
ASCEnD: A Standard Cell Library for Semi-Custom

Asynchronous Design
Matheus Trevisan Moreira, Carlos Oliveira, Ney Laert Vilar Calazans

GAPH – FACIN – Pontifical University of Rio Grande do Sul

Av. Ipiranga, 6681, B. 32 R. 726 - Partenon - Porto Alegre/RS – Brazil

matheus.moreira@acad.pucrs.br

ney.calazans@pucrs.br

Abstract— The asynchronous circuit design paradigm provides a

practical solution for several challenges and constraints of

current and future technologies to build integrated circuits and

systems. However, there is little electronic design automation

support for this paradigm. This work presents a standard cell

library designed to support a semi-custom approach in the

design of asynchronous integrated circuits in 65nm. The library

counts with a parameterizable design flow that allows it to be

ported to different CMOS technologies with some degree of

automation. Over five hundred components compose the current

version of the library. Several case studies have been synthesized

using the library components, all validated at the layout level.

Keywords— Asynchronous circuits, semi-custom design,

standard-cell library, null-convention logic, C-element

I. INTRODUCTION

At present, most system-on-chip (SoC) designs adopt the

synchronous paradigm, which implies an assumption: a

discrete notion of time. This abstraction significantly reduces

the complexity of a digital circuit design and allows these to

be more easily modeled using register transfer level (RTL)

languages like VHDL or Verilog. However, with the evolution

of CMOS technologies, limitations of this paradigm started to

emerge. Synchronous design problems that were easily

overcame in the past, such as clock skew and power

consumption control, have become increasingly complex tasks

to solve in modern designs [1] [2].

An alternative is to use asynchronous circuits, which do not

employ any clock signal. In this way, time becomes a

continuous variable. Contrarily to the synchronous paradigm,

synchronization, sequencing and communication operations in

asynchronous circuits require explicit handshaking protocols

[3] between components. Consequently, registers are activated

only when and where it is needed. Due to their nature,

asynchronous circuits may present lower power consumption,

higher operating speed, better composability and modularity,

together with low electromagnetic emissions and higher

robustness.

Perhaps asynchronous design main drawback is that it

counts with little electronic design automation (EDA) support.

Moreover, typical commercially available standard cell

libraries do not provide components required to efficiently

implement most circuit templates already devised for

asynchronous circuits. In this way, asynchronous design is

limited, in practice, to full custom approaches. This work

presents a standard cell library containing components

required to implement asynchronous integrated circuits (ICs).

The current version of the library counts 508 standard cells

and is implemented in STMicroelectronics 65nm CMOS

technology. It is open access to designers with access to the

technology design kits, available for example through multi-

project services as CMP. Moreover, the library is fully

integrated with two higher level synthesis tools for

asynchronous circuits, making a semi-custom approach viable

to implement asynchronous circuits.

II. ASYNCHRONOUS STANDARD CELLS

Asynchronous circuits can be classified according to

several criteria. One important criterion is based on the delays

of wires and gates. The most robust and restrictive delay

model is the Delay-Insensitive (DI) model, which operates

correctly regardless of gate and wire delay values.

Unfortunately, this class is too restrictive. The addition of an

assumption on wire delays in some carefully selected forks

enables to define the Quasi-Delay-Insensitive (QDI) circuit

class. Here, signal transitions occur at the same time only at

each end point of the mentioned forks, which are called

isochronic forks. According to Martin and Nyström, the QDI

class comprises almost the entirety of options in practical

asynchronous design [4].

Currently, in order to implement Boolean functions without

losing the delay insensitivity property, two logic styles are

usually employed for QDI circuits: Delay Insensitive Minterm

Synthesis (DIMS) [3] and Null Convention Logic (NCL) [5].

The former relies on the extensive use of an asynchronous

component called C-element [3], while the latter employs

special components called NCL gates. Also, Mutual Exclusion

Elements (MUTEXs) are crucial components to implement

asynchronous circuits. This is due to the fact that they

guarantee a robust implementation of control elements, like

arbiters. The drawback is that none of the mentioned

components is usually present in typical standard cell libraries,

as they are not frequently employed in synchronous design

and are usually not recognized by typical EDA tools.

A. C-Element

The Muller C-element, or simply C-element is a sequential

logic device that operates as an event synchronizer. Fig. 1

shows a truth table for one typical C-element and the

associated logic symbol for a 2-input component. When inputs

A and B are the same, output Q assumes this value. When the

inputs are different, the output keeps its previous value.

A B Qi

0 0 0

0 1 Qi-1

1 0 Qi-1

1 1 1

C
A

B
Q

(a) (b)

Fig. 1 Two input C-element truth table (a) and symbol (b).

Versions with distinct behaviour exist, where one or some

of the inputs of the C-element may interfere only in the high-

to-low or the low-to-high transition of the output. The

importance of such variations in the synthesis of asynchronous

circuits is discussed e.g. in [6]. Alternative C-element

behaviours characterize the asymmetric, unbalanced or

generalized C-elements. Also, C-Elements may be

implemented using different transistors topologies, as

discussed in [7], and with set/reset control signals.

