

Acceleration Techniques for Motion Estimation

Algorithms Using Parallel and Distributed Computing
Jonas C Meinerz, Eduarda R Monteiro, Felipe M Sampaio, Sergio Bampi, Altamiro A Susin

Instituto de Informática, Universidade Federal do Rio Grande do Sul

Porto Alegre, Brasil

{jcmeinerz, ermonteiro, fmsampaio, bampi} @inf.ufrgs.br; altamiro.susin@ufrgs.br

Abstract— This work features different approaches on towards

Motion Estimation (ME), looking for higher throughput to the

procedure which is the main performance bottleneck of video

encoders. In spite of consuming a high share of the total

processing amount of an encoder, ME also provides its highest

gains regarding compression. This work’s purpose is to take

advantage of the high potential for parallelism of the Motion

Estimation algorithms, in this case focused on the Full Search

algorithm, making use of combined parallel and distributed

programming paradigms. We obtained gains up 7x with the

propose implementation (OpenMP + MPI libraries) when

compared to the serial version, considering different search

areas.

Keywords — Video coding; Motion Estimation; Full Search

Algorithm; parallel; distributed; OpenMP; MPI

I. INTRODUCTION

The heaviest load of data transmitted throughout the

internet represents digital video [1]. Limited bandwidth and

high amounts of digital data to be sent and received are,

among others, factors for which digital videos must be

compressed. Introduced by this context, video coding is a set

of procedures that look for compressing digital videos.

While the digital video industry shows frequent innovation

and growth regarding digital image quality and resolution

both, the growth in the bandwidth of internet connections

cannot keep its pace, thus creating a need to reduce the

amount of transferring data in order to provide real-time

broadcasting when dealing with high quality digital videos.

The digital video coding catches both academy’s and

industry’s attention, having its importance shown in every

kind of digital video broadcasting, such as through the

internet, DVD, Digital Television, Blu-ray and so on. For that

reason, a variety of standards has been developed as the need

to compress data without losing valuable information gets

more demanding with higher resolution and definition of

digital images. The procedures here featured can be adapted to

either consolidated standards (e.g., MPEG-2 [2], H264/AVC

[3], and others) or up-and-coming standards (such as HEVC
1
 -

High Efficiency Video Coding [4]).

The video coding process’s goal is to remove redundant

information from the digital data of the image video. That is,

exploiting the video’s temporal and spatial redundancies in

addition to entropy encoding [5].

Here in this work, the focus will be put onto the Motion

Estimation (ME) process, which is one of the steps that

accounts for the video coding as a whole [5]. As it is, ME may

be considered a bottleneck for the whole process of the video

coding, which makes that any time-related improvements

made in this particular process strongly relevant in the whole

coding process elapsed time [6].

As said before, with higher resolutions and higher amounts

of data to be handled comes the need for more aggressive

compression. The need to compress more and at the same time

to care about valuable information is the motivation for

creating standards that are more satisfying on regard of digital

data compression. Although the newer standards offer more

successful compression rates (HEVC saves about 80% bit rate

in comparison to MPEG-2 and half this percentage when

compared to H264/AVC [7]), they also demand a series of

operations whose complexity can be quite concerning in

situations when a recording must have a real time broadcast.

On the other hand, the main part of video coding, as the most

costing one, ME is a repetitive process that may operate on

independent data, which means it has a large potential for

parallel processing. Combined to the popularity of multi-

threading and multi-core architectures nowadays, this

potential enables a set of possibilities to be explored with the

intention to reach high throughput rates in the coding process

of a digital video. The literature brings us a variety of

algorithms for ME, the Full Search (FS) algorithm and

Diamond Search (DS) algorithm being the most popular ones.

This work will present different implementations of the

Full Search algorithm, comparing the performance of serial,

parallel, distributed and combined parallel and distributed

versions. FS is an optimal and exhaustive algorithm, itself

having a very high computation complexity, but it is

completely based on data independence, this one being the

most important factor regarding parallel computing. Our work

exploits this peculiar characteristic of FS algorithm, in order

to achieve a highly parallel ME in order to accelerate the

video coding process as a whole. We obtained a gain up 4x (in

terms of speed-up) with the parallel OpenMP version and up

7x (in terms of speed-up too) with the hybrid OpenMP + MPI

parallel and distributed version in comparison to the

sequential implementation.

