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Abstract — Quantum-dot cellular automata (QCA) is an 

emerging technology which has been claimed to be faster and 

smaller than the most traditional CMOS technology. Since its 

beginning, many advances have been made, as the introduction 

of basic devices and the insertion of more complex circuits, like 

adders. It is not straightforward to implement more complex 

adders using QCA. This paper proposes the logical blocks to 

implement a parallel-prefix adder based on QCA technology. 

Furthermore, some technical issues are discussed through 

simulation results. 
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I. INTRODUCTION 

In the last decades, the scaling down of the transistors has 

improved the integration capability of IC. However, such 

scaling is reaching the physical limitation [1]. There are 

several good candidates to replace the current standard CMOS 

technology [2]. Many studies inspect the computation using 

cellular automata architecture and quantum confinement for 

that purpose [3]. 

Quantum-dot cellular automata (QCA) is one of the 

technologies that have been studied in the last few years to be 

used in future computation; being among the technologies that 

is capable to substitute the CMOS. One of the features of 

QCA is that this technology transmits the information without 

electrical current transmission, i.e., the information is 

transmitted based on the Coulomb interaction between QCA 

cells and the quantum confinement of electrons in each cell. 

QCA is based on a binary logic because each cell carries one 

of two logical values. This prominent technology has high 

device density, extremely low power consumption and very 

high switching speed. The basic logic devices used in QCA 

circuits are the wire, the majority voter (also known as 

majority gate) and the inverter [4]. Using these basic logic 

gates, it is possible to implement any complex gates like 

memories [5], flip-flops [6] or adders [7]. 

Adder circuits are very import in order to implement a 

microprocessor. There are different architectures of an adder 

circuit like ripple carry adder (RCA), carry select adder 

(CSelA), carry skip adder (CSkipA), carry lookahead adder 

(CLA) and parallel-prefix adder (PPA) [8]. This paper focuses 

on PPA design. PPA is an algorithm with three steps, based on 

the principle of propagation and generation signals [8]. The 

second step is the main differential of PPA because it is 

possible to model the architecture in order to optimize the 

speed or the area, being also possible to implement hybrid 

solution [9]. There are some well-known PPA architectures, 

like Brent-Kung [10] and Kogge-Stone [11], each one of this 

focus on one constraint (speed and area), whereas Ladner-

Fischer [14] and Hans-Carlson [15] proposed hybrid 

implementations. 

Several adder architectures implemented using the QCA 

technology have been proposed in the literature, like RCA 

[4][7], CSelA [7] and CLA [7]. This work presents an 

implementation of each block used in the PPA circuit, 

discussing the implementation of each step of the algorithm. 

Moreover, each logic gate is analyzed separately in order to 

evaluate the individual timing, which is quite straightforward 

in the QCA technology because of the gate clocked nature 

[12]. Furthermore, possible noise paths that could jeopardize 

the adder are discussed [13]. 

Section II gives a clear understanding about QCA 

technology. Section III explains the algorithm of PPA and 

shows the implementation of this adder using QCA 

technology. In Section IV, the analysis of each gate 

implemented is presented. The conclusions and future works 

are outlined in Section V. 

II.  QUANTUM CELLULAR AUTOMATA 

The following explanations are qualitative, having in mind 

the computer architecture. Fig. 1 depicts the basic QCA cell, 

which is composed by 4 dots, one in each corner. QCA has 

two electrons confined in one of the 4 corner dots. These two 

electrons are allowed to tunnel between these dots. 

Nevertheless, tunneling to out of the cell is assumed to be 

impossible [3]. The configuration with the lowest energy sum 

takes place when the electrons have the largest possible 

distance between each other happens in the opposite corners 

because of the Coulomb forces between the electrons. The two 

possible states are the ones depicted in Fig. 1. Each one of the 

states has a polarization number as P = 1 and P = -1. 

The basic devices in QCA architecture are the wire (shown 

in Fig. 2), the majority gate (shown in Fig. 4) and the inverter 

(shown in Fig. 3). The inverter and wire have the same 

proposal as the conventional circuits in CMOS. The majority 

gate is a well-known gate in the fault tolerance area as a 

majority voter. The majority gate Boolean equation is 



AB+BC+AC. Using this equation, it is possible to deduce the 

following: if C = 0, so the majority gate represents the AND 

between the inputs A and B; if C = 1, it is possible to 

eliminate the AB minterm, and the majority gate represents 

the OR between the inputs A and B. It is known through De 

Morgan theorem that if we have available inverters and only 

AND gates or OR gates, it is possible to build any Boolean 

function.  

 

Fig. 1 –Binary information codification in QCA [17]. 

 

 

Fig. 2 – Wire structure [12]. 

 

 

Fig. 3 – QCA inverter gate [12]. 

 

 

Fig. 4 – Majority gate topology [12]. 

 

Basically, it is possible to build any circuit in QCA but, due 

to its duplex nature, it is necessary some design strategies to 

ensure that the signal does not go back to the input. In [12], the 

solution proposed in order to solve the problem is the 

introduction of the circuit temporal barrier, called clock. The 

four possible states are described below, and depicted in Fig. 5 

[12]:  

1) Switch: When the clock is going from high to low or 

the barrier is rising, the cell becomes polarized with 

the polarization of its drivers. 

2) Hold: When the clock is low or the barrier is raised, 

the cell retains its state. 

3) Release: When the clock is going from low to high or 

the barrier is lowering, the cell is allowed to relax, 

losing its polarization. 

4) Relax: When the clock is high or the barrier is low, 

the cell remains not polarized. 

