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Abstract— In this work, a weighted multi-level stochastic 

representation and its operators are introduced to increase 

alternatives for design space exploration. Multi-level stochastic 

circuit architectures are presented and area tradeoffs discussed. 

Stochastic arithmetic circuits allow better fault tolerance by 

encoding signals in pseudorandom pulse streams. However, this 

comes at the expense of higher latencies and a worst dynamic 

behaviour. Also, in stochastic circuits, signal bandwidth, pseudo-

random (PN) sequence length and variance are related to 

maximum number of stochastic operations one can perform 

before signal regeneration an that creates a limit to their 

complexity. 
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I. INTRODUCTION 

Stochastic processing is a well-known technique to design 

arithmetic circuits by encoding variables as expected values of 

uncorrelated pulse streams [1]. Changing numeric data 

representation from binary radix to stochastic streams allows 

for arithmetic operators that consume a very low amount of 

area and are well suited to algorithms with massive 

parallelism of operators [2]. Also, stochastic modulation is 

one of the data representation techniques that have a natural 

resistance to soft errors and a tendency to show graceful 

performance degradation when subjected to multiple failures 
[3],[4]. 

Since its first introduction, stochastic circuits (SC) have 

been used to address many different applications [2], [3], [4]. 

More recently stochastic arithmetic has been used to LDPC 

decoding [5] and image processing [6]. Some recent research  

has focused on systematic design methodologies for stochastic 

operators using finite state machines [7], [8] and spectral 

transforms [9].  

Main disadvantage of stochastic arithmetic is its demand 

for relatively high number of cycles to accurately represent 

variables with a given resolution. Contrary to radix binary 

numbers where word length increases linearly with the 
resolution r, in stochastic arithmetic word length is an 

exponential function of r. Also, although research indicates 

that time/area product favours SC over binary radix serial 

(BRI) architectures for resolutions below ten bits [4], SC 

presents variance degradation along the data path that makes 

then harder to successfully design [9]. 

Since variance control in the circuit is fundamental to its 

precise operation, a thorough variance analysis must be 

included in the SC design flow [9]. Although variance in the 

output of the stochastic number generators (SNG) closely 

resembles the expected values for a Bernoulli series, 

subsequent operators will change its distribution. It is, 

therefore, very important for SC design that to have a tool to 

estimate variance  

When compared to recent research of in SC, this work 
presents some important differences. Previous research has 

focused mainly on single bit representation of stochastic 

signals [2], [3], [4], [5]. SC is mainly explored as a way to 

reduce the area taken by the operators on the implementation 

of massively parallel algorithm. Our work mainly aims to take 

advantage of SC fault tolerance characteristics; therefore we 

focus on parallel stochastic data representation as a way to 

reduce latency issues. A recent paper proposes a parallel 

stochastic circuit to perform numerical integration [6], it does 

not, however, explore the dynamic range sub-division to 

create a multilevel parallel stochastic coding like this paper 
does. 

Finally, our proposal for multilevel stochastic is a technique 

that involves the weighting, or masking, of the signals in the 

stochastic number generator (SNG). The idea bears some 

resemblance to the weighted stochastic series introduced by 

Gupta and Kumaresan to prove the feasibility of exact 

stochastic multiplication [10]. Our proposal, however, starts 

from the full dynamic range of the signal and make a few 

partitions while previous work operates a bit by bit weighting. 

This difference implies that our paper must define new 

stochastic operators to perform both summation and product 

on multilevel stochastic coded (MSC) signals.   
The remaining of this work is organized as follows: section 

II introduces classical unipolar and bipolar stochastic number 

representation, its main operators and variance characteristics. 

Section III introduces multilevel stochastic quantization and 

its operators. Area tradeoffs are discussed on section IV. A 

final discussion and future work are presented in section V. 

II. STOCHASTIC ARITHMETIC  

Assuming a signal x(t) such as its dynamic range in 

confined to the interval [Xmin, Xmax], and it is sampled with 

frequency Fs=1/Ts. A binary series px(t) with symbols 

{0,1} is defined such as at any given point         , 

one can find an interval T such as for t[to-T/2, to+T/2], 
the expected value of px is given by (1). Where xN is the 

normalized value on x(to). 

 

            (1) 

 

Combining different ways to normalize the input and 

attribute values to the binary stream alphabet one ends up with 



four SC domains (Table 1) [2]. Throughout this paper, unless 

told otherwise, we will be working with unipolar 

representation (UP). It must be noted that results can be 

generalized for the other domains. 

TABLE I 

STOCHASTIC ARITHMETIC DOMAINS. THIS TABLE EXPANDS [12]. 

