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Abstract — CMOS technology scaling is reaching its physical 

limits, and new nanometric devices are being considered. Some 

of these technologies, such as quantum cellular automata (QCA), 

single electron tunneling (SET) and tunneling phase logic (TPL), 

use the majority voter and inverter as basic Boolean primitive 

elements. Commercial tools seem to be not able to synthesize 

circuits efficiently using only majority gates and inverters. In 

order to overcome this bottleneck, we propose a new approach 

that is able to generate cell libraries with up to 4-input Boolean 

functions using only majority and inverter gates. Previous 

approaches can only build libraries with up to 3-input Boolean 

functions. Experimental results over MCNC benchmarks have 

demonstrated that there is a significant reduction up to 41.7%, 

19.6%, 16.2% and 79.6%, in logic depth, majority gate count, 

gate inputs and inverters, respectively, compared to the existing 

methods. 

 

Keywords — Functional composition, digital circuits, QCA, 

majority gate, cell library, logic gates. 

I. INTRODUCTION 

The complementary metal-oxide semiconductor (CMOS) 

technology is reaching its physical limits. There are many 

challenges, as short channel effect, variability and even the 

difficulty to create masks at nano-scale. There are new 

candidates to replace the CMOS technology, such as quantum 

cellular automata (QCA) [1]. QCA can be used to design 

general-purpose computational and memory circuits, and it is 

expected to achieve high device density, extremely low power 

consumption, and very high switching speed. Tunneling phase 

logic (TPL) [2] and single electron tunneling (SET) [3] are 

also good candidates to replace the current CMOS technology. 

Those technologies are illustrated in Fig. 1. 

All such technologies use majority gates as primitive logic 

elements. A majority gate is a simplified version of a 

threshold logic gate, where the input weights have the same 

value and the output goes to ‘1’ when more than a half of 

inputs presents the logic level ‘1’. The output goes to ‘0’, 

otherwise. A minority gate is the complemented version of a 

majority gate. The basic logic elements in these technologies 

are the inverters, common for all technologies (QCA, SET, 

TPL), and the majority gate for QCA and the minority gate for 

SET and TPL. 

 
Figure 1: QCA majority gate (a), TPL minority gate (b), and SET minority 

gate (c) [4]. 

The majority logic synthesis is a sub-area from the 

threshold logic synthesis. Threshold logic synthesis research 

dates back to 1960’s when Akers [12], Miller and Winder [5] 

and Muroga [6] employed several logic synthesis methods and 

techniques to generate threshold/majority gate circuits 

efficiently. Modern logic synthesis algorithms start from 2-

level expressions (that can be generated by tools such as 

ESPRESSO [7]) represented as sum-of-products (SOP) or 

product-of-sums (POS) to generate a reduced factored 

expression. Factored expressions are used to reduce the final 

area of the circuit. Unfortunately, the SOP/POS cannot be 

used to effectively generate majority circuits due to the lack of 

algorithms that efficiently convert a two level expression in a 

majority circuit. In this sense, it is critical an efficient 

technique to synthesize circuits using majority gates as 

primitive elements, in order to enable further development of 

QCA, SET, TPL, and other emergent technologies.  

This paper explores the Functional Composition (FC) 

paradigm [8] to generate a library to synthesize circuits using 

only majority gates and inverters as primitive logic elements. 

There are two possible approaches for circuit synthesis using 

majority gates: using or not a cell library to aid the circuit 

synthesis. This paper addresses a cell library based technique. 

The cell-library based technique is an interesting approach, 

since there are several commercial tools that perform 

technology mapping exploiting the such methodology. In this 



sense, almost all synthesis flow can be maintained, with only 

minor adjustments. Unfortunately, there is no algorithm 

capable of generating optimal synthesis for functions with 

more than 3 inputs. This paper proposes a novel technique to 

generate a library having optimal cells with up to 4-input 

functions.  

