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Abstract— In this work, a weighted multi-level stochastic
representation and its operators are introduced to increase
alternatives for design space exploration. Multi-level stochastic
circuit architectures are presented and area tradeoffs discussed.
Stochastic arithmetic circuits allow better fault tolerance by
encoding signals in pseudorandom pulse streams. However, this
comes at the expense of higher latencies and a worst dynamic
behaviour. Also, in stochastic circuits, signal bandwidth, pseudo-
random (PN) sequence length and variance are related to
maximum number of stochastic operations one can perform
before signal regeneration an that creates a limit to their
complexity.
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I. INTRODUCTION

Stochastic processing is a well-known technique to design
arithmetic circuits by encoding variables as expected values of
uncorrelated pulse streams [1]. Changing numeric data
representation from binary radix to stochastic streams allows
for arithmetic operators that consume a very low amount of
area and are well suited to algorithms with massive
parallelism of operators [2]. Also, stochastic modulation is
one of the data representation techniques that have a natural
resistance to soft errors and a tendency to show graceful
performance degradation when subjected to multiple failures
[31.[4].

Since its first introduction, stochastic circuits (SC) have
been used to address many different applications [2], [3], [4].
More recently stochastic arithmetic has been used to LDPC
decoding [5] and image processing [6]. Some recent research
has focused on systematic design methodologies for stochastic
operators using finite state machines [7], [8] and spectral
transforms [9].

Main disadvantage of stochastic arithmetic is its demand
for relatively high number of cycles to accurately represent
variables with a given resolution. Contrary to radix binary
numbers where word length increases linearly with the
resolution r, in stochastic arithmetic word length is an
exponential function of r. Also, although research indicates
that time/area product favours SC over binary radix serial
(BRI) architectures for resolutions below ten bits [4], SC
presents variance degradation along the data path that makes
then harder to successfully design [9].

Since variance control in the circuit is fundamental to its
precise operation, a thorough variance analysis must be
included in the SC design flow [9]. Although variance in the
output of the stochastic number generators (SNG) closely

resembles the expected values for a Bernoulli series,
subsequent operators will change its distribution. It is,
therefore, very important for SC design that to have a tool to
estimate variance

When compared to recent research of in SC, this work
presents some important differences. Previous research has
focused mainly on single bit representation of stochastic
signals [2], [3], [4], [5]- SC is mainly explored as a way to
reduce the area taken by the operators on the implementation
of massively parallel algorithm. Our work mainly aims to take
advantage of SC fault tolerance characteristics; therefore we
focus on parallel stochastic data representation as a way to
reduce latency issues. A recent paper proposes a parallel
stochastic circuit to perform numerical integration [6], it does
not, however, explore the dynamic range sub-division to
create a multilevel parallel stochastic coding like this paper
does.

Finally, our proposal for multilevel stochastic is a technique
that involves the weighting, or masking, of the signals in the
stochastic number generator (SNG). The idea bears some
resemblance to the weighted stochastic series introduced by
Gupta and Kumaresan to prove the feasibility of exact
stochastic multiplication [10]. Our proposal, however, starts
from the full dynamic range of the signal and make a few
partitions while previous work operates a bit by bit weighting.
This difference implies that our paper must define new
stochastic operators to perform both summation and product
on multilevel stochastic coded (MSC) signals.

The remaining of this work is organized as follows: section
Il introduces classical unipolar and bipolar stochastic number
representation, its main operators and variance characteristics.
Section 1l introduces multilevel stochastic quantization and
its operators. Area tradeoffs are discussed on section IV. A
final discussion and future work are presented in section V.

Il. STOCHASTIC ARITHMETIC

Assuming a signal x(t) such as its dynamic range in
confined to the interval [Xuin, Xmax], and it is sampled with
frequency Fs=1/Ts. A binary series p(t) with symbols
{0, ¢1} is defined such as at any given point to = no - T,
one can find an interval AT such as for te[t,-AT/2, t,+AT/2],
the expected value of py is given by (1). Where Xy is the
normalized value on x(t,).

E{py} = xy @

Combining different ways to normalize the input and
attribute values to the binary stream alphabet one ends up with



four SC domains (Table 1) [2]. Throughout this paper, unless

told otherwise,

we will

be working with

unipolar

representation (UP). It must be noted that results can be
generalized for the other domains.

TABLE|

STOCHASTIC ARITHMETIC DOMAINS. THIS TABLE EXPANDS [12].

