Majority-based Library Generation for
QCA, SET and TPL Technologies

Mayler G. A. Martins?, Vinicius Callegaro®,Stephano Goncalves®, Melissa Colvara®, Leomar S. da Rosa Jr. *,

Felipe de Souza Marques® André I. Reis"?, Renato P. Ribas"?

'PPGC / PGMICRO, Institute of Informatics, UFRGS, Porto Alegre, RS, Brazil
®Group of Architectures and Integrated Circuits UFPEL, Pelotas, RS, Brazil

{mgamartins,vcallegaro, rpribas,andreis}@inf.ufrgs.br

{smmgoncalves,mcolvara, leomarjr, felipem}@inf.ufpel.edu.br

Abstract — CMOS technology scaling is reaching its physical
limits, and new nanometric devices are being considered. Some
of these technologies, such as quantum cellular automata (QCA),
single electron tunneling (SET) and tunneling phase logic (TPL),
use the majority voter and inverter as basic Boolean primitive
elements. Commercial tools seem to be not able to synthesize
circuits efficiently using only majority gates and inverters. In
order to overcome this bottleneck, we propose a new approach
that is able to generate cell libraries with up to 4-input Boolean
functions using only majority and inverter gates. Previous
approaches can only build libraries with up to 3-input Boolean
functions. Experimental results over MCNC benchmarks have
demonstrated that there is a significant reduction up to 41.7%,
19.6%, 16.2% and 79.6%o, in logic depth, majority gate count,
gate inputs and inverters, respectively, compared to the existing
methods.

Keywords — Functional composition, digital circuits, QCA,
majority gate, cell library, logic gates.

I. INTRODUCTION

The complementary metal-oxide semiconductor (CMOS)
technology is reaching its physical limits. There are many
challenges, as short channel effect, variability and even the
difficulty to create masks at nano-scale. There are new
candidates to replace the CMOS technology, such as quantum
cellular automata (QCA) [1]. QCA can be used to design
general-purpose computational and memory circuits, and it is
expected to achieve high device density, extremely low power
consumption, and very high switching speed. Tunneling phase
logic (TPL) [2] and single electron tunneling (SET) [3] are
also good candidates to replace the current CMOS technology.
Those technologies are illustrated in Fig. 1.

All such technologies use majority gates as primitive logic
elements. A majority gate is a simplified version of a
threshold logic gate, where the input weights have the same
value and the output goes to ‘1’ when more than a half of
inputs presents the logic level ‘1°. The output goes to ‘0’,
otherwise. A minority gate is the complemented version of a
majority gate. The basic logic elements in these technologies
are the inverters, common for all technologies (QCA, SET,
TPL), and the majority gate for QCA and the minority gate for
SET and TPL.

st A Davica [+
= 0 cell

. 0231 lj, | Cloez
Ingut B W

[+
"Rz = | b

.
S
Input © " Pume
{a] {21
Inputs b
vt J_f;/ﬂodc o
ve—iE £ tormind
Wz —]| [*] "*ouq:_.ul
ol coparitor
Input O ModaZ
capanitor

ic)

Figure 1: QCA majority gate (a), TPL minority gate (b), and SET minority
gate (c) [4].

The majority logic synthesis is a sub-area from the
threshold logic synthesis. Threshold logic synthesis research
dates back to 1960’s when Akers [12], Miller and Winder [5]
and Muroga [6] employed several logic synthesis methods and
techniques to generate threshold/majority gate circuits
efficiently. Modern logic synthesis algorithms start from 2-
level expressions (that can be generated by tools such as
ESPRESSO [7]) represented as sum-of-products (SOP) or
product-of-sums (POS) to generate a reduced factored
expression. Factored expressions are used to reduce the final
area of the circuit. Unfortunately, the SOP/POS cannot be
used to effectively generate majority circuits due to the lack of
algorithms that efficiently convert a two level expression in a
majority circuit. In this sense, it is critical an efficient
technique to synthesize circuits using majority gates as
primitive elements, in order to enable further development of
QCA, SET, TPL, and other emergent technologies.

