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Abstract— This work features different approaches on towards 

Motion Estimation (ME), looking for higher throughput to the 

procedure which is the main performance bottleneck of video 

encoders. In spite of consuming a high share of the total 

processing amount of an encoder, ME also provides its highest 

gains regarding compression. This work’s purpose is to take 

advantage of the high potential for parallelism of the Motion 

Estimation algorithms, in this case focused on the Full Search 

algorithm, making use of combined parallel and distributed 

programming paradigms. We obtained gains up 7x with the 

propose implementation (OpenMP + MPI libraries) when 

compared to the serial version, considering different search 

areas. 
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I. INTRODUCTION 

The heaviest load of data transmitted throughout the 

internet represents digital video [1]. Limited bandwidth and 

high amounts of digital data to be sent and received are, 

among others, factors for which digital videos must be 

compressed. Introduced by this context, video coding is a set 

of procedures that look for compressing digital videos. 

While the digital video industry shows frequent innovation 

and growth regarding digital image quality and resolution 

both, the growth in the bandwidth of internet connections 

cannot keep its pace, thus creating a need to reduce the 

amount of transferring data in order to provide real-time 

broadcasting when dealing with high quality digital videos. 

The digital video coding catches both academy’s and 

industry’s attention, having its importance shown in every 

kind of digital video broadcasting, such as through the 

internet, DVD, Digital Television, Blu-ray and so on. For that 

reason, a variety of standards has been developed as the need 

to compress data without losing valuable information gets 

more demanding with higher resolution and definition of 

digital images. The procedures here featured can be adapted to 

either consolidated standards (e.g., MPEG-2 [2], H264/AVC 

[3], and others) or up-and-coming standards (such as HEVC
1
 -

High Efficiency Video Coding [4]). 

The video coding process’s goal is to remove redundant 

information from the digital data of the image video. That is, 

exploiting the video’s temporal and spatial redundancies in 

addition to entropy encoding [5]. 

Here in this work, the focus will be put onto the Motion 

Estimation (ME) process, which is one of the steps that 

accounts for the video coding as a whole [5]. As it is, ME may 

be considered a bottleneck for the whole process of the video 

coding, which makes that any time-related improvements 

made in this particular process strongly relevant in the whole 

coding process elapsed time [6]. 

As said before, with higher resolutions and higher amounts 

of data to be handled comes the need for more aggressive 

compression. The need to compress more and at the same time 

to care about valuable information is the motivation for 

creating standards that are more satisfying on regard of digital 

data compression. Although the newer standards offer more 

successful compression rates (HEVC saves about 80% bit rate 

in comparison to MPEG-2 and half this percentage when 

compared to H264/AVC [7]), they also demand a series of 

operations whose complexity can be quite concerning in 

situations when a recording must have a real time broadcast. 

On the other hand, the main part of video coding, as the most 

costing one, ME is a repetitive process that may operate on 

independent data, which means it has a large potential for 

parallel processing. Combined to the popularity of multi-

threading and multi-core architectures nowadays, this 

potential enables a set of possibilities to be explored with the 

intention to reach high throughput rates in the coding process 

of a digital video. The literature brings us a variety of 

algorithms for ME, the Full Search (FS) algorithm and 

Diamond Search (DS) algorithm being the most popular ones. 

This work will present different implementations of the 

Full Search algorithm, comparing the performance of serial, 

parallel, distributed and combined parallel and distributed 

versions. FS is an optimal and exhaustive algorithm, itself 

having a very high computation complexity, but it is 

completely based on data independence, this one being the 

most important factor regarding parallel computing. Our work 

exploits this peculiar characteristic of FS algorithm, in order 

to achieve a highly parallel ME in order to accelerate the 

video coding process as a whole. We obtained a gain up 4x (in 

terms of speed-up) with the parallel OpenMP version and up 

7x (in terms of speed-up too) with the hybrid OpenMP + MPI 

parallel and distributed version in comparison to the 

sequential implementation. 

We will be featuring more detailed explanations about 

Motion Estimation and the Full Search algorithm in Section 2. 

A quick explanation of our implementations will be given in 

the Section 3. The Section 4 will present the results of our 

implementations and comparisons to justify its worth. Section 

5, for its part, is bringing this work's conclusions.  

__________________________ 
1The new video coding standard, which may be released in the first 

semester of the present year. 



  

 

II. MOTION ESTIMATION 

Among other steps, Motion Estimation is a component part 

of the so called video coding. There are plenty of ways to 

build a video coder, but an optimal algorithm for ME will 

always consume a relevant share of the total encoding 

processing [8]. 