Normalization Alphabet SC domain
Xy = X~ Xmin_ {p0,p =1} Unipolar (UP)
Xmax — Xmin
_ Xpin—X {900, =0} Inverse unipolar
o= Xmax _Xmin (IUP)
Xy = 2 Knax + Ximin) {po=1 p1=+1} Bipolar (BP)
Xmax — Xmin
Xmax + Ximin) — % {po=+1 01=-1} Inverse Bipolar
N T X (IBP)
max mmn

Stochastic number generation can be seen as a process
where a random series of numbers is compared with a
constant value. This process is analogous to one bit
quantization with uniform dither addition. Figure 1 shows a
signal x(t) compared to random uniform sequence r. This can
be modeled as a signalc(t) = x(t) -r. Output probability
distribution of p (represented as f,) can be found using
quantization theory [11]. Distribution f. will be given by the
convolution between f, and the random distribution of the
reference r. Observe that in a digital implementation x(t) and r
will have discrete distributions.
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Figure 1. Expected value of py in the output of a comparator will be an
approximate of x assuming its value is a constant in the interval. For N bits
LFSR, random sequence length 2N-1 must be long enough to allow this.

The resulting signal is passed by a quantization function
with threshold in 0.5. Probability of the symbol ¢, will be
calculated area sampling f.. If x(t) is approximately constant in
the interval T, the expected value of the resulting series p will
be a good approximation to the value of x(t).

Although in some circuits data can be acquired from the
analog domain using statistical samplers that will already give

stochastic number series as outputs [12], in most applications
signals must be first converted from a radix representation to
stochastic numbers, processed in one of the stochastic
arithmetic domains and them converted back to radix form.
Stochastic number generation uses a pseudorandom number
generator either implemented as a LFSR or cellular automata
[13]. Conversion from stochastic to radix form (S2R) is
performed by an accumulator and can be viewed as a low pass
process. In some cases, stochastic number regeneration may
be necessary to minimize variance degradation.

A. Resolution and Convergence

Given that M(p,, K) is a K-points estimator of the average
of py given by M(p,,K) = ~3k_, p.[k] - Efp,}, its variance will
be inversely proportional to K (2). Assuming x(t;) is a
constant value in the averaging interval, resolution of the
signal in the UP domain will be limited by the standard
deviation of M(p,, K). Also in the limiting case for a
resolution r one will have a minimal value for K given by
equation (3).

K> 227‘—2 2)

Assuming a Bernoulli series also allows us to estimate the
variance of p, over the dynamic range by equation (3).

xy - (1—xy) 3
Gy =Var(M(po K)lugay=) = =—p— O

Maximum value for variance will occur in the center of the
dynamic range. As we will see in the following sections that is
not the case for the output of stochastic operators.

B. Stochastic Operators

Let px and p, be binary pulse streams representing
respectively two values X(t)) and y(tg). Product
Z(to)=X(to)-y(to),. in the UP domain can be implemented by a
single AND gate. It can also be shown that for a bipolar
representation (BP or IBP) the product will be implemented
by an EXOR gate. Also, since for any values of xy and yy,
results of zy= xy + yn Will generate an output with double of
the inputs dynamic range, weighted summation is performed
sampling the stochastic series using a multiplexer and an
additional variable pse (E{psi}=0.5). Figure 2 shows the main
stochastic operators.

p><— Po = Px - Py (UP)
Px
Py
G=0.5

Py

Po =2 (px + py)
G=1

Px Po=pc-py(BP)
sel
Py
G=1

Figure 2. Stochastic arithmetic operators and gains for the unipolar (UP) and
the bipolar (BP) stochastic arithmetic domains. Weighted addition is
performed with a MUX with an auxiliary stochastic variable (ps). Product is
either a AND (UP) or a XOR (BP) gate. Inverse domains (IUP and I1BP) will
have inverted product operator outputs.



Although equation (2) gives a good estimate for the
variance in the output of the SNG, output of stochastic
operators has a different behavior [9]. An analysis of the
relationship between the stochastic arithmetic critical path and
the circuit behavior in the frequency domain is due but beyond
the scope of this paper.

I1l. PARALLEL AND MULTILEVEL DATA REPRESENTATIONS

Since in most SC applications K is chosen such as it
guarantees a given resolution, and assuming totally serial
encoding one will have the maximum input frequency
restricted by Fs = 1/K-Ts. Latency and bandwidth are thus
important limits for the application of stochastic computing.
Parallel data representation is a way to minimize this issue.

The main concept is that each variable can be represented
by J parallel stochastic numbers generated with uncorrelated
random sequences. As the series are uncorrelated one only
needs to change the S2R circuit to allow the summation of
parallel pulse streams. This will allow a higher resolution and
require smaller values of K generating smaller latencies.
Resolution for parallel stochastic coded (PSC) will thus be
defined by the product of K and J.

