Acceleration Techniques for Motion Estimation

Algorithms Using Parallel and Distributed Computing

Jonas C Meinerz, Eduarda R Monteiro, Felipe M Sampaio, Sergio Bampi, Altamiro A Susin

Instituto de Informatica, Universidade Federal do Rio Grande do Sul
Porto Alegre, Brasil

{jcmeinerz, ermonteiro,

Abstract— This work features different approaches on towards
Motion Estimation (ME), looking for higher throughput to the
procedure which is the main performance bottleneck of video
encoders. In spite of consuming a high share of the total
processing amount of an encoder, ME also provides its highest
gains regarding compression. This work’s purpose is to take
advantage of the high potential for parallelism of the Motion
Estimation algorithms, in this case focused on the Full Search
algorithm, making use of combined parallel and distributed
programming paradigms. We obtained gains up 7x with the
propose implementation (OpenMP + MPI libraries) when
compared to the serial version, considering different search
areas.

Keywords — Video coding; Motion Estimation; Full Search
Algorithm; parallel; distributed; OpenMP; MPI

I. INTRODUCTION

The heaviest load of data transmitted throughout the
internet represents digital video [1]. Limited bandwidth and
high amounts of digital data to be sent and received are,
among others, factors for which digital videos must be
compressed. Introduced by this context, video coding is a set
of procedures that look for compressing digital videos.

While the digital video industry shows frequent innovation
and growth regarding digital image quality and resolution
both, the growth in the bandwidth of internet connections
cannot keep its pace, thus creating a need to reduce the
amount of transferring data in order to provide real-time
broadcasting when dealing with high quality digital videos.

The digital video coding catches both academy’s and
industry’s attention, having its importance shown in every
kind of digital video broadcasting, such as through the
internet, DVD, Digital Television, Blu-ray and so on. For that
reason, a variety of standards has been developed as the need
to compress data without losing valuable information gets
more demanding with higher resolution and definition of
digital images. The procedures here featured can be adapted to
either consolidated standards (e.g., MPEG-2 [2], H264/AVC
[3], and others) or up-and-coming standards (such as HEVC* -
High Efficiency Video Coding [4]).

The video coding process’s goal is to remove redundant
information from the digital data of the image video. That is,
exploiting the video’s temporal and spatial redundancies in
addition to entropy encoding [5].

Here in this work, the focus will be put onto the Motion
Estimation (ME) process, which is one of the steps that

“The new video coding standard, which may be released in the first
semester of the present year.

fmsampaio, bampi} @inf.ufrgs.br; altamiro.susin@ufrgs.br

accounts for the video coding as a whole [5]. As it is, ME may
be considered a bottleneck for the whole process of the video
coding, which makes that any time-related improvements
made in this particular process strongly relevant in the whole
coding process elapsed time [6].

As said before, with higher resolutions and higher amounts
of data to be handled comes the need for more aggressive
compression. The need to compress more and at the same time
to care about valuable information is the motivation for
creating standards that are more satisfying on regard of digital
data compression. Although the newer standards offer more
successful compression rates (HEVC saves about 80% bit rate
in comparison to MPEG-2 and half this percentage when
compared to H264/AVC [7]), they also demand a series of
operations whose complexity can be quite concerning in
situations when a recording must have a real time broadcast.
On the other hand, the main part of video coding, as the most
costing one, ME is a repetitive process that may operate on
independent data, which means it has a large potential for
parallel processing. Combined to the popularity of multi-
threading and multi-core architectures nowadays, this
potential enables a set of possibilities to be explored with the
intention to reach high throughput rates in the coding process
of a digital video. The literature brings us a variety of
algorithms for ME, the Full Search (FS) algorithm and
Diamond Search (DS) algorithm being the most popular ones.

This work will present different implementations of the
Full Search algorithm, comparing the performance of serial,
parallel, distributed and combined parallel and distributed
versions. FS is an optimal and exhaustive algorithm, itself
having a very high computation complexity, but it is
completely based on data independence, this one being the
most important factor regarding parallel computing. Our work
exploits this peculiar characteristic of FS algorithm, in order
to achieve a highly parallel ME in order to accelerate the
video coding process as a whole. We obtained a gain up 4x (in
terms of speed-up) with the parallel OpenMP version and up
7x (in terms of speed-up too) with the hybrid OpenMP + MPI
parallel and distributed version in comparison to the
sequential implementation.

We will be featuring more detailed explanations about
Motion Estimation and the Full Search algorithm in Section 2.
A quick explanation of our implementations will be given in
the Section 3. The Section 4 will present the results of our
implementations and comparisons to justify its worth. Section
5, for its part, is bringing this work's conclusions.