ME is a lossless procedure as the decoding process recovers 

the original data without any losses. Nevertheless, it helps in 

the compression by changing the way the digital data is 

represented. While a not yet coded piece of video represents 

every block (e.g., a spatial-related chunk of a frame) by its 

literal value, after being coded, most blocks belonging to this 

piece of video may be represented as motion vectors, each 

vector representing a previously reconstructed block, in 

addition to a residue, representing the difference between that 

previously reconstructed block (found in an already coded 

frame of that piece of video) and the block currently being 

coded. After that, instead of storing the values of every pixel 

from every block, most blocks will be stored as a coordinate 

and a module. The compression level of the Motion 

Estimation is completely related to a video's temporal 

redundancy, which gives a good reliability for this process 

since most videos have a very strong temporal connection 

between their frames. 

A. Motion Estimation Mechanics 

Basically, the ME process for a block demands a reference 

frame, a search range and the current frame where the block 

itself is situated. 

The currently selected block will be compared, based on a 

similarity criterion, to every block of the reference frame 

within a search range, and the coordinates of that one block 

which most resembles the currently selected block will be 

stored alongside its discrepancy in comparison to the currently 

selected block. There are several ways to define a search 

range and several more similarity criteria. It is up to the 

implementer to decide how the search area will be defined and 

which criterion will be used. These decisions will lead to the 

gains and losses of the process. 

In the literature there are many different block-matching 

algorithms [9] (e.g., Full Search, Diamond Search, Three-Step 

Search and others), and the most remarkable difference among 

those algorithms is the way the search range is defined. 

B. Full Search 

As mentioned before, this work will focus the Full Search 

algorithm, which was chosen due to its high capacity for 

parallelism and for being optimal. 

The FS is an exhaustive algorithm that gives us the optimal 

result within a search area. That means the search range will 

be composed from every possible block of the reference frame 

around the currently selected block position within a certain 

range. After comparing every block inside the search range, a 

coordinate and a residue will be stored representing the block 

which resembles the most the current block and its 

discrepancy to it. Despite being exhaustive and implying in 

the biggest number of comparisons that could be made in a 

search area, it is very important to state that the FS algorithm 

has no data dependency among the blocks yet to be coded. 

That implies every single block to be processed can be coded 

at the same time if there is hardware available for it. 

Theoretically speaking, if we can afford as many processing 

units as we need, the complexity of FS's ME parallel ideal 

version is O(1), supposing we can dispatch each block to a 

different processing unit. 

C. Sum of Absolute Differences 

When we explained the ME mechanics we mentioned the 

need of a similarity criterion in order to measure the 

discrepancy between two blocks. It was arbitrarily chosen that 

the criterion to be used on this work’s implementation of the 

Motion Estimation would be the Sum of Absolute Differences 

(SAD) [10]. 

III. PARALLEL AND DISTRIBUTED FULL SEARCH 

IMPLEMENTATIONS 

Since the beginning of this text, ME’s complexity 

computational has been emphasized, as well as its high 

potential for a parallel implementation. In this section, we will 

discuss different paradigms we used to build our parallel 

version of the Full Search algorithm, as well as the techniques 

used to distribute the computation among the available 

processing units we have.  

The following implementations were based on a standard 

implementation of the Full Search algorithm made by us, 

using the C programming language. 

A. OpenMP Parallel Full Search Implementation 

OpenMP [11] is an open-source API for parallel 

programming that brings a high-level set of functions allowing 

the programmer to develop communication among the threads 

of a CPU. 

From the standard serial implementation, the sort of 

changes made were the ones with the purpose to make use of 

every thread available on our CPU. Facing the possibility of a 

multi-core architecture, we decided to make each core 

responsible for a list of frames, in order to exploit every 

available processing unit at the same time avoiding stalling 

the computation, for example, by waiting for memory data, as 

much as possible. The threads within a core would be all 

responsible for blocks of a frame sent to that core, since these 

threads share the same memory. Another option would be 

sending a block to every core, but that would require more 

communication between memory and processor, and that is 

what we try to avoid. The figure below illustrates a flowchart 

representing this implementation. 

Analysing the Fig. 1 we observe that one thread (called the 

Master Thread in our diagram) will read the first frame of the 

video sequence and store it, taking it as the reference frame. 

After that, each thread will fetch a block and perform the ME, 

comparing this block to every block of the reference frame 

within the search range, saving the coordinates and residue 

from its best match. This procedure is repeated till every block 

has been compared and finally resynchronize all the threads 

and finish the computation. 



  

 

 

Figure 1: Diagram of computation for the OpenMP Parallel 

implementation of the Full Search algorithm. 

B. Hybrid MPI and OpenMP Full Search Implementation 

MPI (Message Passing Interface) [12] is a standardized 

message-passing interface. In this work it was used in order to 

establish communication among the nodes of a distributed PC 

cluster. The implementation used in this work for the MPI was 

MPICH2 [13]. 

The logic applied on the division of the labour across the 

processing units is the very same described in the subsection 

above. For this implementation, a node on the cluster receives 

a list of frames to code and a reference frame. The distribution 

algorithm is arranged in a way that guarantees balance 

regarding the workload of the nodes in the cluster, that is, the 

maximum discrepancy among the number of frames that a 

node will process is one.  