II. RELATED WORK 

Recently, some majority logic reduction methods targeting 

QCA, TPL and SET circuits have been proposed. All these 

technologies use majority or minority gates as primitive 

elements. 

In [9], Zhang et al. pointed out a set of 13 functions of 3 

variables implemented using only majority gates and inverters. 

This set is also the set of functions called 3-NPN. A NPN set 

is a class of functions equivalent to each other, considering the 

permutation of its inputs, complementation (negation) of its 

inputs, and/or inversion (negation) of its output. This set aims 

to reduce the hardware requirements for a QCA design, 

working as a cell library, but the 13 cells implementing the set 

of 3-NPN class of functions are not in minimal form, i.e., the 

minimal number of majority gates. 

In [4], Zhang et al. proposed a different flow. First of all, 

the circuit is decomposed in subcircuits having 3 or less inputs, 

and each subcircuit is optimized using factoring algorithms to 

synthesize the functions, instead of using a cell library. 

However, in the most of time the algorithm convert AND/OR 

gates from a factored expression to majority gates, which can 

negatively impact the total number of majority gates in a 

circuit.  

Momenzadeh et al., in [10], optimized two functions of [9] 

that were not implemented in minimal number of majority 

gates, and proposed an And-Or-Inverter (AOI) structure 

composed by 2 majority gates connected in series to reduce 

even more the number of majority gates present in a circuit.  

In [11], Kong et al., in turn, improved the library provided 

in [9], ensuring and proving optimality for 3 variable 

functions. The algorithm is divided in three steps. The first is 

a decomposition of the circuit in Boolean networks having at 

most three inputs. The second step is the matching, generating 

best implementations for each Boolean network. The last step 

is a post-optimization, eliminating Boolean networks that have 

the same complemented or uncomplemented functions. 

However, those methods only support three variable 

Boolean functions. In order to synthesize arbitrary multi-

variable Boolean functions, a QCA majority synthesis 

methodology was introduced in [9]. In majority logic 

synthesis, there are still some important aspects that have not 

been solved or considered by the existing methods [4-6][9-12]. 

For instance, those methods are not capable to generate 

optimal structures with majority gates with more than 3 

variables. The 4-NPN function class has 222 functions, and 

the 4-P function class has 3984 functions, so making the 

generation of these libraries unfeasible without computational 

aiding. For this reason, it is important to have available an 

automated method which can synthesize more than 3 inputs. 

Table I compares the previous works and the majority-

based circuit synthesis algorithm proposed in this paper. The 

column “Majority generation” indicates how the algorithm 

performs the circuit, or by real time synthesis or using a 

library to perform technology mapping. It is interesting to use 

a library, since the generation of the cells is a pre-computation 

effort, saving CPU time in the synthesis flow. The column 

“Allowed templates” shows the allowed primitive elements 

(beside inverters) in the method. 

TABLE I: COMPARISON BETWEEN MAJORITY-BASED SYNTHESIS ALGORITHMS. 

Method Exactness Max inputs 
Allowed 

templates 

Majority 

generation 

[9] heuristic 3 MAJ library 

[10] exact 3 MAJ,AOI library 

[4] heuristic 3 MAJ,MIN synthesis 

[11] exact 3 MAJ,MIN synthesis 

This paper exact 4 any library 

III. MAJORITY-BASED LIBRARY GENERATION 

Functional Composition (FC) [8] is a novel synthesis 

paradigm that performs bottom-up association of Boolean 

functions as opposed to the top-down functional 

decomposition approach. By performing such a bottom-up 

approach, the costs of initial functions are necessarily known, 

the logic operations are simple, the subfunctions have sub-

optimal and optimal implementations, and a control cost can 

be easily set. 

The FC paradigm is based on some general principles. 

These principles include the use of bonded-pair representation, 

the use of initial functions set, the association between simple 

functions to create more complex functions, the control of 

costs achieved by using a partial order that enables dynamic 

programming, and the restriction of allowed functions to 

reduce execution time/memory consumption. Each principle is 

explained detailed in [17]. 