III. PARALLEL PREFIX ADDER 

Parallel-prefix adder (PPA) algorithm is based on the principle 

of generate (G) and propagate (P) signals. The principle of P 

and G is to predict if during a sum of 2 vectors, A and B, 

occurs carry-out (Cout). P signal predicts if the sum between 

two bits ai and bi propagates the carry arriving in this index to 

the next one. It can be done by checking if ai or bi presents the 

logic value ‘1’ (OR or exclusive-OR operations). G signal, in 

turn, predicts if the sum between two bits ai and bi generates a 

carry signal, without considering the carry arriving in this 

index (cini). It is possible by just verifying if both ai and bi 

presents the logic value ‘1’ (AND operation). PPA uses 

initially propagate and generate signals individually for each 

bit index. The individual signals area used in order to 

calculate the array propagation, Pi,0, and array generation, Gi,0. 

With the array propagation and generation for 0 < i ≤ n, where 

‘n’ is the number of bits, it is possible to calculate the Cout for 

each bit. Finally, using all the individual propagation and 

individual Couts, it is possible to evaluate the final sum for 

each bit. 

 

Fig. 5 –Four possible clock states [12]. 

 

Bellow, each step is enumerate and desbribed using 

Boolean expressions: 

1) Calculate Pi and Gi: Pi = ai  bi and Gi = ai • bi 

2) Calculate the group generation and the group 

propagation using the following expressions: Gi+1,i 

= Gi+1 + Pi+1 • Gi and Pi+1,i = Pi+1 • Pi 

3) Calculate the Couts for each bit: Couti-1 = Gi,0 + 

Pi,0 •Cin 

4) Calculate the sum for each bit Si = Pi Couti-1 



IV. QCA PPA CIRCUIT IMPLEMENTATION 

In the first step, in order to implement the PPA, is defined 

the expressions using devices defined in Section II. In order to 

keep it simple, the majority gate (with A, B and C as input) is 

denoted by M(A,B,C), and the symbol ~A represents the input 

A negated. Analyzing the 4 steps, it is possible to notice that 

we have some repeated expressions. The basic gates used are 

AND, OR, XOR and F=A+B•C. 

AND and OR expressions are translated as M(A,B,0) and 

M(A,B,1), respectively. Exclusive-OR (XOR) expression can 

be achieved based on its definition XOR=A•(~B) + (~A)•B, 

using majority gates. The expressions are M(M(A,~B,0), 

M(~A,B,0),1). F expression looks like M(A,M(B,C,0),1). 

Now, with the majority expressions available, it is possible 

to show the layout for each one. AND and OR expressions are 

very simple. In Fig. 6, it is shown just the AND gate, whereas 

to have the OR gate one can just replace the -1 by 1. 

 

Fig. 6 – QCA AND gate implementation using a single majority gate. 

XOR can be implemented using a cascade association of 

majority gates, as show in Fig. 7. The cells within the squares 

are the majority gates and the ones within the circles are 

inverters.  

 

Fig. 7 – QCA XOR gate implementation. 

The expression F can be implemented using a cascade 

association of majority gates as well as a complex gate, as 

shown in Fig. 8. The complex gate is indeed the association of 

majority gates. The difference between the cascade and the 

complex gate are the clock zone. In Fig. 9, it is possible to see 

the F expression implemented with cascade majority. 

Moreover, it is possible to notice that there are two additional 

clock zones to perform the same logic behavior. The decision 

of what gate to choose in the circuit is further discussed in the 

next section, because the complex gate has problems with 

noise paths. 

 

Fig. 8 – QCA complex gate (F=A+B•C). 

 

Fig. 9 – F=A+B•C gate with cascade association of majority gates. 

V. QCA GATE ANALYSIS 

In this paper, three design analysis are done, using the 

QCADesigner tool [16]. The first one is the verification of the 

functional correctness of the circuit. The second analysis is the 

timing of the circuit. The final analysis is to check the noise 

path.  

In Fig. 10, the waveform of OR expression can be seen. 

The waveform in “blue” are the generated signals (the inputs) 

and the “yellow” is the result of the expression OR, whereas is 

possible to analyze the timing using the “red” waveform that 

is the clock signal. The conclusion about timing is that this 

circuits calculate the OR logic within one clock zone (each 

clock zone is one quarter of the total clock). 

The noise path analysis is done in the F complex gate. In 

Fig. 11, it is shown partial results for the F gate. Within the 

circles are the problematic signals, the path for which this 

signals pass through is called noise path. The noise path can 

propagate a wrong signal in larger circuits. The decision about 

use one circuit with a noise path have to be done carefully and 

the verification of the functional correctness of the largest 

circuit have to be done to certify that this noise do not cause a 

failure in the system. 

 



 

Fig. 10 – Waveform of QCA AND gate. 

 

 

Fig. 11 – Noise path in the F=A+B•C complex gate. 

VI. CONCLUSIONS 

PPA is an flexible circuit that can be optimized for 

performance are area criteria. It is important to have this 

option in design for using QCA technology in the future. This 

paper introduced how to build a PPA using QCA technology. 

Even though to build a PPA is just to connect the circuits 

presented herein, the routing is a whole challenge because of 

many problems like the bidirectional nature of QCA, the 

proximity of the cell (the Coulomb force interaction), the 

noise propagation or the decision of how much clock zones to 

use in each step of the circuit. Future works include the 

construction of a PPA and the comparison to other adders, like 

RCA and CLA. Other goal to future work is to set up a formal 

way to analyze and compare the circuits.  
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