We will be featuring more detailed explanations about

Motion Estimation and the Full Search algorithm in Section 2.

A quick explanation of our implementations will be given in

the Section 3. The Section 4 will present the results of our

implementations and comparisons to justify its worth. Section

5, for its part, is bringing this work's conclusions.

1The new video coding standard, which may be released in the first

semester of the present year.

II. MOTION ESTIMATION

Among other steps, Motion Estimation is a component part

of the so called video coding. There are plenty of ways to

build a video coder, but an optimal algorithm for ME will

always consume a relevant share of the total encoding

processing [8].

ME is a lossless procedure as the decoding process recovers

the original data without any losses. Nevertheless, it helps in

the compression by changing the way the digital data is

represented. While a not yet coded piece of video represents

every block (e.g., a spatial-related chunk of a frame) by its

literal value, after being coded, most blocks belonging to this

piece of video may be represented as motion vectors, each

vector representing a previously reconstructed block, in

addition to a residue, representing the difference between that

previously reconstructed block (found in an already coded

frame of that piece of video) and the block currently being

coded. After that, instead of storing the values of every pixel

from every block, most blocks will be stored as a coordinate

and a module. The compression level of the Motion

Estimation is completely related to a video's temporal

redundancy, which gives a good reliability for this process

since most videos have a very strong temporal connection

between their frames.

A. Motion Estimation Mechanics

Basically, the ME process for a block demands a reference

frame, a search range and the current frame where the block

itself is situated.

The currently selected block will be compared, based on a

similarity criterion, to every block of the reference frame

within a search range, and the coordinates of that one block

which most resembles the currently selected block will be

stored alongside its discrepancy in comparison to the currently

selected block. There are several ways to define a search

range and several more similarity criteria. It is up to the

implementer to decide how the search area will be defined and

which criterion will be used. These decisions will lead to the

gains and losses of the process.

In the literature there are many different block-matching

algorithms [9] (e.g., Full Search, Diamond Search, Three-Step

Search and others), and the most remarkable difference among

those algorithms is the way the search range is defined.

B. Full Search

As mentioned before, this work will focus the Full Search

algorithm, which was chosen due to its high capacity for

parallelism and for being optimal.

The FS is an exhaustive algorithm that gives us the optimal

result within a search area. That means the search range will

be composed from every possible block of the reference frame

around the currently selected block position within a certain

range. After comparing every block inside the search range, a

coordinate and a residue will be stored representing the block

which resembles the most the current block and its

discrepancy to it. Despite being exhaustive and implying in

the biggest number of comparisons that could be made in a

search area, it is very important to state that the FS algorithm

has no data dependency among the blocks yet to be coded.

That implies every single block to be processed can be coded

at the same time if there is hardware available for it.

Theoretically speaking, if we can afford as many processing

units as we need, the complexity of FS's ME parallel ideal

version is O(1), supposing we can dispatch each block to a

different processing unit.

C. Sum of Absolute Differences

When we explained the ME mechanics we mentioned the

need of a similarity criterion in order to measure the

discrepancy between two blocks. It was arbitrarily chosen that

the criterion to be used on this work’s implementation of the

Motion Estimation would be the Sum of Absolute Differences

(SAD) [10].

III. PARALLEL AND DISTRIBUTED FULL SEARCH

IMPLEMENTATIONS

Since the beginning of this text, ME’s complexity

computational has been emphasized, as well as its high

potential for a parallel implementation. In this section, we will

discuss different paradigms we used to build our parallel

version of the Full Search algorithm, as well as the techniques

used to distribute the computation among the available

processing units we have.

The following implementations were based on a standard

implementation of the Full Search algorithm made by us,

using the C programming language.

A. OpenMP Parallel Full Search Implementation

OpenMP [11] is an open-source API for parallel

programming that brings a high-level set of functions allowing

the programmer to develop communication among the threads

of a CPU.

From the standard serial implementation, the sort of

changes made were the ones with the purpose to make use of

every thread available on our CPU. Facing the possibility of a

multi-core architecture, we decided to make each core

responsible for a list of frames, in order to exploit every

available processing unit at the same time avoiding stalling

the computation, for example, by waiting for memory data, as

much as possible. The threads within a core would be all

responsible for blocks of a frame sent to that core, since these

threads share the same memory. Another option would be

sending a block to every core, but that would require more

communication between memory and processor, and that is

what we try to avoid. The figure below illustrates a flowchart

representing this implementation.