The flexibility of FC allows taking advantage of bonded-

pairs complex association to generate structures 

(implementations) with only majority gates and inverters.  

In this paper, a majority function will represent a 3-input 

majority gate function. The optimal factored form of a 

majority function (MF) is expressed as: 

cbcbacbamaj  )(),,(
 

(1) 

A method to compose a MF using Boolean functions needs 

four logic operations, the same number of operators in the 

Equation 1. Since all variables of MF are positive unate, there 

is the necessity of inverters to represent negative unate and 

binate variables in the functions. The MF is symmetric, thus 

changing the order of inputs does not change the logic 

function. If a MF has one of its variables assigned the constant 

ZERO (ONE), it represents the logic function AND (OR). In 

this sense, all functions can be represented with majority gates 

and inverters.  

Another interesting property of a MF is to be a self-dual 

function. This property allows easy conversion from majority-

based circuits to minority-based circuits. If a majority gate has 



the output negated, the majority gate acts as a minority gate. If 

the minority gate has the inputs complemented, the minority 

gate act as majority gate and vice-versa.  

Considering all MF properties, the bonded-pair association 

needs to be performed using three bonded-pairs. The circuit 

structure (implementation) stores the majority gates and its 

connections. This information is important, since it allows a 

traverse backward in the structure, having control of all 

criterions of the circuit that implements the function. 

A. Logic Depth Approach 

According to [11], the most important criterions to optimize 

a majority gate circuit (in QCA) are (from most important to 

least important): logic depth, majority gate count, gate inputs 

and inverter count. Logic depth is the maximum number of 

gates (in this algorithm, majority gates) a signal needs to 

travel from the input to output. The logic depth is related to 

the delay of a logic gate. The gate inputs is the number of 

majority gate inputs that are not connected to constant ‘0’ or 

constant ‘1’. Reducing gate input count makes the routing task 

easier and should reduce the final area. These criterions are 

adopted in this work. The partial order used is the logic depth, 

considering only majority gates to compute the logic depth. If 

there is a tie (two implementations representing the same 

function with the same logic depth), the other criterions are 

then used as tiebreakers. 

B. Synthesizing a library 

A library is a finite set of primitive logic gates, including 

combinational, sequential (e.g. flip-flops) and interface (e.g. 

drivers) elements. The interest in this work is only the 

combinational part, where each element implements a 

Boolean function. There are some papers that discuss 

sequential elements as [14] and [15], but those elements are 

not in the scope of this work. 

It is interesting to have the maximum number of functions, 

allowing flexibility in the technology mapping. The majority 

gate based library is composed of cells implemented with 

majority gates and inverters as primitive structure to represent 

the Boolean functions. 

In [11], Kong used an algorithm based on an initial set of 

40 functions/implementations that need at most 1 majority 

gate to implement. If the targeted function is not in this set, 

the algorithm analysis all minterms to check if three functions 

selected from the set can generate the target function. In the 

worst case a 3-combination of all functions will be needed to 

generate the resulting function. This can be computationally 

costly and does not scale for 4 variables. The approach in this 

work is the opposite. All function up to ‘n’ variables are 

generated in one execution and can be stored in a look-up 

table to be used afterwards, reducing greatly the 

computational effort and allowing the algorithm scale up to 4 

variables. Another difference is the use of Boolean functions 

represented using a CPU word (an integer number, for 

example), being faster than minterms traversal and 

comparison. Further optimizations in the algorithm include 

reducing the number of combinations using some logic depth 

properties. 

C. Library Results 

The proposed algorithm generated all 4-input functions. 

That is the first algorithm to synthesize functions with 4-

inputs minimally in logic depth. The results are not guaranteed 

minimal for majority gate count. The “number of majority 

gates” partial order approach will be implemented in a future 

work to compare an optimal logic depth library and an optimal 

majority gate count library. 

