
A Quantum-dot Cellular Automata Parallel Prefix

Adder
Kim Aragon Escobar

1
, Renato Perez Ribas

2

Institute of Informatics, Federal University of Rio Grande do Sul

Avenue Bento Gonçalves, 9500, Porto Alegre, RS, Brazil
1
kaescobar@inf.ufrgs.br

2
rpribas@inf.ufrgs.br

Abstract — Quantum-dot cellular automata (QCA) is an

emerging technology which has been claimed to be faster and

smaller than the most traditional CMOS technology. Since its

beginning, many advances have been made, as the introduction

of basic devices and the insertion of more complex circuits, like

adders. It is not straightforward to implement more complex

adders using QCA. This paper proposes the logical blocks to

implement a parallel-prefix adder based on QCA technology.

Furthermore, some technical issues are discussed through

simulation results.

Keywords— Quantum-dot cellular automata, QCA, parallel

prefix adder, PPA, digital circuit, logic gates.

I. INTRODUCTION

In the last decades, the scaling down of the transistors has

improved the integration capability of IC. However, such

scaling is reaching the physical limitation [1]. There are

several good candidates to replace the current standard CMOS

technology [2]. Many studies inspect the computation using

cellular automata architecture and quantum confinement for

that purpose [3].

Quantum-dot cellular automata (QCA) is one of the

technologies that have been studied in the last few years to be

used in future computation; being among the technologies that

is capable to substitute the CMOS. One of the features of

QCA is that this technology transmits the information without

electrical current transmission, i.e., the information is

transmitted based on the Coulomb interaction between QCA

cells and the quantum confinement of electrons in each cell.

QCA is based on a binary logic because each cell carries one

of two logical values. This prominent technology has high

device density, extremely low power consumption and very

high switching speed. The basic logic devices used in QCA

circuits are the wire, the majority voter (also known as

majority gate) and the inverter [4]. Using these basic logic

gates, it is possible to implement any complex gates like

memories [5], flip-flops [6] or adders [7].

Adder circuits are very import in order to implement a

microprocessor. There are different architectures of an adder

circuit like ripple carry adder (RCA), carry select adder

(CSelA), carry skip adder (CSkipA), carry lookahead adder

(CLA) and parallel-prefix adder (PPA) [8]. This paper focuses

on PPA design. PPA is an algorithm with three steps, based on

the principle of propagation and generation signals [8]. The

second step is the main differential of PPA because it is

possible to model the architecture in order to optimize the

speed or the area, being also possible to implement hybrid

solution [9]. There are some well-known PPA architectures,

like Brent-Kung [10] and Kogge-Stone [11], each one of this

focus on one constraint (speed and area), whereas Ladner-

Fischer [14] and Hans-Carlson [15] proposed hybrid

implementations.

Several adder architectures implemented using the QCA

technology have been proposed in the literature, like RCA

[4][7], CSelA [7] and CLA [7]. This work presents an

implementation of each block used in the PPA circuit,

discussing the implementation of each step of the algorithm.

Moreover, each logic gate is analyzed separately in order to

evaluate the individual timing, which is quite straightforward

in the QCA technology because of the gate clocked nature

[12]. Furthermore, possible noise paths that could jeopardize

the adder are discussed [13].

Section II gives a clear understanding about QCA

technology. Section III explains the algorithm of PPA and

shows the implementation of this adder using QCA

technology. In Section IV, the analysis of each gate

implemented is presented. The conclusions and future works

are outlined in Section V.

II. QUANTUM CELLULAR AUTOMATA

The following explanations are qualitative, having in mind

the computer architecture. Fig. 1 depicts the basic QCA cell,

which is composed by 4 dots, one in each corner. QCA has

two electrons confined in one of the 4 corner dots. These two

electrons are allowed to tunnel between these dots.

Nevertheless, tunneling to out of the cell is assumed to be

impossible [3]. The configuration with the lowest energy sum

takes place when the electrons have the largest possible

distance between each other happens in the opposite corners

because of the Coulomb forces between the electrons. The two

possible states are the ones depicted in Fig. 1. Each one of the

states has a polarization number as P = 1 and P = -1.

The basic devices in QCA architecture are the wire (shown

in Fig. 2), the majority gate (shown in Fig. 4) and the inverter

(shown in Fig. 3). The inverter and wire have the same

proposal as the conventional circuits in CMOS. The majority

gate is a well-known gate in the fault tolerance area as a

majority voter. The majority gate Boolean equation is

AB+BC+AC. Using this equation, it is possible to deduce the

following: if C = 0, so the majority gate represents the AND

between the inputs A and B; if C = 1, it is possible to

eliminate the AB minterm, and the majority gate represents

the OR between the inputs A and B. It is known through De

Morgan theorem that if we have available inverters and only

AND gates or OR gates, it is possible to build any Boolean

function.

Fig. 1 –Binary information codification in QCA [17].