This paper explores the Functional Composition (FC)
paradigm [8] to generate a library to synthesize circuits using
only majority gates and inverters as primitive logic elements.
There are two possible approaches for circuit synthesis using
majority gates: using or not a cell library to aid the circuit
synthesis. This paper addresses a cell library based technique.
The cell-library based technique is an interesting approach,
since there are several commercial tools that perform
technology mapping exploiting the such methodology. In this

sense, almost all synthesis flow can be maintained, with only
minor adjustments. Unfortunately, there is no algorithm
capable of generating optimal synthesis for functions with
more than 3 inputs. This paper proposes a novel technique to
generate a library having optimal cells with up to 4-input
functions.

Il. RELATED WORK

Recently, some majority logic reduction methods targeting
QCA, TPL and SET circuits have been proposed. All these
technologies use majority or minority gates as primitive
elements.

In [9], Zhang et al. pointed out a set of 13 functions of 3
variables implemented using only majority gates and inverters.
This set is also the set of functions called 3-NPN. A NPN set
is a class of functions equivalent to each other, considering the
permutation of its inputs, complementation (negation) of its
inputs, and/or inversion (negation) of its output. This set aims
to reduce the hardware requirements for a QCA design,
working as a cell library, but the 13 cells implementing the set
of 3-NPN class of functions are not in minimal form, i.e., the
minimal number of majority gates.

In [4], Zhang et al. proposed a different flow. First of all,
the circuit is decomposed in subcircuits having 3 or less inputs,
and each subcircuit is optimized using factoring algorithms to
synthesize the functions, instead of using a cell library.
However, in the most of time the algorithm convert AND/OR
gates from a factored expression to majority gates, which can
negatively impact the total number of majority gates in a
circuit.

Momenzadeh et al., in [10], optimized two functions of [9]
that were not implemented in minimal number of majority
gates, and proposed an And-Or-Inverter (AOI) structure
composed by 2 majority gates connected in series to reduce
even more the number of majority gates present in a circuit.

In [11], Kong et al., in turn, improved the library provided
in [9], ensuring and proving optimality for 3 variable
functions. The algorithm is divided in three steps. The first is
a decomposition of the circuit in Boolean networks having at
most three inputs. The second step is the matching, generating
best implementations for each Boolean network. The last step
is a post-optimization, eliminating Boolean networks that have
the same complemented or uncomplemented functions.

However, those methods only support three variable
Boolean functions. In order to synthesize arbitrary multi-
variable Boolean functions, a QCA majority synthesis
methodology was introduced in [9]. In majority logic
synthesis, there are still some important aspects that have not
been solved or considered by the existing methods [4-6][9-12].
For instance, those methods are not capable to generate
optimal structures with majority gates with more than 3
variables. The 4-NPN function class has 222 functions, and
the 4-P function class has 3984 functions, so making the
generation of these libraries unfeasible without computational
aiding. For this reason, it is important to have available an
automated method which can synthesize more than 3 inputs.

Table | compares the previous works and the majority-
based circuit synthesis algorithm proposed in this paper. The
column “Majority generation” indicates how the algorithm
performs the circuit, or by real time synthesis or using a
library to perform technology mapping. It is interesting to use
a library, since the generation of the cells is a pre-computation
effort, saving CPU time in the synthesis flow. The column
“Allowed templates” shows the allowed primitive elements
(beside inverters) in the method.

TABLE |: COMPARISON BETWEEN MAJORITY-BASED SYNTHESIS ALGORITHMS.

Method Exactness Max inputs Allowed Majorl_ty
templates generation
[9] heuristic 3 MAJ library
[10] exact 3 MAJ,AOI library
[4] heuristic 3 MAJ,MIN synthesis
[11] exact 3 MAJ,MIN synthesis
This paper exact 4 any library

111. MAJORITY-BASED LIBRARY GENERATION

Functional Composition (FC) [8] is a novel synthesis
paradigm that performs bottom-up association of Boolean
functions as opposed to the top-down functional
decomposition approach. By performing such a bottom-up
approach, the costs of initial functions are necessarily known,
the logic operations are simple, the subfunctions have sub-
optimal and optimal implementations, and a control cost can
be easily set.