Normalization Alphabet SC domain  

     
        

         

 
{0=0,1=1} Unipolar (UP) 

     
        

         
 

{0=0,1=0} Inverse unipolar 
(IUP) 

     
              

         

 
{0=-1,1=+1} Bipolar (BP) 

     
             

         

 
{0=+1,1=-1} Inverse Bipolar 

(IBP) 

 

Stochastic number generation can be seen as a process 

where a random series of numbers is compared with a 

constant value.   This process is analogous to one bit 

quantization with uniform dither addition.  Figure 1 shows a 

signal x(t) compared to random uniform sequence r. This can 

be modeled as a signal              . Output probability 

distribution of p (represented as fp) can be found using 

quantization theory [11]. Distribution fc will be given by the 

convolution between fx and the random distribution of the 

reference r. Observe that in a digital implementation x(t) and r 

will have discrete distributions. 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Figure 1. Expected value of px in the output of a comparator will be an 

approximate of x assuming its value is a constant in the interval. For N bits 

LFSR, random sequence length 2N-1 must be long enough to allow this.   

The resulting signal is passed by a quantization function 

with threshold in 0.5. Probability of the symbol 1 will be 
calculated area sampling fc. If x(t) is approximately constant in 

the interval T, the expected value of the resulting series p will 

be a good approximation to the value of x(t).  

Although in some circuits data can be acquired from the 
analog domain using statistical samplers that will already give 

stochastic number series as outputs [12], in most applications 

signals must be first converted from a radix representation to 

stochastic numbers, processed in one of the stochastic 

arithmetic domains and them converted back to radix form. 

Stochastic number generation uses a pseudorandom number 

generator either implemented as a LFSR or cellular automata 

[13]. Conversion from stochastic to radix form (S2R) is 

performed by an accumulator and can be viewed as a low pass 

process. In some cases, stochastic number regeneration may 

be necessary to minimize variance degradation.   

A.  Resolution and Convergence  

Given that M(px, K) is a K-points estimator of the average 

of px given by          
 

 
       

         , its variance will 

be inversely proportional to K (2). Assuming x(t0) is a 

constant value in the averaging interval, resolution of the 

signal in the UP domain will be limited by the standard 
deviation of M(px, K). Also in the limiting case for a 

resolution r one will have a minimal value for K given by 

equation (3).  
 

 (2) 

 

Assuming a Bernoulli series also allows us to estimate the 

variance of px over the dynamic range by equation (3).  

 

(3) 

 

Maximum value for variance will occur in the center of the 
dynamic range. As we will see in the following sections that is 

not the case for the output of stochastic operators.   

B. Stochastic Operators 

Let px and py be binary pulse streams representing 

respectively two values x(t0) and y(t0). Product 

z(t0)=x(t0)y(t0),. in the UP domain can be implemented by a 
single AND gate. It can also be shown that for a bipolar 

representation (BP or IBP) the product will be implemented 

by an EXOR gate. Also, since for any values of xN and yN, 

results of zN= xN + yN will generate an output with double of 
the inputs dynamic range, weighted summation is performed 

sampling the stochastic series using a multiplexer and an 

additional variable psel (E{psel}=0.5). Figure 2 shows the main 

stochastic operators.  

. 

 

 

 

 

 

 
 

 

Figure 2. Stochastic arithmetic operators and gains for the unipolar (UP) and 

the bipolar (BP) stochastic arithmetic domains. Weighted addition is 

performed with a MUX with an auxiliary stochastic variable (psel). Product is 

either a AND (UP) or a XOR (BP) gate. Inverse domains (IUP and IBP) will 

have inverted product operator outputs.   
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Although equation (2) gives a good estimate for the 

variance in the output of the SNG, output of stochastic 

operators has a different behavior [9]. An analysis of the 

relationship between the stochastic arithmetic critical path and 

the circuit behavior in the frequency domain is due but beyond 

the scope of this paper. 

III. PARALLEL AND MULTILEVEL DATA REPRESENTATIONS 

Since in most SC applications K is chosen such as it 

guarantees a given resolution, and assuming totally serial 

encoding one will have the maximum input frequency 

restricted by Fs = 1/KTs. Latency and bandwidth are thus 
important limits for the application of stochastic computing. 
Parallel data representation is a way to minimize this issue. 

The main concept is that each variable can be represented 

by J parallel stochastic numbers generated with uncorrelated 

random sequences. As the series are uncorrelated one only 

needs to change the S2R circuit to allow the summation of 

parallel pulse streams. This will allow a higher resolution and 

require smaller values of K generating smaller latencies. 

Resolution for parallel stochastic coded (PSC) will thus be 

defined by the product of K and J.  

In multilevel stochastic coding (MSC), dynamic range of 

the values in the SNG is split in L parts and each part is 
separately encoded in a pulse stream. Resolution (r), dynamic 

range subsection (L), redundant parallelism (J) and averaging 

depth (K) are related by equation (4) 

 

 (4) 

 

Figure 3 shows the proposed multilevel stochastic number 

generator for L=2.  

