P-Matching Method Based on Bipartite Graph

Anderson Santos da Silva, André Reis, Renato Ribas

Institute of Informatics, Federal University of Rio Grande do Sul
Av. Bento Gongalves 9500, Porto Alegre, RS, Brazil

{assilva, rpribas,andreis}@inf.ufrgs.br

Abstract— This paper presents a new form of representing
Boolean functions through a bipartite graph. This structure is
favorable for the calculation of equivalence P-matching. In logic
synthesis, the technology mapping process can be a very time
consuming task when fitting cells into a target library. The
proposed method turns a Boolean function in a graph
representation and apply reduction rules in it graph to verify
functional equivalence. A fast algorithm is provided using this
structure and experimental results show that this method runs in
linear time in most cases.

Keywords— Boolean matching, graph
matching, digital circuit, Boolean function.

isomorphism, P-

I. INTRODUCTION

The standard cell flow is still playing a major role among
the current IC design methodology. This flow is divided in
several steps, in which the synthesis and technology mapping
step use P-matching to find equivalent cells in library to map
part of the functionality of the circuit [1].

The problem of determining when two Boolean functions
are equivalent under the permutation of it variables is named
P-matching [2], and it is used in searching for equivalent
components on a targeted library. As a result, this step has to
be as fast as possible. Several methods are proposed to solve it,
but they are limited on growing its data structures [3-4].

This paper proposes a graph-based algorithm to solve the P-
matching. The idea is generate a graph minterm-variable
starting from a Boolean function. With this graph scheme, we
represent the functions involved in P-matching in it graph
form and use rules to reduce it. With this reduction occurring
in the same time in both graphs, a structural check can be
performed in its topology. If the two graph topology is
equivalent [5], the functions represented by graphs minterm-
variable are P-equivalent.

This reduction is useful because in several cases, the
matching is done very fast. In other cases, the computation
time can be more than exponential, but it is a property of any
NP-compete problem.

The structure of this paper is as follow: Section Il presents
a technical background with concepts to understand this
approach. Section Il presents the proposed method: how to
generate a graph minterm-variable from Boolean function,
how to reduce this graph in comparison to others, and some
examples. Section IV presents the results in generation of
permutation classes and complexity analysis. Section V
presents the conclusion of this work.

Il. TECHNICAL BACKGROUND

A. Graph Isomorphism

If two graphs, G;, G,, has a function f: G; — G, such that
for every edge in G, with nodes u and v, there is an edge in G,
with nodes f(u) and f(v).

For instance, the bijection function illustrated in Fig. 1 is:

f(A) =B; f(C)=C; f(B) =A; f(D) =D.

O
oNollcRC

Figure 1 - Example of two isomorphic graphs.

B. P-Matching

The operation over two functions, f; and f,, that determines
if there is a permutation in variables in f; such that this
function turns into f, [2].

If a P-matching exists between f; and f,, the function f; is
called P-equivalent with f;.

C. Graph Minterm-Variable

A Boolean function with n variables and one output is
defined as f: Bn— B, where B = {0,1}.

Support of a Boolean function with n variables is a set A =
{al, a2, a3,... an} of its variables.

Minterms of Boolean function is the set:

B"={ (my, my,..., mp)1, (Mg, My, ..., Mp)z,. (M1, My, ..., M)an},
where m; belongs to B.

The graph G=(V,E), where V is the set of nodes in graph
and E is the set of edges in graph associated with a Boolean
function is defined as follow:

V = {A union B"}

E = {e(a;, (M1, m,,..., m,),) / & belongs to A and (my, my,...,
my) belong to B" and f((my, my,..., m)),)=1 and m; =1},
where i < nand k < 2n and e(i,j) is an edge between nodes i
and j.

This graph is named graph minterm-variable [5].

I11. PROPOSED METHOD

The proposed P-matching uses a graph minterm-variable
structure to represent a Boolean function. The nodes of this
graph can be divided in two subsets:

A. Graph Tentacle

Every node with degree equal to one and all reachable
nodes that have degree equal to two is a node in a graph
tentacle. Fig. 2 illustrate a graph with an tentacle in its nodes
with white color. The black are belongs to other classification.

Figure 2 - Example of graph with a tentacle.

B. Graph Cycle

Every node that does not have in tentacle is on a cycle.
These nodes are represented in nodes in black in Fig. 2.