The FC paradigm is based on some general principles.
These principles include the use of bonded-pair representation,
the use of initial functions set, the association between simple
functions to create more complex functions, the control of
costs achieved by using a partial order that enables dynamic
programming, and the restriction of allowed functions to
reduce execution time/memory consumption. Each principle is
explained detailed in [17].

The flexibility of FC allows taking advantage of bonded-
pairs complex association to generate structures
(implementations) with only majority gates and inverters.

In this paper, a majority function will represent a 3-input
majority gate function. The optimal factored form of a
majority function (MF) is expressed as:

maj(a,b,c)=a-(b+c)+b-c (1)

A method to compose a MF using Boolean functions needs
four logic operations, the same number of operators in the
Equation 1. Since all variables of MF are positive unate, there
is the necessity of inverters to represent negative unate and
binate variables in the functions. The MF is symmetric, thus
changing the order of inputs does not change the logic
function. If a MF has one of its variables assigned the constant
ZERO (ONE), it represents the logic function AND (OR). In
this sense, all functions can be represented with majority gates
and inverters.

Another interesting property of a MF is to be a self-dual
function. This property allows easy conversion from majority-
based circuits to minority-based circuits. If a majority gate has

the output negated, the majority gate acts as a minority gate. If
the minority gate has the inputs complemented, the minority
gate act as majority gate and vice-versa.

Considering all MF properties, the bonded-pair association
needs to be performed using three bonded-pairs. The circuit
structure (implementation) stores the majority gates and its
connections. This information is important, since it allows a
traverse backward in the structure, having control of all
criterions of the circuit that implements the function.

A. Logic Depth Approach

According to [11], the most important criterions to optimize
a majority gate circuit (in QCA) are (from most important to
least important): logic depth, majority gate count, gate inputs
and inverter count. Logic depth is the maximum number of
gates (in this algorithm, majority gates) a signal needs to
travel from the input to output. The logic depth is related to
the delay of a logic gate. The gate inputs is the number of
majority gate inputs that are not connected to constant ‘0’ or
constant ‘1°. Reducing gate input count makes the routing task
easier and should reduce the final area. These criterions are
adopted in this work. The partial order used is the logic depth,
considering only majority gates to compute the logic depth. If
there is a tie (two implementations representing the same
function with the same logic depth), the other criterions are
then used as tiebreakers.

B. Synthesizing a library

A library is a finite set of primitive logic gates, including
combinational, sequential (e.g. flip-flops) and interface (e.g.
drivers) elements. The interest in this work is only the
combinational part, where each element implements a
Boolean function. There are some papers that discuss
sequential elements as [14] and [15], but those elements are
not in the scope of this work.

It is interesting to have the maximum number of functions,
allowing flexibility in the technology mapping. The majority
gate based library is composed of cells implemented with
majority gates and inverters as primitive structure to represent
the Boolean functions.

In [11], Kong used an algorithm based on an initial set of
40 functions/implementations that need at most 1 majority
gate to implement. If the targeted function is not in this set,
the algorithm analysis all minterms to check if three functions
selected from the set can generate the target function. In the
worst case a 3-combination of all functions will be needed to
generate the resulting function. This can be computationally
costly and does not scale for 4 variables. The approach in this
work is the opposite. All function up to ‘n’ variables are
generated in one execution and can be stored in a look-up
table to be wused afterwards, reducing greatly the
computational effort and allowing the algorithm scale up to 4
variables. Another difference is the use of Boolean functions
represented using a CPU word (an integer number, for
example), being faster than minterms traversal and
comparison. Further optimizations in the algorithm include
reducing the number of combinations using some logic depth
properties.

