
P-Matching Method Based on Bipartite Graph
Anderson Santos da Silva, André Reis, Renato Ribas

Institute of Informatics, Federal University of Rio Grande do Sul

Av. Bento Gonçalves 9500, Porto Alegre, RS, Brazil

{assilva,rpribas,andreis}@inf.ufrgs.br

Abstract— This paper presents a new form of representing

Boolean functions through a bipartite graph. This structure is

favorable for the calculation of equivalence P-matching. In logic

synthesis, the technology mapping process can be a very time

consuming task when fitting cells into a target library. The

proposed method turns a Boolean function in a graph

representation and apply reduction rules in it graph to verify

functional equivalence. A fast algorithm is provided using this

structure and experimental results show that this method runs in

linear time in most cases.

Keywords— Boolean matching, graph isomorphism, P-

matching, digital circuit, Boolean function.

I. INTRODUCTION

The standard cell flow is still playing a major role among

the current IC design methodology. This flow is divided in

several steps, in which the synthesis and technology mapping

step use P-matching to find equivalent cells in library to map

part of the functionality of the circuit [1].

The problem of determining when two Boolean functions

are equivalent under the permutation of it variables is named

P-matching [2], and it is used in searching for equivalent

components on a targeted library. As a result, this step has to

be as fast as possible. Several methods are proposed to solve it,

but they are limited on growing its data structures [3-4].

This paper proposes a graph-based algorithm to solve the P-

matching. The idea is generate a graph minterm-variable

starting from a Boolean function. With this graph scheme, we

represent the functions involved in P-matching in it graph

form and use rules to reduce it. With this reduction occurring

in the same time in both graphs, a structural check can be

performed in its topology. If the two graph topology is

equivalent [5], the functions represented by graphs minterm-

variable are P-equivalent.

This reduction is useful because in several cases, the

matching is done very fast. In other cases, the computation

time can be more than exponential, but it is a property of any

NP-compete problem.

The structure of this paper is as follow: Section II presents

a technical background with concepts to understand this

approach. Section III presents the proposed method: how to

generate a graph minterm-variable from Boolean function,

how to reduce this graph in comparison to others, and some

examples. Section IV presents the results in generation of

permutation classes and complexity analysis. Section V

presents the conclusion of this work.

II. TECHNICAL BACKGROUND

A. Graph Isomorphism

If two graphs, G1, G2, has a function f: G1 → G2 such that

for every edge in G1 with nodes u and v, there is an edge in G2

with nodes f(u) and f(v).

For instance, the bijection function illustrated in Fig. 1 is:

 f(A) = B; f(C) = C; f(B) = A; f(D) = D.

Figure 1 - Example of two isomorphic graphs.

B. P-Matching

The operation over two functions, f1 and f2, that determines

if there is a permutation in variables in f1 such that this

function turns into f2. [2].

If a P-matching exists between f1 and f2, the function f1 is

called P-equivalent with f2.

C. Graph Minterm-Variable

A Boolean function with n variables and one output is

defined as f: Bn→ B, where B = {0,1}.

Support of a Boolean function with n variables is a set A =

{a1, a2, a3,… an} of its variables.

Minterms of Boolean function is the set:

B
n
= { (m1, m2,…, mn)1, (m1, m2,…, mn)2,. (m1, m2,…, mn)2n},

where mi belongs to B.

The graph G=(V,E), where V is the set of nodes in graph

and E is the set of edges in graph associated with a Boolean

function is defined as follow:

V = {A union B
n
}

E = {e(ai, (m1, m2,…, mn)k) / ai belongs to A and (m1, m2,…,

mn)k belong to B
n
 and f((m1, m2,…, mn)k)= 1 and mi =1},

where i ≤ n and k ≤ 2n and e(i,j) is an edge between nodes i

and j.

This graph is named graph minterm-variable [5].

III. PROPOSED METHOD

The proposed P-matching uses a graph minterm-variable

structure to represent a Boolean function. The nodes of this

graph can be divided in two subsets:

A. Graph Tentacle

Every node with degree equal to one and all reachable

nodes that have degree equal to two is a node in a graph

tentacle. Fig. 2 illustrate a graph with an tentacle in its nodes

with white color. The black are belongs to other classification.