Fig. 2 – Wire structure [12].

Fig. 3 – QCA inverter gate [12].

Fig. 4 – Majority gate topology [12].

Basically, it is possible to build any circuit in QCA but, due

to its duplex nature, it is necessary some design strategies to

ensure that the signal does not go back to the input. In [12], the

solution proposed in order to solve the problem is the

introduction of the circuit temporal barrier, called clock. The

four possible states are described below, and depicted in Fig. 5

[12]:

1) Switch: When the clock is going from high to low or

the barrier is rising, the cell becomes polarized with

the polarization of its drivers.

2) Hold: When the clock is low or the barrier is raised,

the cell retains its state.

3) Release: When the clock is going from low to high or

the barrier is lowering, the cell is allowed to relax,

losing its polarization.

4) Relax: When the clock is high or the barrier is low,

the cell remains not polarized.

III. PARALLEL PREFIX ADDER

Parallel-prefix adder (PPA) algorithm is based on the principle

of generate (G) and propagate (P) signals. The principle of P

and G is to predict if during a sum of 2 vectors, A and B,

occurs carry-out (Cout). P signal predicts if the sum between

two bits ai and bi propagates the carry arriving in this index to

the next one. It can be done by checking if ai or bi presents the

logic value ‘1’ (OR or exclusive-OR operations). G signal, in

turn, predicts if the sum between two bits ai and bi generates a

carry signal, without considering the carry arriving in this

index (cini). It is possible by just verifying if both ai and bi

presents the logic value ‘1’ (AND operation). PPA uses

initially propagate and generate signals individually for each

bit index. The individual signals area used in order to

calculate the array propagation, Pi,0, and array generation, Gi,0.

With the array propagation and generation for 0 < i ≤ n, where

‘n’ is the number of bits, it is possible to calculate the Cout for

each bit. Finally, using all the individual propagation and

individual Couts, it is possible to evaluate the final sum for

each bit.

Fig. 5 –Four possible clock states [12].

Bellow, each step is enumerate and desbribed using

Boolean expressions:

1) Calculate Pi and Gi: Pi = ai  bi and Gi = ai • bi

2) Calculate the group generation and the group

propagation using the following expressions: Gi+1,i

= Gi+1 + Pi+1 • Gi and Pi+1,i = Pi+1 • Pi

3) Calculate the Couts for each bit: Couti-1 = Gi,0 +

Pi,0 •Cin

4) Calculate the sum for each bit Si = Pi Couti-1

IV. QCA PPA CIRCUIT IMPLEMENTATION

In the first step, in order to implement the PPA, is defined

the expressions using devices defined in Section II. In order to

keep it simple, the majority gate (with A, B and C as input) is

denoted by M(A,B,C), and the symbol ~A represents the input

A negated. Analyzing the 4 steps, it is possible to notice that

we have some repeated expressions. The basic gates used are

AND, OR, XOR and F=A+B•C.

AND and OR expressions are translated as M(A,B,0) and

M(A,B,1), respectively. Exclusive-OR (XOR) expression can

be achieved based on its definition XOR=A•(~B) + (~A)•B,

using majority gates. The expressions are M(M(A,~B,0),

M(~A,B,0),1). F expression looks like M(A,M(B,C,0),1).

Now, with the majority expressions available, it is possible

to show the layout for each one. AND and OR expressions are

very simple. In Fig. 6, it is shown just the AND gate, whereas

to have the OR gate one can just replace the -1 by 1.

Fig. 6 – QCA AND gate implementation using a single majority gate.

XOR can be implemented using a cascade association of

majority gates, as show in Fig. 7. The cells within the squares

are the majority gates and the ones within the circles are

inverters.

Fig. 7 – QCA XOR gate implementation.

The expression F can be implemented using a cascade

association of majority gates as well as a complex gate, as

shown in Fig. 8. The complex gate is indeed the association of

majority gates. The difference between the cascade and the

complex gate are the clock zone. In Fig. 9, it is possible to see

the F expression implemented with cascade majority.

Moreover, it is possible to notice that there are two additional

clock zones to perform the same logic behavior. The decision

of what gate to choose in the circuit is further discussed in the

next section, because the complex gate has problems with

noise paths.

Fig. 8 – QCA complex gate (F=A+B•C).

Fig. 9 – F=A+B•C gate with cascade association of majority gates.

V. QCA GATE ANALYSIS

In this paper, three design analysis are done, using the

QCADesigner tool [16]. The first one is the verification of the

functional correctness of the circuit. The second analysis is the

timing of the circuit. The final analysis is to check the noise

path.

In Fig. 10, the waveform of OR expression can be seen.

The waveform in “blue” are the generated signals (the inputs)

and the “yellow” is the result of the expression OR, whereas is

possible to analyze the timing using the “red” waveform that

is the clock signal. The conclusion about timing is that this

circuits calculate the OR logic within one clock zone (each

clock zone is one quarter of the total clock).