C. Library Results

The proposed algorithm generated all 4-input functions.
That is the first algorithm to synthesize functions with 4-
inputs minimally in logic depth. The results are not guaranteed
minimal for majority gate count. The “number of majority
gates” partial order approach will be implemented in a future
work to compare an optimal logic depth library and an optimal
majority gate count library.

The distribution of the majority gates is shown in Figure 22.
The histogram is shown in log scale for better visualization. It
is worth to mention that only the XOR4 and XNOR4 are the
only ones having logic depth equal 4. All functions can be
synthesized with 11 or less majority gates. The distribution of
logic depth in the 4-P and 4-NPN is shown in Figure 3. Only
XOR4 and XNOR4 need 4-depth, all others 3-depth or less.

16384

4056
1024 A

256 -
B Maj. Count

54

16 A

o 1 2 3 4 5 6 7 8 & 10 11

Figure 2: Histogram for 4-input library, considering the number of majority
gates to implement the functions.

65536

15384

4086
1024
256
B Logic Depth
64
16
) :.
, -
o 1 2 3 4

Figure 3: Histogram for 4-input library, considering the logic depth of the
functions.

D. MCNC Benchmark Results

The experimental results and a comparison to the other
methods are presented herein. The platform was an Intel Core
i5 processor with 2GB main memory. The benchmarks used
are MCNC [16].

The first step is to decompose and remove redundancies.
The decomposition and redundancy elimination scripts are
based in scripts presented in [11], with the main difference of
being decomposed in 4-feasible functions. After the
decomposition and elimination, there is a matching step,

which consists in search each 4-feasible function in a lookup
table. This lookup table is generated by the proposed
algorithm, containing all functions up to 4 inputs, and is used
to update the Boolean network with its implementation.

The experiments were conducted in 40 MCNC benchmarks
[16] in order to compare with [11] results. Unfortunately, it
was not possible to recreate the results from [11]. A reason is
that there is not an official repository for the benchmark. The
authors found at least three different wversions of this
benchmark, all these versions providing different results.
Another possible reason is the version of SIS tool used in this
work, being different from the SIS used to create the results in
[11], probably affecting the decomposition algorithms and
impacting in the final circuit.

In order to have a fair comparison, the authors implemented
an in-house version of [11] and select one of the possible sets
for the MCNC benchmark suite. All decomposition methods
implemented by [11] were used and the best decomposition
for each benchmark was selected and compared with the best
result of [11]. According to this comparison, it is clear that the
benchmark description impacts greatly the final results, e.g.
the ‘k2’ benchmark, having a difference of 31,6%, -30,9% -
30,9% and -34,9% in levels (logic depth), majority count, gate
inputs and inverters, respectively. The ‘vda’ circuit have
similar results of ‘k2’ one. This turns impossible a fair
comparison of results, since the authors circuit description
differs greatly of [11].

Comparing two different libraries, 70% of the benchmarks
had a logic depth improvement, with gains up to 41.7% as
seen in il benchmark. Only one benchmark, the ‘9symml’
circuit had a slight worsening of 7.7% in logic depth. As the
algorithm proposed optimizes first logic depth, there is a
penalty in the other criterions. As expected, 50% of the
benchmarks have an increase in majority gate count, but there
are only 17.5% of these benchmarks with a majority gate
count increase greater than 10%. Optimizing a circuit without
reducing logic depth is possible, as seen in ‘cht” benchmark,
reducing 16.6%, 16.2% and 79.6% in majority gate count,
gate inputs and inverters respectively. Reducing logic depth
and majority gate count at same time is not uncommon,
occurring in 30% of the benchmarks.

1V. CONCLUSIONS

In this paper, an algorithm was introduced for synthesizing
circuits using only majority gates and inverters, suitable for
use in new technologies, as QCA, SET and TPL. This
algorithm generates the optimal structure of majority gates,
given a function and can generate a library in an automated
way, using the functional composition paradigm. All
techniques in the literature can only handle 3-input functions
and this algorithm can handle 4-inputs. The results in MCNC
show that there is a significant reduction up to 41.7%, 19.6%,
16.2% and 79.6%, in logic depth, majority gate count, gate
inputs and inverters, respectively.