Analysing the Fig. 1 we observe that one thread (called the

Master Thread in our diagram) will read the first frame of the

video sequence and store it, taking it as the reference frame.

After that, each thread will fetch a block and perform the ME,

comparing this block to every block of the reference frame

within the search range, saving the coordinates and residue

from its best match. This procedure is repeated till every block

has been compared and finally resynchronize all the threads

and finish the computation.

Figure 1: Diagram of computation for the OpenMP Parallel

implementation of the Full Search algorithm.

B. Hybrid MPI and OpenMP Full Search Implementation

MPI (Message Passing Interface) [12] is a standardized

message-passing interface. In this work it was used in order to

establish communication among the nodes of a distributed PC

cluster. The implementation used in this work for the MPI was

MPICH2 [13].

The logic applied on the division of the labour across the

processing units is the very same described in the subsection

above. For this implementation, a node on the cluster receives

a list of frames to code and a reference frame. The distribution

algorithm is arranged in a way that guarantees balance

regarding the workload of the nodes in the cluster, that is, the

maximum discrepancy among the number of frames that a

node will process is one.

Fig. 2 shows the diagram related to hybrid implementation

distributed and parallel of the Full Search algorithm presented

in this work. This hybrid version uses the OpenMP parallel

implementation (described in the subsection above) with the

distributed version.

In accordance with the Fig. 2, each node on the cluster will

code its list of frames in a parallel way. Another level of

parallelism is added inside each node: a process analogue to

the process described on Fig. 1 is activated in order to make

use of every thread inside that node. MPI itself foresees using

every thread available on the processors of a cluster but our

implementation tries to force a node to work on data it already

has, by using the OpenMP framework, thus avoiding two

blocks of a same frame to be coded elsewhere, reducing

communication among nodes.

Figure 2: Diagram of computation for the hybrid MPI and

OpenMP implementation of the Full Search algorithm.

IV. RESULTS OBTAINED

In this section we present the obtained results with the

execution of our Full Search parallelized and distributed

algorithm.

Both serial and OpenMP tests were executed on a computer

running an Intel Core i7 3770 (@ 3.4 GHz) [14]. The tests

related to MPI ran in a cluster and used 4 nodes Intel Xeon

CPU E5310 (@ 1.60GHz) [14], where each node can handle

up to 8 processes. The time represented on the results refers to

the time elapsed on the ME of 150 frames using the resolution

HD720p (1280x720 pixels) considering the FourPeople video

sequence.

The block size adopted was 4x4 pixels and the search area

considered in these experimental ranging from 16x16 pixels to

256x256 pixels. The performance is measured considering the

time execution in seconds and performance calculate by the

speed-up [15] obtained.

Fig. 3 shows a comparison with different versions of the

Full Search algorithm implemented in this work: Sequential

(red), OpenMP (green), the hybrid OpenMP + MPI tests

ranging the number of processes in the cluster (in different

shades of blue). The x-axis is related to the search area

dimensions (32x32 – 128x128 pixels) and the y-axis represents

the execution time, in seconds.

Analyzing the Fig. 3, we can observe that this graphic

states that parallel versions of the FS algorithm have reached

higher throughput rates than the serial one, the OpenMP

version performing up to 75% faster (in terms of time

execution) than the sequential version and the hybrid OpenMP

+ MPI versions performing: (a) 8 processes: up to 12%; (b) 16

processes: up to 60%; and (c) 32 processes: up to 85% faster

compared to the sequential version. The values of elapsed

time regarding the parallel and distributed implementations

(OpenMP vs. OpenMP + MPI – 8 processes) of the FS

represented in the graphic above are approximated. Despite of

both architectures having a similar computation power, the

distributed architecture has a fairly high communication cost

among nodes, which justifies the gain of up to 22% of the

OpenMP-only version, that runs the whole application inside

the same processor.

Figure 3: HD720p Time Execution Results: Sequential vs.

OpenMP vs. OpenMP + MPI (8 – 32 processes).

Fig. 4 presents the hybrid OpenMP + MPI version ranging

the number of processes (x-axis), in terms of speed-up (y-

axis). Each curve illustrated represents a search area

dimension.