C. Graph Code

Every node in graph has a stack of integer numbers
representing the code that represents the information of it
neighbour. Here, we have divided the set of nodes in two
subsets of type of code:

- Nodes with degree lower than 2:

When a node is removed simply, and sum the
removed node code with the top of stack of adjcacents
nodes.

- Nodes with degree greater than 2:

When a node is removed, insert its code on the top of
stack of it adjacent node, growing in one level the
stack size.

D. Equivalence check

Given two Boolean function in its graph minterm-variable
representation, a reduction of these graph can be performed as
follows:

1) Generate the graph associated with these functions,

G;and G..

2) Detect the tentacles in G; and G, and check if both has

the same number of tentacles.

3) Ifthere is a tentacle:

e Remove the variables nodes of tentacle that
have degree one in both graphs. Check if the
number of removed nodes is the same.

e Remove the minterms nodes of tentacle that
have degree one in both graphs. Check if the
number of removed nodes is the same.

4) If there is not a tentacle:
e Chose a node with unique code to remove in
both graphs and remove it.
e If there is not this unique node, choose one
node in G; and test its deletion with all nodes
tied with this in G,
5) In each deletion, propagates a graph-code of node
removed to adjacent node.
6) Check if removed nodes are equivalent in code and
degree.
7) Repeat until the graph is empty or no equivalent
deletion is encountered.
If both graphs are empty in final step, the functions are P-
equivalent. If not, the functions are no P-equivalent.

Example 1: The function 0x8F and 0xD5, illustrated in Fig.
3, are P-equivalent. Initially, the code associated with each
node is ‘$’, representing empty code. In the next step is set the
code 1 to all nodes with degree 1, as illustrated in Fig. 4.
These nodes are represented with dotted edge.

Code

N N
\I\Ic =

T
DL D D e

BN
I\I\= =

o
@B BB

Code

[M
CoTTeRR
HUJUJD—‘,_.V,W

J;k-lD\NHn)M
ST TeRE
b—'lll[llb—'w,_,w

Figure 4 - Initial code completion.
To reduce these graphs, we remove all nodes that have the
code equals to 1, and then its code is propagated to adjacent
nodes, as seen in Fig. 5. This first reduction removes only

variables nodes in both graphs, and test if these deletions are
in the same number.

Code

"
w »

W
.\.\F‘H"'
-

—=
=

g
FEe a0
e

P N

Figure 5 - First graph reduction.

The next reduction, illustrated in Fig. 6, removes the
minterms nodes and check if the deletions are in the same
number.

Graph Code
o] (2 (D s
x2-(1)S

3-8
7-)8

] GY G

x-S
0-1)S

6 -8
IED o

Figure 6 - Second graph reduction.

Here, we generate a cycle and, therefore, we need cut this
finding an irredundant node and then remove it from both
graphs. (Example 2, described after, represents a case where
no irredundant node exists).

In the case of the graph in Fig. 6, the nodes 3 and 6 are
unique in its code in graph 0x8F and 0xD5, respectively. Thus,
these nodes are removed and its code propagated.

We repeat the algorithm in this point, always testing if there
are tentacles in graph, as illustrated in Fig. 7. In this case, the
entire graph is a single tentacle. The repetition removes the
nodes of variable, and check the number of deletions.

In Fig. 8, the graph was reduced and last node has the same
code associated. There are match in both functions because
the deletion of last node leaves an empty graph.

Graph Code
F=0x8F ° x1
x1-(1)1
x2-(1)1
7-()S
=] @D
x1-(1)1
x0-(1)1
7-)8

Figure 7 - Reduction of cycle.

Graph Code

F=0x8F

7 -@M @D D)

>,

F=0xD35

7 =M@ by

Figure 8 - Reduction of tentacles.

Example 2: The function 0x68 and 0x68, shown in Fig. 9,
are P-equivalent because is the same function.

ojolollojolo
ST STD

Figure 9 - Graph reduction lower case.

If every node ties in its code, then we get all tied nodes in
both graph, and put them on a set T, associated with one graph
and T, associated with other graph.

Then, extract an element t of T, and for all element e in T,
creates a pair (t,e), removing this pair in its graph, and repeat
the algorithm with the rest of graph. If some pair returns true
in its reduction, there are a matching in graph.