 

 

 

 

 

 

 

 

 

 

Figure 3. Multilevel Stochastic Number Generation. A single LFSR can be 

used to generate several uncorrelated sequences. For a 2-section MSC 

generator LFSR will have n/2 bits. 

As a convention for MSC each pulse stream that encodes 

part of the dynamic range of variable is numbered starting 

from the most significant section. Thus px1|2 is the pulse that 

encodes the upper mid-section of the variable x, and px2|2 its 

bottom section.  

MSC with two sections can use the same stochastic adders 
of figure 4. To understand this, one must that any operation all 

of the sections but one will be saturated either with a value of 

one or zero. If L=2 the outcome will be two pulse streams 

with a correct MSC value. If L is a power of two any sum 

operation can be performed.  

A 2-sections MSC multiplier uses more gates than 

conventional stochastic multipliers to take into account cross 

products between different sections of each variable (Figure 4). 

In order to generate the correctly MSC output streams 

probability space must be sampled in a way that correctly 

divides it in the right number of sections. As in the case of the 

adder, the 2-section multipliers can be combined to generate 

larger ones for cases with a higher number of sections. 
 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 4. Multilevel stochastic multiplier for a data representation with two 

subsections (L=2). 

IV.  VARIANCE AND AREA TRADEOFFS 

Since variance is related to effective resolution it is 

important to MSC and PSC variance characteristics. Figure 5 

shows theoretical and simulated variance for a fixed value of 

K. As the number of parallel stochastic circuits increase 

variance slowly decreases. Mean standard deviation data for 

each configuration with K=1024 is summarized in table 3.  

 

 

 

 
 

 

 
 

 

 

 

 

 

 

 

 

Figure 5. Comparing variance PSC (black dotted) and MSC (gray continuous) 

stochastic circuits. Using two parallel sections has twice the impact of 

parallelism without range sub-division. Variance is normalized by 1/K, where 

K is the average estimator depth. SNG using 10 bits LFSR. 

 
Doubling the number of parallel data paths (J) will only 

increase resolution by less than half bit. Total area cost will be 

exactly two times the single path alternative. It is still an 

interesting alternative to reduce total latency, since it allows a 
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shorter averaging depth (K). On the other hand multi-level 

stochastic coding ads one bit at each doubling of L. Table III 

shows that for the same deviation of using L=2, even a J=3 

was not enough. That means that for the same resolution MSC 

is more area effective than PSC. However, as L increases 

multiplier area increases with L2 making it less attractive. The 

same is not true for adders Figure 6 shows the reconstruction 

of a MSC signal for different averaging depths (K). 

TABLE III 

MEAN STANDARD DEVIATION OBSERVED: ALL CASES USE S2R 

RECONSTRUCTION WITH AVERAGING DEPTH K=1023 

Data Representation 
Parallel Datapaths 

1 2 3 

PSC 0.0122 0.0086 0.0071 

MSC - 0.0061 0.0041 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Figure 6. (a) Output for multilevel signal reconstruction with different values 

of K, J=1 and 2 sub-sections (L=2). Operation performed is  

                       with normalized time t[0,1].  

To test the core concepts a prototype circuit was 

implemented using a EP2C35F672C6 FPGA board. The 
circuit implemented two sinusoid signals with frequencies 

f1 = 30 kHz and f2 = 60kHz both were converted to PSC and 

MSC (L=2) with parallel statistical sampling and multi-level 

stochastic. Pulse streams where acquired using a NI ELVIS II 

prototyping board and processed using MATLAB. Table 4 

shows synthesis results.  

 

TABLE IV 

SYNTHESIS RESULTS FOR A SINGLE STOCHASTIC MULTIPLIER 

Block Logic 
Cells 

Register 
bits 

%LCs 
(input+SNG)/Total 

PSC 329 103 68,99% 

MSC 326 92 69,63% 

sin 30kHz 140 8 - 

sin 60kHz 87 8 - 

 

 

V. FINAL REMARKS AND FUTURE WORK 

 

Preliminary results indicate that MSC is a viable alternative 

to implement stochastic arithmetic systems. It can be useful 

when combined with direct redundant parallelism and 
customized for a particular application. Although increasing L 

at the beginning of the stochastic circuit data path seems an 

good design alternative one must keep in mind that this will 

probably impact the inherent fault tolerance of the system. 

The exact limits of this tradeoff are an issue that remains to be 

addressed in future research. 

Work will be conducted on two main lines: fault tolerance 

and automatic synthesis. We intend to compare multilevel and 

parallel stochastic circuits for multiple fault scenarios and 

evaluate its robustness. Our focus is to understand how the 

way signals are spread in time and over circuit area will 
affects its inherent fault tolerance. We will also pursue a 

methodology to generate arbitrary functions and operators on 

multi-level stochastic circuits. The ultimate goal is the 

automatic design of arithmetic stochastic units for a given set 

of target reliability parameters. 
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