Il. MOTION ESTIMATION

Among other steps, Motion Estimation is a component part
of the so called video coding. There are plenty of ways to
build a video coder, but an optimal algorithm for ME will
always consume a relevant share of the total encoding
processing [8].

ME is a lossless procedure as the decoding process recovers
the original data without any losses. Nevertheless, it helps in
the compression by changing the way the digital data is
represented. While a not yet coded piece of video represents
every block (e.g., a spatial-related chunk of a frame) by its
literal value, after being coded, most blocks belonging to this
piece of video may be represented as motion vectors, each
vector representing a previously reconstructed block, in
addition to a residue, representing the difference between that
previously reconstructed block (found in an already coded
frame of that piece of video) and the block currently being
coded. After that, instead of storing the values of every pixel
from every block, most blocks will be stored as a coordinate
and a module. The compression level of the Motion
Estimation is completely related to a video's temporal
redundancy, which gives a good reliability for this process
since most videos have a very strong temporal connection
between their frames.

A. Motion Estimation Mechanics

Basically, the ME process for a block demands a reference
frame, a search range and the current frame where the block
itself is situated.

The currently selected block will be compared, based on a
similarity criterion, to every block of the reference frame
within a search range, and the coordinates of that one block
which most resembles the currently selected block will be
stored alongside its discrepancy in comparison to the currently
selected block. There are several ways to define a search
range and several more similarity criteria. It is up to the
implementer to decide how the search area will be defined and
which criterion will be used. These decisions will lead to the
gains and losses of the process.

In the literature there are many different block-matching
algorithms [9] (e.g., Full Search, Diamond Search, Three-Step
Search and others), and the most remarkable difference among
those algorithms is the way the search range is defined.

B. Full Search

As mentioned before, this work will focus the Full Search
algorithm, which was chosen due to its high capacity for
parallelism and for being optimal.

The FS is an exhaustive algorithm that gives us the optimal
result within a search area. That means the search range will
be composed from every possible block of the reference frame
around the currently selected block position within a certain
range. After comparing every block inside the search range, a
coordinate and a residue will be stored representing the block
which resembles the most the current block and its
discrepancy to it. Despite being exhaustive and implying in
the biggest number of comparisons that could be made in a

search area, it is very important to state that the FS algorithm
has no data dependency among the blocks yet to be coded.
That implies every single block to be processed can be coded
at the same time if there is hardware available for it.
Theoretically speaking, if we can afford as many processing
units as we need, the complexity of FS's ME parallel ideal
version is O(1), supposing we can dispatch each block to a
different processing unit.

C. Sum of Absolute Differences

When we explained the ME mechanics we mentioned the
need of a similarity criterion in order to measure the
discrepancy between two blocks. It was arbitrarily chosen that
the criterion to be used on this work’s implementation of the
Motion Estimation would be the Sum of Absolute Differences
(SAD) [10].

I11. PARALLEL AND DISTRIBUTED FULL SEARCH
IMPLEMENTATIONS

Since the beginning of this text, ME’s complexity
computational has been emphasized, as well as its high
potential for a parallel implementation. In this section, we will
discuss different paradigms we used to build our parallel
version of the Full Search algorithm, as well as the techniques
used to distribute the computation among the available
processing units we have.

The following implementations were based on a standard
implementation of the Full Search algorithm made by us,
using the C programming language.

A. OpenMP Parallel Full Search Implementation

OpenMP [11] is an open-source APl for parallel
programming that brings a high-level set of functions allowing
the programmer to develop communication among the threads
of a CPU.

From the standard serial implementation, the sort of
changes made were the ones with the purpose to make use of
every thread available on our CPU. Facing the possibility of a
multi-core architecture, we decided to make each core
responsible for a list of frames, in order to exploit every
available processing unit at the same time avoiding stalling
the computation, for example, by waiting for memory data, as
much as possible. The threads within a core would be all
responsible for blocks of a frame sent to that core, since these
threads share the same memory. Another option would be
sending a block to every core, but that would require more
communication between memory and processor, and that is
what we try to avoid. The figure below illustrates a flowchart
representing this implementation.

Analysing the Fig. 1 we observe that one thread (called the
Master Thread in our diagram) will read the first frame of the
video sequence and store it, taking it as the reference frame.
After that, each thread will fetch a block and perform the ME,
comparing this block to every block of the reference frame
within the search range, saving the coordinates and residue
from its best match. This procedure is repeated till every block
has been compared and finally resynchronize all the threads
and finish the computation.

Master Thread Only

O Stat)

-

Read Reference
Frame

Call Threads

—

fis

¥ Every Thread

&«

Thread 1

Fetch next block

¥

Yes N Yes Tore blodh Yes - ~.
" Maore blocks ™_ < gindeﬂ : = " More blocks ™~
T tocode? — T tocode?