In this example, we generate the set of tied nodes G; =
{x1,x2,x0,3,6,5} and G, = {x1,x2,x0,3,6,5}. And we try to
match some node in G; to some node in G,. Maintaining the
node X, the possibilities are (X1,X1), (X1,X2), (X1,Xo)-

Since variable node only match with variable node, x;
should have a variable that match with itself. A backtracking

is performed in these cases in order to find at least one pair
that matches. Notice that to know if a pair matches, it is
needed to run the algorithm until the end. Therefore, if one
pair matches, others pairs do not need to be tested.

Example 3: Considering the function 0x81 with 0x86,

illustrated in Fig. 10. Such functions do not match because
their graphs are not isomorphic.

OO

D

Figure 10 - Graph reduction best case.

These functions do not have cycle. It is the best case of
match because the tentacles are removed very fast in linear
time in number of nodes. Just to notice, the example 1 has a

unique node when a tie occurs and then runs in linear time too.

IV.EXPERIMENTAL RESULTS

The algorithm has been validated with the generation of P-
class with 1, 2, 3 and 4 input functions. This step validates the
correctness of algorithm.

In the way to reach more than 4-inputs functions, a test
with 5-inputs NPN class was made and every function was
tested with all other functions in the same class. Although 5-
inputs NPN class has 616,125 functions, this test spent around
two days in computation time and no error was encountered.
The results are show in Table I. The #n represents all
functions with ‘n’ variables. Table I demonstrates that only
few functions in the entire set are computation time
consuming during the evaluation

TABLE. 1 - GRAPH LOWER CASE OCCURRENCES.

#1 5 3 # | 5NPN
Total 4 16 256 | 65536 | 616,125
Functions |) 0 44 9,376 | 42,936
with tie

Random tests were performed considering up to 19-input
functions. A study of which function represents a bottleneck
for this approach was also made.

In order to explain a formal proof of this work the time
complexity of this approach is the following. Assuming a
graph G(V,E), we know that V can be subdivided in two
subsets: x in V that is on a tentacle, and y in V that is on a
cycle. We named this set as T, representing nodes in tentacle
and C to nodes in cycles, since that C is disjoint of T. The
graph G can have several tentacles and cycles. Every tentacle
in T is reduced in time proportional to it number of nodes, in
lower case it can be the entire V. Then, in this case, we have
O(JV|) complexity when |V| represents the cardinality of set V.

In the case of cycles, the lower case to humber of nodes in
C is |C|=|V|, and an exhaustive search is done. This
exhaustive search uses at maximum O(|V]) steps.

Therefore, a typical graph has a combination of these cases,
but if it is a tentacle or a cycle, we resolve match in linear
time O(|V]). In the case of combination of both, and in
presence of so many ties, the natural recursion of this method
uses O(|ky|*|Ka|... *|knl), where >k = |V], n — 0. It says that
this approach runs in super-exponential time in lower case, as
every NP-complete problem like P-matching. However, as
show in Table I, these cases are very few from the universe of
Boolean functions.

V. CONCLUSIONS

This work proposes a new way to verify P-matching. This
approach uses a graph representation for Boolean functions.
This approach divides the universe of functions that have fast
P-matching and the ones that do not have. In the case of few
tie in search of irredundant nodes in graph representation, this
runs in linear time. In the case of many ties, it follows the
theoretical complexity of the problem, being super-
exponential, but just for few cases.

ACKNOWLEDGMENT

Research funded by the Brazilian funding agencies CNPq
and FAPERGS, under grant 11/2053-9 (Pronem), and by the
European Community’s Seventh Framework Programme
under grant 248538-Synaptic.

REFERENCES

[1] A. Mishchenko; S. Chatterjee; R. Brayton; W. Wang and T.
Kam. “Technology Mapping with Boolean Matching,
Supergates and Choices,” ERL Technical Report, EECS Dept.,
UC Berkeley, Mar 2005.

[2] T. Sasao and J. T Butler, “Progress in Applications of
Boolean Functions,” Synthesis Lectures on Digital Circuits
and Systems, vol. 4, no. 1, 2009, pp. 1-153.

[3] U. Hinsberger and R. Kolla, “Boolean matching for large
libraries,” In Proc. Design Automation Conference (DAC),
Jun. 1998, pp. 206-211.

[4] D. Debnath and T. Sasao, “Efficient computation of
canonical form for Boolean matching in large libraries,” In
Proc. Asia and South Pacific Design Automation Conference
(ASP-DAC), 2004, pp. 591-596.

[5] Silva, Anderson Santos da; Ribas, Renato; and Reis, Andre;
“A graph-based approach for Boolean matching”, In XXVII
SIM- South Symposium on Microeletronics, 2012.