The distribution of the majority gates is shown in Figure 22. 

The histogram is shown in log scale for better visualization. It 

is worth to mention that only the XOR4 and XNOR4 are the 

only ones having logic depth equal 4. All functions can be 

synthesized with 11 or less majority gates. The distribution of 

logic depth in the 4-P and 4-NPN is shown in Figure 3. Only 

XOR4 and XNOR4 need 4-depth, all others 3-depth or less. 

 
Figure 2: Histogram for 4-input library, considering the number of majority 

gates to implement the functions. 

 

Figure 3: Histogram for 4-input library, considering the logic depth of the 

functions. 

D. MCNC Benchmark Results 

The experimental results and a comparison to the other 

methods are presented herein. The platform was an Intel Core 

i5 processor with 2GB main memory. The benchmarks used 

are MCNC [16]. 

The first step is to decompose and remove redundancies. 

The decomposition and redundancy elimination scripts are 

based in scripts presented in [11], with the main difference of 

being decomposed in 4-feasible functions. After the 

decomposition and elimination, there is a matching step, 



which consists in search each 4-feasible function in a lookup 

table. This lookup table is generated by the proposed 

algorithm, containing all functions up to 4 inputs, and is used 

to update the Boolean network with its implementation. 

The experiments were conducted in 40 MCNC benchmarks 

[16] in order to compare with [11] results. Unfortunately, it 

was not possible to recreate the results from [11]. A reason is 

that there is not an official repository for the benchmark. The 

authors found at least three different versions of this 

benchmark, all these versions providing different results. 

Another possible reason is the version of SIS tool used in this 

work, being different from the SIS used to create the results in 

[11], probably affecting the decomposition algorithms and 

impacting in the final circuit. 

In order to have a fair comparison, the authors implemented 

an in-house version of [11] and select one of the possible sets 

for the MCNC benchmark suite. All decomposition methods 

implemented by [11] were used and the best decomposition 

for each benchmark was selected and compared with the best 

result of [11]. According to this comparison, it is clear that the 

benchmark description impacts greatly the final results, e.g. 

the ‘k2’ benchmark, having a difference of 31,6%, -30,9% -

30,9% and -34,9% in levels (logic depth), majority count, gate 

inputs and inverters, respectively. The ‘vda’ circuit have 

similar results of ‘k2’ one. This turns impossible a fair 

comparison of results, since the authors circuit description 

differs greatly of [11]. 

Comparing two different libraries, 70% of the benchmarks 

had a logic depth improvement, with gains up to 41.7% as 

seen in i1 benchmark. Only one benchmark, the ‘9symml’ 

circuit had a slight worsening of 7.7% in logic depth. As the 

algorithm proposed optimizes first logic depth, there is a 

penalty in the other criterions. As expected, 50% of the 

benchmarks have an increase in majority gate count, but there 

are only 17.5% of these benchmarks with a majority gate 

count increase greater than 10%. Optimizing a circuit without 

reducing logic depth is possible, as seen in ‘cht’ benchmark, 

reducing 16.6%, 16.2% and 79.6% in majority gate count, 

gate inputs and inverters respectively. Reducing logic depth 

and majority gate count at same time is not uncommon, 

occurring in 30% of the benchmarks. 

IV. CONCLUSIONS 

In this paper, an algorithm was introduced for synthesizing 

circuits using only majority gates and inverters, suitable for 

use in new technologies, as QCA, SET and TPL. This 

algorithm generates the optimal structure of majority gates, 

given a function and can generate a library in an automated 

way, using the functional composition paradigm. All 

techniques in the literature can only handle 3-input functions 

and this algorithm can handle 4-inputs. The results in MCNC 

show that there is a significant reduction up to 41.7%, 19.6%, 

16.2% and 79.6%, in logic depth, majority gate count, gate 

inputs and inverters, respectively. 
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