The noise path analysis is done in the F complex gate. In

Fig. 11, it is shown partial results for the F gate. Within the

circles are the problematic signals, the path for which this

signals pass through is called noise path. The noise path can

propagate a wrong signal in larger circuits. The decision about

use one circuit with a noise path have to be done carefully and

the verification of the functional correctness of the largest

circuit have to be done to certify that this noise do not cause a

failure in the system.

Fig. 10 – Waveform of QCA AND gate.

Fig. 11 – Noise path in the F=A+B•C complex gate.

VI. CONCLUSIONS

PPA is an flexible circuit that can be optimized for

performance are area criteria. It is important to have this

option in design for using QCA technology in the future. This

paper introduced how to build a PPA using QCA technology.

Even though to build a PPA is just to connect the circuits

presented herein, the routing is a whole challenge because of

many problems like the bidirectional nature of QCA, the

proximity of the cell (the Coulomb force interaction), the

noise propagation or the decision of how much clock zones to

use in each step of the circuit. Future works include the

construction of a PPA and the comparison to other adders, like

RCA and CLA. Other goal to future work is to set up a formal

way to analyze and compare the circuits.

ACKNOWLEDGMENT

Research partially supported by Brazilian funding agencies

CNPq and FAPERGS, under grant 11/2053-9 (Pronem).

REFERENCES

[1] K. Kong, Y. Shang and R. Lu, “An Optimized Majority Logic
Synthesis Methodology for Quantum-dot Cellular Automata”. VLSI

Design, Vol 8, pp. 170-183, 2010.

[2] R. Zhang, K. Walus, W. Wang and G. Jullien, “A Method of Majority
Logic Reduction for Quantum Cellular Automata”. IEEE Transactions

on Nanotechnology, Vol 3, pp. 443-450, 2004.

[3] C. S. Lent, D. Tougaw, W. Parod and C. Bernstein, “Quantum Cellular

Automata”. Nanotechnology, pp 49-57, 1993.

[4] D. Tougaw and C. Lent, “Logical Devices Implemented Using

Quantum Cellular Automata”. Applied Physiscs, Vol. 75, pp. 1818-
1825, 1994.

[5] K. Walus, A. Vetteth, G. A. Jullien and V. S. Dimitrov, “RAM Design

Using Quantum-Dot Cellular Automata”. Proc. 2003 Nanotechnology
Conf., Vol. 2, pp. 160-163, 2003.

[6] Mohammad Torabi, “A New Architecture for T Flip Flop Using

Quantum-Dot Cellular Automata”. 3rd Asia Symposium on Quality
Eletronic Design, pp. 269-300, 2011.

[7] Heumpil Cho, “Adder Designs and Analyses for Quantum-Dot Cellular

Automata”. IEEE Transactions on Nanotechnology, Vol. 6, May 2007.
[8] I. Koren, “Computer Arithmetic Algorithms”. A. K. Paters, 2ª edition,

pp. 93-132, 2002.

[9] K. A Escobar, L. C. Manique and R. P. Ribas, “Optimal Arrangement
of Parallel Prefix Adder (PPA) Trees According to the Area and

Performance Criteria”. South Symposium on Microelectronics, pp.

161-165, 2010.
[10] R. P. Brent and H. T. Kung, “A Regular Layout for Parallel Adders”.

IEEE Trans. Computers, Vol. C-31, pp. 260-264, 1982.

[11] P. M. Kogge and H. S. Stone, “A Parallel Algorithm for the Efficient
Solution of a General Class Recurrence Equations”. IEEE Trans.

Computers, Vol. C-22, pp. 786-793, 1973.

[12] C. S. Lent and P. D. Tougaw, “A Device Architecture for Computing
with Quantum Dots”. Proc. IEEE, Vol. 85, April 1997.

[13] K. Kim, K, Wu and R. Karri, “The Robust QCA Adder Designs Using

Composable QCA Building Blocks”. IEEE Trans. On Computer-
Aided Design Integrated Circuits and Systems, Vol. 26, 2007.

[14] R. E. Ladner and M. J. Fischer, “Parallel Prefix Computation”. JACM,

Vol. 27, pp. 831-838, 1980.
[15] T. Hans and D. A. Carlson, “Fast Area-Efficient VLSI Adders”. Proc.

8th IEEE Symposium on Computer Arithmetic, pp. 49-56, 1987.

[16] K. Walus, T. J. Dysart, G. A. Jullien and R. A. Budiman,
“QCADesigner: A Rapid Design and Simulation Tool for Quantum-

Dot Cellular Automata”. IEEE Transaction on Nanotechnology, Vol. 3,
pp. 26-31, 2004.

[17] R. Zhang, K. Walus, W. Wang and G. A. Jullien, “A Method of

Majority Logic Reduction for Quantum Cellular Automata”. IEEE

Trans.on Nanotechnology, Vol. 3, pp 443-450, 2004.