B. NCL gates

NCL was proposed by Theseus Logic, Inc. [5] and has

been employed for implementing QDI asynchronous systems

on silicon. It is an alternative to other design styles like delay

insensitive minterm synthesis (DIMS) and one of its

advantages is that it enables power-, area- and speed-efficient

QDI design with a standard-cell-based approach. NCL gates

are sometimes called threshold gates, but this is imprecise. In

fact, NCL gates couple a threshold function [8] with positive

integer weights assigned to inputs to the use of a hysteresis

mechanism. Fig. 2 shows the NCL gate symbol, where N is

the number of inputs and M is the gate threshold.

1
2
3

N
...

M
Q

Fig. 2 Symbol of an M-of-N NCL gate.

C. Mutual Exclusion Element

MUTEXs are essential to compute data and take decisions

for the correct operation of the circuit [3]. The role of this

component is to decide which of two concurrent events is to

be served first. In this work, it is assumed that metastability

filters have two request inputs (RA and RB), that receive

requests, which can be concurrent, and two acknowledge

outputs (AA and AB), that signal which event is to be served.

The logical function of this component is showed in (1). In the

case of two events taking place in the exact same instant of

time, e.g. simultaneous low-to-high transitions in RA and RB,

the filter will eventually decide for one, eliminating the

possibility of metastable states. This scenario, which is not

covered by the logical function, is decided through an electric

race, where the request with best potential is served first.

Because AA and AB are mutually exclusive, the request with

lower potential will only be served after the first finishes its

communication.

RARBAA ; RBRAAB (1)

III. THE ASCEND LIBRARY

Currently, ASCEnD is available for the 65nm

STMicroelectronics CMOS technology (ASCEnD-ST65). The

library counts with C-Elements, NCL gates and MUTEXs. A

total of 504 C-elements compose the library as Fig. 3 shows.

It counts with C-elements with varying driving strengths

(speed to charge/discharge a load), functionalities and

topologies. Moreover, these components are available in high

speed and low power versions, each with its own advantages.

ASCEnD-ST65 C-elements tradeoffs are discussed in [7] and

[9].

504 C-elements

Number of Inputs

(2 or 3)

Number/Kind of

Asymmetric Inputs

(none, 1+, 1-, 1+1-)

CMOS Transistor Topology
(Sutherland, Martin, van Berkel)

Driving Strengths

(X1, X2, X3, X4)

Initialization

Control Signals
(none, set, reset) 3

3

3/4

2

Speed/Power
(BP, BS)

2

1-4

Fig. 3 ASCEnD-ST65 C-elements. Rounded corner rectangles represent one

parameter choice. Edges are labeled with the number of choices the parameter

implies. The dotted edge represents dependencies between parameters choices.

A set of 14 different NCL functionalities is also available in

ASCEnD-ST65. Each of these functionalities is designed as a

standard cell and has 4 different driving strengths. This results

in a set of 14*4=56 NCL gates. The symbols of these gates is

represented in Fig. 4.

Fig. 4 ASCEnD-ST65 NCL gates.

ASCEnD-ST65 also counts with 4 versions of metastability

filters. Each implementation employs different transistor sizes

and, consequently, presents distinct driving strengths.

Together with a typical standard cell library, containing

combinational logic gates, the library can be used to

implement asynchronous circuits of different classes through a

semi-custom approach, as showed in [10], which is much less

restrictive than template based approaches.

In ASCEnD-ST65 all the components, but MUTEXs

(which is typically manually designed), are designed through

the flow depicted in Fig. 5. The flow starts with an electrical

and a functional specification, a transistors schematic is

designed and used in the ROGen tool, an in-house tool that

generates a simulation circuit described in SPICE, described

in detail in [10]. This circuit is simulated using Cadence

Spectre and the resultant simulation report is the input of

another in-house tool called CeS. This tool is responsible of

dimensioning the transistors of the standard cell based on the

provided report and is explained in detail in [10].

The dimensioned schematic is then used to manually design

a layout using Cadence Virtuoso Layout Editor. In this step,

all components are designed at employing design for

manufacturability (DFM) techniques. DRC and LVS checking

are performed using Mentor Calibre.

After correct layout design is verified, parasitics are

extracted, also using Calibre, and electrically characterized

using another in-house tool called LiChEn [11]. This tool

generates power and timing models according to the Synopsys

Liberty Format [12], which is compatible with most EDA

vendors. In this step, it is verified if the generated circuit

respects the specification. If not, it must be redesigned. Once

it is verified to behave as specified, an abstract view is

generated and exported to Cadence Library Exchange Format,

which is compatible with most EDA vendors, and a symbol

view is generated to allow structural hierarchic design. Finally,

a Verilog behavioural view is generated to allow digital

simulation.

Initially, the ASCEnD flow was proposed for C-Elements

design only. However, it has recently been employed for NCL

gates design. The integration of these gates with the ASCEnD

flow is detailed in [13].

The resultant library was extensively validated through

simulation after place and route of some complex ICs, such as

a RSA cryptographic core and three different network-on-chip

routers. For more details on these designs, address [7], [9],

[10], [14] and [15]. Also, the library can be easily ported to

other CMOS technologies, given that the adopted design flow

counts with automated and parameterizable tools. For detailed

information about the flow, address references [6] and [7].