Figure 2 - Example of graph with a tentacle.

B. Graph Cycle

Every node that does not have in tentacle is on a cycle.

These nodes are represented in nodes in black in Fig. 2.

C. Graph Code

Every node in graph has a stack of integer numbers

representing the code that represents the information of it

neighbour. Here, we have divided the set of nodes in two

subsets of type of code:

- Nodes with degree lower than 2:

 When a node is removed simply, and sum the

removed node code with the top of stack of adjcacents

nodes.

- Nodes with degree greater than 2:

 When a node is removed, insert its code on the top of

stack of it adjacent node, growing in one level the

stack size.

D. Equivalence check

Given two Boolean function in its graph minterm-variable

representation, a reduction of these graph can be performed as

follows:

1) Generate the graph associated with these functions,

G1and G2.

2) Detect the tentacles in G1 and G2 and check if both has

the same number of tentacles.

3) If there is a tentacle:

 Remove the variables nodes of tentacle that

have degree one in both graphs. Check if the

number of removed nodes is the same.

 Remove the minterms nodes of tentacle that

have degree one in both graphs. Check if the

number of removed nodes is the same.

4) If there is not a tentacle:

 Chose a node with unique code to remove in

both graphs and remove it.

 If there is not this unique node, choose one

node in G1 and test its deletion with all nodes

tied with this in G2.

5) In each deletion, propagates a graph-code of node

removed to adjacent node.

6) Check if removed nodes are equivalent in code and

degree.

7) Repeat until the graph is empty or no equivalent

deletion is encountered.

If both graphs are empty in final step, the functions are P-

equivalent. If not, the functions are no P-equivalent.

Example 1: The function 0x8F and 0xD5, illustrated in Fig.

3, are P-equivalent. Initially, the code associated with each

node is ‘$’, representing empty code. In the next step is set the

code 1 to all nodes with degree 1, as illustrated in Fig. 4.

These nodes are represented with dotted edge.

Figure 3 - Example of graph associated with function.

Figure 4 - Initial code completion.

To reduce these graphs, we remove all nodes that have the

code equals to 1, and then its code is propagated to adjacent

nodes, as seen in Fig. 5. This first reduction removes only

variables nodes in both graphs, and test if these deletions are

in the same number.

Figure 5 - First graph reduction.

The next reduction, illustrated in Fig. 6, removes the

minterms nodes and check if the deletions are in the same

number.

Figure 6 - Second graph reduction.

Here, we generate a cycle and, therefore, we need cut this

finding an irredundant node and then remove it from both

graphs. (Example 2, described after, represents a case where

no irredundant node exists).

In the case of the graph in Fig. 6, the nodes 3 and 6 are

unique in its code in graph 0x8F and 0xD5, respectively. Thus,

these nodes are removed and its code propagated.

We repeat the algorithm in this point, always testing if there

are tentacles in graph, as illustrated in Fig. 7. In this case, the

entire graph is a single tentacle. The repetition removes the

nodes of variable, and check the number of deletions.

In Fig. 8, the graph was reduced and last node has the same

code associated. There are match in both functions because

the deletion of last node leaves an empty graph.

Figure 7 - Reduction of cycle.

Figure 8 - Reduction of tentacles.

Example 2: The function 0x68 and 0x68, shown in Fig. 9,

are P-equivalent because is the same function.

Figure 9 - Graph reduction lower case.

If every node ties in its code, then we get all tied nodes in

both graph, and put them on a set T1 associated with one graph

and T2 associated with other graph.

Then, extract an element t of T1 and for all element e in T2

creates a pair (t,e), removing this pair in its graph, and repeat

the algorithm with the rest of graph. If some pair returns true

in its reduction, there are a matching in graph.

In this example, we generate the set of tied nodes G1 =

{x1,x2,x0,3,6,5} and G2 = {x1,x2,x0,3,6,5}. And we try to

match some node in G1 to some node in G2. Maintaining the

node x1, the possibilities are (x1,x1), (x1,x2), (x1,x0).

Since variable node only match with variable node, x1

should have a variable that match with itself . A backtracking

is performed in these cases in order to find at least one pair

that matches. Notice that to know if a pair matches, it is

needed to run the algorithm until the end. Therefore, if one

pair matches, others pairs do not need to be tested.