Figure 4: HD720p Speed-up Results – Time Execution:

OpenMP vs. OpenMP + MPI (1 – 32 processes).

By making an analysis of the graphic presented in Fig. 4,

we can notice the sum of the distributed and parallel

computing paradigms, which was from the beginning the goal

of this work, was successfully accomplished. Considering that

the processing power of the conventional processor used in

the OpenMP tests is limited to 8 threads, it is possible to

accredit the speed-up boost brought until the 8th process to the

parallel OpenMP implementation. In addition, as the

OpenMP-only version doesn’t present higher performance

with the growth of search areas nor it presents reaction to the

varying of search areas in the speed-up ratio. On other hand,

when the hybrid parallel and distributed scope is introduced, it

is possible to visualize a significant growth in terms of speed-

up when more processes are dedicated to execute the

application.

V. CONCLUSION

Our objective was to develop a merged implementation

where parallel and distributed computing would coexist and

lead to a more efficient processing of the ME and that

objective was successfully accomplished. In addition, we have

shown that the exploration of the parallelism in architecture

distributed is a good alternative to accelerate the motion

estimation process. Our hybrid OpenMP + MPI solution

achieve up to 3x gains in terms of speed-up increase when

compared with the version OpenMP-only, and up to 7x faster

than the sequential version.

It is visible that the approach discussed on this paper has a

lot to offer and great performance may be reached after

refining our implementations.

Future works could focus on improving the way the work is

distributed among the processing units in order to enhance the

throughput and find ways to amortise the cost of

communications.

REFERENCES

[1] Cisco, ―Cisco Visual Networking Index: Forecast and Methodology,
2010-2015‖, June 2011.

[2] ISO/IEC 13818-1:2000, ―Information technology -- Generic coding of

moving pictures and associated audio information: Systems‖.
[3] ISO/IEC 14496-10, ―MPEG-4 Part 10, Advanced Video Coding‖.

[4] G. J. Sullivan, J. R. Ohm, W. J. Han, T. Wiegand, ―Overview of the

High Efficiency Video Coding (HEVC) Standard‖ , IEEE Transactions
on Circuits and Systems for Video Technology, Vol. 22, No 12,

December 2012

[5] V. Bhaskaran, K. Konstantinides, ―Image and video compression
standards - algorithms and architectures‖, Kluwer Academic

Publishers, 1996.

[6] Y. Cheng, Z. Chen, P. Chang, "An H.264 Patio- Temporal Hierarchical

Fast Motion Estimation Algorithm for High-Definition Video‖, IEEE

International Symposium on Circuits and Systems, ISCAS, pp. 880-

883, 2009.
[7] J. R. Ohm, G. J. Sullivan, H. Schwartz, T. K. Tan, T. Wiegand,

―Comparison of the Coding Efficiency of Video Coding Standards—

Including High Efficiency Video Coding (HEVC)‖, IEEE Transactions
on Circuits and Systems for Video Technology, Vol. 22, No 12,

December 2012.

[8] Z. Yang, J. Bu, C. Chen, L. Mo ―Configurable Complexity-Bounded
Motion Estimation for Real-Time Video Encoding‖, Lecture Notes in

Computer Science Volume 3708, pp 555-562, Springer, 2005.

[9] P. M. Kuhn: "Algorithms, Complexity Analysis and VLSI
Architectures for MPEG-4 Motion Estimation ", Kluwer Academic

Publishers, 1999.

[10] I. E. G. Richardson, ―H.264 and MPEG-4 Video Compression: Video
Coding for Next-generation Multimedia‖, John Wiley & Sons Ltd,

2003.

[11] OpenMP Official Website - http://openmp.org/wp/
[12] The Message Passing Interface (MPI) Standard Official Website:

http://www.mcs.anl.gov/research/projects/mpi

[13] MPICH Official Website - http://www.mpich.org/
[14] Intel official specifications: http://ark.intel.com/

[15] I. H. Tuncer, ―Parallel Computational Fluid Dynamics:
Implementations and Experiences on Large Scale and Grid

Computing‖, Springer, 2007.

http://openmp.org/wp/
http://www.mcs.anl.gov/research/projects/mpi
http://www.mpich.org/
http://ark.intel.com/