IV. CONCLUSIONS

ASCEnD is a freely available standard cell library for

supporting asynchronous ICs semi-custom designs. The

library has its components designed at the layout level and can

be easily ported to different CMOS technologies. Currently, a

new version of the library is being generated, for the IBM

130nm CMOS technology, available through MOSIS services.

This will ease the prototyping of study case circuits, easing

the validation of the library on silicon.

Future work includes the development of the tools of the

flow in order to support gates required by other asynchronous

design templates, such as pre-charged half-buffer and pre-

charged full-buffer. Also, it is also part of future work to

enable the ASCEnD flow to design standard-cells for

operating at subthreshold voltages, in order to allow the

design of low-power subthreshold asynchronous circuits.

Access to ASCEnD-ST65 can be obtained by contacting

the authors of this paper. This access is free, provided that the

requester has signed the required non-disclosure agreements

with STMicroelectronics for the 65nm CMOS technology.

Finally, having a freely available standard-cell for

asynchronous design is very important for a wider adoption of

asynchronous techniques, which are each day more necessary.

ACKNOWLEDGMENT

This work is partially supported by the CAPES-PROSUP

and FAPERGS (under grants 11/0455-5 and 11/1445-0). Ney

Calazans acknowledges CNPq support under grant

310864/2011-9.

Fig. 5 Design flow adopted for ASCEnD standard cells. Actions are represented by boxes, decisions by diamonds, descriptions as rounded boxes and the

repository as a cylinder.

REFERENCES

[1] M. Made, T. Felicijan, A. Efthymiou, D. Edwards, L. Lavagno
―Asynchronous on-chip Networks‖. Computers and Digital Techniques,

IEEE Proceedings, 152(2), March 2005, pp. 273-283.

[2] N. Ekekwe, ―Power dissipation and interconnect noise challenges in
nanometer CMOS technologies,‖ IEEE Potentials, 29(3), pp.26-31,

May 2010.

[3] J. Sparsø and S. Furber, ―Principles of Asynchronous Circuit Design –
A Systems Perspective,‖ Kluwer Ac. Pub., Boston, 354p., 2001.

[4] A. J. Martin and M. Nyström, ―Asynchronous Techniques for System-

on-Chip Design,‖ Proceedings of the IEEE, 94(6), June 2006, pp.
1089-1020.

[5] K. M. Fant and S. A. Brandt, ―NULL convention logic: a complete and
consistent logic for asynchronous digital circuit synthesis,‖ In

International Conference on Application Specific Systems,

Architectures and Processors (ASAP´96), 1996, pp. 261-273.
[6] W. B. Toms, ―Synthesis of Quasi-Delay-Insensitive Datapath Circuits,‖

PhD thesis, Univ. of Manchester, 237 p., Feb. 2006.

[7] M. T. Moreira, B. S. Oliveira, F. G. Moraes, and N. L. V. Calazans,
―Impact of C-elements in asynchronous circuits,‖ In: ISQED´12, 2012,

pp. 438-444.

[8] S. L. Hurst., ―An Introduction to Threshold Logic: A Survey of Present
Theory and Practice,‖ The Radio and Electronic Engineer, 37(6), June

1969, pp. 339-351.

[9] M. T. Moreira, B. S. Oliveira, J. J. H. Pontes, F. G. Moraes, N. L. V.
Calazans ―Adapting a C-Element Design Flow for Low Power‖ In:

IEEE International Conference on Electronics, Circuits and Systems,

Beirut, 2011. Pp. 45-48.
[10] M. T. Moreira, B. S. Oliveira, J. J. H. Pontes, N. L. V. Calazans ―A

65nm Standard Cell Set and Flow Dedicated to Automated

Asynchronous Circuits Design‖ In: IEEE International SoC Conference,
2011. Pp. 99-104.

[11] M. T. Moreira and N. L. V. Calazans, ―Electrical Characterization of a

C-Element with LiChEn,‖ In: IEEE International Conference on
Electronics, Circuits and Systems, Seville, 2012. Pp. 583-585.

[12] Synopsys Liberty. ―Open Source Liberty‖. Available at

http://www.opensourceliberty.org, 2013.
[13] M. T. Moreira, C. H. M. Oliveira, R. C. Porto and N. L. V. Calazans,

―Design of NCL Gates with the ASCEnD Flow,‖ In: Latin American

Symposium on Circuits and Systems, Cuzco, 2013.
[14] J. J. H. Pontes, M. T. Moreira, F. G. Moraes and N. L. V. Calazans,

―Hermes-A – An Asynchronous NoC Router with Distributed

Routing,‖ In: International Workshop on Power and Timing Modeling,
Optimization and Simulation, LNCS volume 6448, Grenoble, 2010. Pp.

150-159.

[15] J. J. H. Pontes, M. T. Moreira, F. G. Moraes, N. L. V. Calazans
―Hermes-AA – A 65nm Asynchronous NoC Router with Adaptive

Routing‖ In: IEEE International SoC Conference, 2010. Pp. 493-498.