»
Thread 2 Thread n

Fetch next block Fetch next block

Perform ME Perform ME

Y
5
\
-
/
F,
\
7 -

No No

¥
Sync Threads

Sync Threads

No
¥
Sync Threads

-

i End

-

II

e

| e
Y rd /

b

Figure 1: Diagram of computation for the OpenMP Parallel
implementation of the Full Search algorithm.

B. Hybrid MPI and OpenMP Full Search Implementation

MPI (Message Passing Interface) [12] is a standardized
message-passing interface. In this work it was used in order to
establish communication among the nodes of a distributed PC
cluster. The implementation used in this work for the MPI was
MPICH2 [13].

The logic applied on the division of the labour across the
processing units is the very same described in the subsection
above. For this implementation, a node on the cluster receives
a list of frames to code and a reference frame. The distribution
algorithm is arranged in a way that guarantees balance
regarding the workload of the nodes in the cluster, that is, the
maximum discrepancy among the number of frames that a
node will process is one.

Fig. 2 shows the diagram related to hybrid implementation
distributed and parallel of the Full Search algorithm presented
in this work. This hybrid version uses the OpenMP parallel
implementation (described in the subsection above) with the
distributed version.

In accordance with the Fig. 2, each node on the cluster will
code its list of frames in a parallel way. Another level of
parallelism is added inside each node: a process analogue to
the process described on Fig. 1 is activated in order to make
use of every thread inside that node. MPI itself foresees using
every thread available on the processors of a cluster but our
implementation tries to force a node to work on data it already
has, by using the OpenMP framework, thus avoiding two

blocks of a same frame to be coded elsewhere, reducing

communication among nodes.
Master Node Only

- _ —.
(Start)
Fead Reference
Frame

Calculate and Distribute
Workload Among Nodes

\

Send Reference
Frame to Every Node

Every Node
¥ » “ e
Node 1 Node 2 Noden
Pesform OpenMP Perform OpenMP Perform OpeaMP
Parallel ME Parallel ME Parallel ME

_¥

— —

“C End ¥

Each node performs the OpenMP Parallel ME for a list of frames, which was
passed by the Master Node

Figure 2: Diagram of computation for the hybrid MPI and
OpenMP implementation of the Full Search algorithm.

IV. RESULTS OBTAINED

In this section we present the obtained results with the
execution of our Full Search parallelized and distributed
algorithm.

Both serial and OpenMP tests were executed on a computer
running an Intel Core i7 3770 (@ 3.4 GHz) [14]. The tests
related to MPI ran in a cluster and used 4 nodes Intel Xeon
CPU E5310 (@ 1.60GHz) [14], where each node can handle
up to 8 processes. The time represented on the results refers to
the time elapsed on the ME of 150 frames using the resolution
HD720p (1280x720 pixels) considering the FourPeople video
sequence.

The block size adopted was 4x4 pixels and the search area
considered in these experimental ranging from 16x16 pixels to
256x256 pixels. The performance is measured considering the
time execution in seconds and performance calculate by the
speed-up [15] obtained.

Fig. 3 shows a comparison with different versions of the
Full Search algorithm implemented in this work: Sequential
(red), OpenMP (green), the hybrid OpenMP + MPI tests
ranging the number of processes in the cluster (in different
shades of blue). The x-axis is related to the search area
dimensions (32x32 — 128x128 pixels) and the y-axis represents
the execution time, in seconds.

Analyzing the Fig. 3, we can observe that this graphic
states that parallel versions of the FS algorithm have reached
higher throughput rates than the serial one, the OpenMP
version performing up to 75% faster (in terms of time
execution) than the sequential version and the hybrid OpenMP

+ MPI versions performing: (a) 8 processes: up to 12%; (b) 16
processes: up to 60%; and (c) 32 processes: up to 85% faster
compared to the sequential version. The values of elapsed
time regarding the parallel and distributed implementations
(OpenMP vs. OpenMP + MPI — 8 processes) of the FS
represented in the graphic above are approximated. Despite of
both architectures having a similar computation power, the
distributed architecture has a fairly high communication cost
among nodes, which justifies the gain of up to 22% of the
OpenMP-only version, that runs the whole application inside
the same processor.

W QpenMP + MPI - 32 processes B OpenMP + MPI - 16 processes ™ OpenMP + MPI - 8 processes
M OpenMP M Sequential

10000.00

1000.00

100.00

10.00 +

1.00

32 64 96 128

Figure 3: HD720p Time Execution Results: Sequential vs.
OpenMP vs. OpenMP + MPI (8 — 32 processes).