In multilevel stochastic coding (MSC), dynamic range of
the values in the SNG is split in L parts and each part is
separately encoded in a pulse stream. Resolution (r), dynamic
range subsection (L), redundant parallelism (J) and averaging
depth (K) are related by equation (4)
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Figure 3 shows the proposed multilevel stochastic number
generator for L=2.
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Figure 3. Multilevel Stochastic Number Generation. A single LFSR can be
used to generate several uncorrelated sequences. For a 2-section MSC
generator LFSR will have n/2 bits.

As a convention for MSC each pulse stream that encodes
part of the dynamic range of variable is numbered starting
from the most significant section. Thus pq. is the pulse that
encodes the upper mid-section of the variable X, and pyy, its
bottom section.

MSC with two sections can use the same stochastic adders
of figure 4. To understand this, one must that any operation all
of the sections but one will be saturated either with a value of
one or zero. If L=2 the outcome will be two pulse streams

with a correct MSC value. If L is a power of two any sum
operation can be performed.

A 2-sections MSC multiplier uses more gates than
conventional stochastic multipliers to take into account cross
products between different sections of each variable (Figure 4).
In order to generate the correctly MSC output streams
probability space must be sampled in a way that correctly
divides it in the right number of sections. As in the case of the
adder, the 2-section multipliers can be combined to generate
larger ones for cases with a higher number of sections.
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Figure 4. Multilevel stochastic multiplier for a data representation with two
subsections (L=2).

IV. VARIANCE AND AREA TRADEOFFS

Since variance is related to effective resolution it is
important to MSC and PSC variance characteristics. Figure 5
shows theoretical and simulated variance for a fixed value of
K. As the number of parallel stochastic circuits increase
variance slowly decreases. Mean standard deviation data for
each configuration with K=1024 is summarized in table 3.
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Figure 5. Comparing variance PSC (black dotted) and MSC (gray continuous)
stochastic circuits. Using two parallel sections has twice the impact of
parallelism without range sub-division. Variance is normalized by 1/K, where
K is the average estimator depth. SNG using 10 bits LFSR.

Doubling the number of parallel data paths (J) will only
increase resolution by less than half bit. Total area cost will be
exactly two times the single path alternative. It is still an
interesting alternative to reduce total latency, since it allows a



shorter averaging depth (K). On the other hand multi-level
stochastic coding ads one bit at each doubling of L. Table 1II
shows that for the same deviation of using L=2, even a J=3
was not enough. That means that for the same resolution MSC
is more area effective than PSC. However, as L increases
multiplier area increases with L? making it less attractive. The
same is not true for adders Figure 6 shows the reconstruction
of a MSC signal for different averaging depths (K).
TABLE Il

MEAN STANDARD DEVIATION OBSERVED: ALL CASES USE S2R
RECONSTRUCTION WITH AVERAGING DEPTH K=1023

. Parallel Datapaths
Data Representation
1 2 3
PSC 0.0122 0.0086 0.0071
MSC - 0.0061 0.0041

MSC output reconstruction after multiplier

0 0.2 0.4 0.6 0.8 1
Figure 6. (a) Output for multilevel signal reconstruction with different values

of K, J=1 and 2 sub-sections (L=2). Operation performed is
y =t-(0.5+0.5- sin(8nt)) with normalized time te[0,1].

To test the core concepts a prototype circuit was
implemented using a EP2C35F672C6 FPGA board. The
circuit implemented two sinusoid signals with frequencies
f1= 30 kHz and f,= 60kHz both were converted to PSC and
MSC (L=2) with parallel statistical sampling and multi-level
stochastic. Pulse streams where acquired using a NI ELVIS |1
prototyping board and processed using MATLAB. Table 4
shows synthesis results.

TABLE IV
SYNTHESIS RESULTS FOR A SINGLE STOCHASTIC MULTIPLIER
Block Logic Register %LCs
Cells bits (input+SNG)/Total

PsC 329 103 68,99%
MsC 326 92 69,63%

sin 30kHz 140 8 -

sin 60kHz 87 8 -

V. FINAL REMARKS AND FUTURE WORK

Preliminary results indicate that MSC is a viable alternative
to implement stochastic arithmetic systems. It can be useful
when combined with direct redundant parallelism and
customized for a particular application. Although increasing L
at the beginning of the stochastic circuit data path seems an
good design alternative one must keep in mind that this will
probably impact the inherent fault tolerance of the system.
The exact limits of this tradeoff are an issue that remains to be
addressed in future research.

Work will be conducted on two main lines: fault tolerance
and automatic synthesis. We intend to compare multilevel and
parallel stochastic circuits for multiple fault scenarios and
evaluate its robustness. Our focus is to understand how the
way signals are spread in time and over circuit area will
affects its inherent fault tolerance. We will also pursue a
methodology to generate arbitrary functions and operators on
multi-level stochastic circuits. The ultimate goal is the
automatic design of arithmetic stochastic units for a given set
of target reliability parameters.
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