Fig. 2 shows the diagram related to hybrid implementation 

distributed and parallel of the Full Search algorithm presented 

in this work.  This hybrid version uses the OpenMP parallel 

implementation (described in the subsection above) with the 

distributed version. 

In accordance with the Fig. 2, each node on the cluster will 

code its list of frames in a parallel way. Another level of 

parallelism is added inside each node: a process analogue to 

the process described on Fig. 1 is activated in order to make 

use of every thread inside that node. MPI itself foresees using 

every thread available on the processors of a cluster but our 

implementation tries to force a node to work on data it already 

has, by using the OpenMP framework, thus avoiding two 

blocks of a same frame to be coded elsewhere, reducing 

communication among nodes. 

 

Figure 2: Diagram of computation for the hybrid MPI and 

OpenMP implementation of the Full Search algorithm.  

IV. RESULTS OBTAINED 

In this section we present the obtained results with the 

execution of our Full Search parallelized and distributed 

algorithm.   

Both serial and OpenMP tests were executed on a computer 

running an Intel Core i7 3770 (@ 3.4 GHz) [14]. The tests 

related to MPI ran in a cluster and used 4 nodes Intel Xeon 

CPU E5310 (@ 1.60GHz) [14], where each node can handle 

up to 8 processes. The time represented on the results refers to 

the time elapsed on the ME of 150 frames using the resolution 

HD720p (1280x720 pixels) considering the FourPeople video 

sequence.  

The block size adopted was 4x4 pixels and the search area 

considered in these experimental ranging from 16x16 pixels to 

256x256 pixels. The performance is measured considering the 

time execution in seconds and performance calculate by the 

speed-up [15] obtained.  

Fig. 3 shows a comparison with different versions of the 

Full Search algorithm implemented in this work: Sequential 

(red), OpenMP (green), the hybrid OpenMP + MPI tests 

ranging the number of processes in the cluster (in different 

shades of blue). The x-axis is related to the search area 

dimensions (32x32 – 128x128 pixels) and the y-axis represents 

the execution time, in seconds. 

Analyzing the Fig. 3, we can observe that this graphic 

states that parallel versions of the FS algorithm have reached 

higher throughput rates than the serial one, the OpenMP 

version performing up to 75% faster (in terms of time 

execution) than the sequential version and the hybrid OpenMP 



  

 

+ MPI versions performing: (a) 8 processes: up to 12%; (b) 16 

processes: up to 60%; and (c) 32 processes: up to 85% faster 

compared to the sequential version. The values of elapsed 

time regarding the parallel and distributed implementations 

(OpenMP vs. OpenMP + MPI – 8 processes) of the FS 

represented in the graphic above are approximated. Despite of 

both architectures having a similar computation power, the 

distributed architecture has a fairly high communication cost 

among nodes, which justifies the gain of up to 22% of the 

OpenMP-only version, that runs the whole application inside 

the same processor. 

 
Figure 3: HD720p Time Execution Results: Sequential vs. 

OpenMP vs. OpenMP + MPI (8 – 32 processes). 

Fig. 4 presents the hybrid OpenMP + MPI version ranging 

the number of processes (x-axis), in terms of speed-up (y-

axis). Each curve illustrated represents a search area 

dimension.  

 
Figure 4: HD720p Speed-up Results – Time Execution: 

OpenMP vs. OpenMP + MPI (1 – 32 processes). 

By making an analysis of the graphic presented in Fig. 4, 

we can notice the sum of the distributed and parallel 

computing paradigms, which was from the beginning the goal 

of this work, was successfully accomplished. Considering that 

the processing power of the conventional processor used in 

the OpenMP tests is limited to 8 threads, it is possible to 

accredit the speed-up boost brought until the 8th process to the 

parallel OpenMP implementation. In addition, as the 

OpenMP-only version doesn’t present higher performance 

with the growth of search areas nor it presents reaction to the 

varying of search areas in the speed-up ratio. On other hand, 

when the hybrid parallel and distributed scope is introduced, it 

is possible to visualize a significant growth in terms of speed-

up when more processes are dedicated to execute the 

application.  

V. CONCLUSION 

Our objective was to develop a merged implementation 

where parallel and distributed computing would coexist and 

lead to a more efficient processing of the ME and that 

objective was successfully accomplished. In addition, we have 

shown that the exploration of the parallelism in architecture 

distributed is a good alternative to accelerate the motion 

estimation process.  Our hybrid OpenMP + MPI solution 

achieve up to 3x gains in terms of speed-up increase when 

compared with the version OpenMP-only, and up to 7x faster 

than the sequential version.  

It is visible that the approach discussed on this paper has a 

lot to offer and great performance may be reached after 

refining our implementations. 

Future works could focus on improving the way the work is 

distributed among the processing units in order to enhance the 

throughput and find ways to amortise the cost of 

communications. 
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