Fig. 4 presents the hybrid OpenMP + MPI version ranging
the number of processes (x-axis), in terms of speed-up (y-
axis). Each curve illustrated represents a search area
dimension.

7.00

T
1
1
1
1
6.00 I
1
1

0 OpenMP

, y/
s

o 4 8 12 16 20 24 28 32

T
1
1
1
1
]
1
1
1
L
1
1

1 node |
1
1
1
1
1
T
1
1
1
1
]
1

—4—16 —i—32
Figure 4: HD720p Speed-up Results — Time Execution:
OpenMP vs. OpenMP + MPI (1 — 32 processes).

64 ==e=Gf =128

By making an analysis of the graphic presented in Fig. 4,
we can notice the sum of the distributed and parallel
computing paradigms, which was from the beginning the goal
of this work, was successfully accomplished. Considering that
the processing power of the conventional processor used in
the OpenMP tests is limited to 8 threads, it is possible to
accredit the speed-up boost brought until the 8th process to the
parallel OpenMP implementation. In addition, as the
OpenMP-only version doesn’t present higher performance
with the growth of search areas nor it presents reaction to the
varying of search areas in the speed-up ratio. On other hand,

when the hybrid parallel and distributed scope is introduced, it
is possible to visualize a significant growth in terms of speed-
up when more processes are dedicated to execute the
application.

V. CONCLUSION

Our objective was to develop a merged implementation
where parallel and distributed computing would coexist and
lead to a more efficient processing of the ME and that
objective was successfully accomplished. In addition, we have
shown that the exploration of the parallelism in architecture
distributed is a good alternative to accelerate the motion
estimation process. Our hybrid OpenMP + MPI solution
achieve up to 3x gains in terms of speed-up increase when
compared with the version OpenMP-only, and up to 7x faster
than the sequential version.

It is visible that the approach discussed on this paper has a
lot to offer and great performance may be reached after
refining our implementations.

Future works could focus on improving the way the work is
distributed among the processing units in order to enhance the
throughput and find ways to amortise the cost of
communications.

REFERENCES

[1] Cisco, “Cisco Visual Networking Index: Forecast and Methodology,
2010-2015”, June 2011.

[2] ISO/IEC 13818-1:2000, “Information technology -- Generic coding of
moving pictures and associated audio information: Systems”.

[3] ISO/IEC 14496-10, “MPEG-4 Part 10, Advanced Video Coding”.

[4] G.J. Sullivan, J. R. Ohm, W. J. Han, T. Wiegand, “Overview of the
High Efficiency Video Coding (HEVC) Standard” , IEEE Transactions
on Circuits and Systems for Video Technology, Vol. 22, No 12,
December 2012

[5] V. Bhaskaran, K. Konstantinides, “Image and video compression
standards - algorithms and architectures”, Kluwer Academic
Publishers, 1996.

[6] Y. Cheng, Z. Chen, P. Chang, "An H.264 Patio- Temporal Hierarchical
Fast Motion Estimation Algorithm for High-Definition Video”, IEEE
International Symposium on Circuits and Systems, ISCAS, pp. 880-
883, 2009.

[71 J. R. Ohm, G. J. Sullivan, H. Schwartz, T. K. Tan, T. Wiegand,
“Comparison of the Coding Efficiency of Video Coding Standards—
Including High Efficiency Video Coding (HEVC)”, IEEE Transactions
on Circuits and Systems for Video Technology, Vol. 22, No 12,
December 2012.

[8] Z. Yang, J. Bu, C. Chen, L. Mo “Configurable Complexity-Bounded
Motion Estimation for Real-Time Video Encoding”, Lecture Notes in
Computer Science VVolume 3708, pp 555-562, Springer, 2005.

[99 P. M. Kuhn: "Algorithms, Complexity Analysis and VLSI
Architectures for MPEG-4 Motion Estimation ", Kluwer Academic
Publishers, 1999.

[10] L E. G. Richardson, “H.264 and MPEG-4 Video Compression: Video
Coding for Next-generation Multimedia”, John Wiley & Sons Ltd,
2003.

[11] OpenMP Official Website - http://openmp.org/wp/

[12] The Message Passing Interface (MPI) Standard Official Website:
http://www.mcs.anl.gov/research/projects/mpi

[13] MPICH Official Website - http://www.mpich.org/

[14] Intel official specifications: http://ark.intel.com/

[15] L. H. Tuncer, “Parallel Computational Fluid Dynamics:

Implementations and Experiences on Large Scale and Grid
Computing”, Springer, 2007.

http://openmp.org/wp/
http://www.mcs.anl.gov/research/projects/mpi
http://www.mpich.org/
http://ark.intel.com/

