19-20 July 2011

[15] S. Hashemi, K. Navi, “New robust QCA D flip flop and memory
structures”, Microelectronics Journal, Volume 43, Issue 12, December

2012, Pages 929-940

[16] R. Lisanke; “Logic synthesis and optimization benchmarks”,
Microelectron. Center North Carolina, Research Triangle Park, NC,

Tech. Rep., 1988

[17] M.G.A. Martins, R. P. Ribas, A. I. Reis,, "Functional composition: A
new paradigm for performing logic synthesis," Quality Electronic

Design (ISQED), 2012 13th International Symposium on , vol., no.,

pp.236,242, 19-21 March 2012