Example 3: Considering the function 0x81 with 0x86,

illustrated in Fig. 10. Such functions do not match because

their graphs are not isomorphic.

Figure 10 - Graph reduction best case.

These functions do not have cycle. It is the best case of

match because the tentacles are removed very fast in linear

time in number of nodes. Just to notice, the example 1 has a

unique node when a tie occurs and then runs in linear time too.

IV. EXPERIMENTAL RESULTS

The algorithm has been validated with the generation of P-

class with 1, 2, 3 and 4 input functions. This step validates the

correctness of algorithm.

In the way to reach more than 4-inputs functions, a test

with 5-inputs NPN class was made and every function was

tested with all other functions in the same class. Although 5-

inputs NPN class has 616,125 functions, this test spent around

two days in computation time and no error was encountered.

The results are show in Table I. The #n represents all

functions with ‘n’ variables. Table I demonstrates that only

few functions in the entire set are computation time

consuming during the evaluation

TABLE. 1 - GRAPH LOWER CASE OCCURRENCES.

 #1 #2 #3 #4 5 NPN

Total 4 16 256 65,536 616,125

Functions

with tie
0 0 44 9,376 42,936

Random tests were performed considering up to 19-input

functions. A study of which function represents a bottleneck

for this approach was also made.

In order to explain a formal proof of this work the time

complexity of this approach is the following. Assuming a

graph G(V,E), we know that V can be subdivided in two

subsets: x in V that is on a tentacle, and y in V that is on a

cycle. We named this set as T, representing nodes in tentacle

and C to nodes in cycles, since that C is disjoint of T. The

graph G can have several tentacles and cycles. Every tentacle

in T is reduced in time proportional to it number of nodes, in

lower case it can be the entire V. Then, in this case, we have

O(|V|) complexity when |V| represents the cardinality of set V.

In the case of cycles, the lower case to number of nodes in

C is |C|=|V|, and an exhaustive search is done. This

exhaustive search uses at maximum O(|V|) steps.

Therefore, a typical graph has a combination of these cases,

but if it is a tentacle or a cycle, we resolve match in linear

time O(|V|). In the case of combination of both, and in

presence of so many ties, the natural recursion of this method

uses O(|k1|*|k2|…*|kn|), where ∑ki = |V|, n → 0. It says that

this approach runs in super-exponential time in lower case, as

every NP-complete problem like P-matching. However, as

show in Table I, these cases are very few from the universe of

Boolean functions.

V. CONCLUSIONS

This work proposes a new way to verify P-matching. This

approach uses a graph representation for Boolean functions.

This approach divides the universe of functions that have fast

P-matching and the ones that do not have. In the case of few

tie in search of irredundant nodes in graph representation, this

runs in linear time. In the case of many ties, it follows the

theoretical complexity of the problem, being super-

exponential, but just for few cases.

ACKNOWLEDGMENT

Research funded by the Brazilian funding agencies CNPq

and FAPERGS, under grant 11/2053-9 (Pronem), and by the

European Community’s Seventh Framework Programme

under grant 248538-Synaptic.

REFERENCES

[1] A. Mishchenko; S. Chatterjee; R. Brayton; W. Wang and T.

Kam. “Technology Mapping with Boolean Matching,

Supergates and Choices,” ERL Technical Report, EECS Dept.,

UC Berkeley, Mar 2005.

[2] T. Sasao and J. T Butler, “Progress in Applications of

Boolean Functions,” Synthesis Lectures on Digital Circuits

and Systems, vol. 4, no. 1, 2009, pp. 1-153.

[3] U. Hinsberger and R. Kolla, “Boolean matching for large

libraries,” In Proc. Design Automation Conference (DAC),

Jun. 1998, pp. 206–211.

[4] D. Debnath and T. Sasao, “Efficient computation of

canonical form for Boolean matching in large libraries,” In

Proc. Asia and South Pacific Design Automation Conference

(ASP-DAC), 2004, pp. 591-596.

[5] Silva, Anderson Santos da; Ribas, Renato; and Reis, Andre;

“A graph-based approach for Boolean matching”, In XXVII

SIM- South Symposium on Microeletronics, 2012.