ACKNOWLEDGMENT

Research funded by the Brazilian funding agencies CAPES,
CNPq and FAPERGS, under grant 11/2053-9 (Pronem), and
by the European Community’s Seventh Framework
Programme under grant 248538-Synaptic.

REFERENCES.

[1] C.S. Lent, P. D. Tougaw, W. Porod and G. H. Bernstein, “Quantum
cellular automata”, Nanotechnology vol 4 pp.49, 1993.

[2] H. A H. Faluny, and R. A. Kiehl, “Complete logic family using
tunneling-phase-logic devices”, Microelectronics, 1999. ICM '99. The
Eleventh International Conference on , vol., no., pp. 153- 156, 22-24
Nov. 1999

[31 D. V. Averin and K. K. Likharev,. “Coulomb blockade of single-
electron tunneling, and coherent oscillations in small tunnel junctions”,
Journal of Low Temperature Physics, vol. 62, pp. 345-373, Fev. 1986.

[4] R. Zhang, P. Gupta and N. K. Jha, “Synthesis of Majority and
Minority Networks and Its Applications to QCA, TPL and SET Based
Nanotechnologies”, Proceedings of the 18th International Conference
on VLSI Design 2005 pp. 229- 234.

[5] H.S. Miller and R. O. Winder. “Majority logic synthesis by geometric
methods”, IRE Trans. Electron. Comput., vol. EC-11, no. 1, pp. 89-90,
Feb. 1962.

[6] S. Muroga, “Threshold logic and its applications”. Wiley Interscience,
New York, 1971.

[71 R. K. Brayton,, A. L. Sangiovanni-Vincentelli, C. T. McMullen and G.
D. Hachtel. “Logic Minimization Algorithms for VLSI Synthesis”.
Kluwer Academic Publishers, Norwell, MA, USA. 1984.

[8] M. G. A Martins, V. Callegaro, L. Machado, R. P. Ribas and A. I. Reis,
“Functional Composition Paradigm and Applications”. International
Workshop on Logic and Synthesis (IWLS’2012). Berkeley, CA. 2012

[91 R. Zhang, K. Walus, K., W. Wang and G. A. Jullien, “A method of

majority logic reduction for quantum cellular automata”, IEEE

Transactions on Nanotechnology, vol.3, no.4, pp. 443- 450, 2004.

M. Momenzadeh, J. Huang and M. B. Tahoori and F. Lombardi,

“Characterization, test, and logic synthesis of and-or-inverter (AOI)

gate design for QCA implementation”, IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, vol.24,

no.12, pp. 1881- 1893, 2005.

K. Kong, Y. Shang and L. Rugian, “An Optimized majority Logic

Synthesis Methodology for Quantum-Dot Cellular Automata,

Nanotechnology”, IEEE Transactions on , vol.9, no.2, pp.170-183,

March 2010

S. B. Akers, “Synthesis of combinational logic using three-input

majority gates”, in Proc. 3rd Annu. Symp. Switching Circuit Theory

and Logical Des., Oct. 1962, pp. 149-157.

S. Chatterjee, A. Mishchenko, R. Brayton, X. Wang, T. Kam,

“Reducing structural bias in technology mapping”, ICCAD-2005, pp.

519- 526.

M. Torabi, “A new architecture for T flip flop using quantum-dot

cellular automata”, (ASQED), vol., no., pp.296-300, 19-20 July 2011

S. Hashemi, K. Navi, “New robust QCA D flip flop and memory

structures”, Microelectronics Journal, Volume 43, Issue 12, December

2012, Pages 929-940

R. Lisanke; “Logic synthesis and optimization benchmarks”,

Microelectron. Center North Carolina, Research Triangle Park, NC,

Tech. Rep., 1988

M.G.A. Martins, R. P. Ribas, A. I. Reis,, "Functional composition: A

new paradigm for performing logic synthesis," Quality Electronic

Design (ISQED), 2012 13th International Symposium on , vol., no.,

pp.236,242, 19-21 March 2012

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

