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ABSTRACT 
Scalability is an important issue in large MPSoCs. MPSoCs may 
execute several applications in parallel, with dynamic workload, 
and tight QoS constraints. Thus, the MPSoC management must be 
distributed to cope with such constraints. This paper presents a 
distributed resource management in NoC-Based MPSoC, using a 
clustering method, enabling the modification of the cluster size at 
runtime. This work addresses the following distributed 
techniques: task mapping, monitoring and task migration. Results 
show an important reduction in the total execution time of 
applications, reduced number of hops between tasks (smaller 
communication energy), and a reclustering method through 
monitoring and task migration. 

Keywords 
MPSoC, NoC, Distributed Management, Mapping. 

1. INTRODUCTION AND RELATED WORK 
MPSoCs are able to execute several applications in parallel, 
supporting dynamic workload, i.e., applications may start at any 
moment. Another important feature is QoS (quality of service), 
because multimedia and telecom applications have tight 
performance requirements that must be respected by the system.  
The background enabling several simultaneous applications, with 
QoS constraints executing on the MPSoC is the system 
management. System management may include monitoring, task 
mapping, task migration, NoC control, DVFS. The monitoring is 
responsible to detect deadline violations, and may be applied at 
the processor and/or at the NoC level. According to the violation 
severity, the system management selects a strategy to restore the 
application performance (diagnosis), as task migration, switching 
method, DVFS. Once selected the adaptation strategy, the system 
management execute it. This characterizes a closed-loop control: 
monitoring, diagnosis, and action. 
The system management may be centralized or distributed. 
Centralized management is suited for small MPSoCs due to 
scalability reasons. A central manager may be overloaded very 
quickly, due to the execution of mapping actions and treatment of 
monitoring events, for example. Also, the traffic around the 

central manager induces a hot-spot, compromising reliability in 
long term 
An alternative is the distributed management [1][2]. Two main 
approaches are discussed in the literature: one manager per 
application, and one manager per MPSoC region. The second 
approach is preferable, since the number of management 
resources remains constant, regardless the number of applications 
executing in the MPSoC. The regions are defined as clusters. All 
application tasks are executed inside the cluster, if possible, 
favoring composabilitity.  
Distributed management can guarantee gains of performance, 
fault tolerance and scalability [3]. Table 1 compares our proposal 
to state-of-art. The present work has as main originality the 
deployment of a full set of heuristics, enabling to adaptively 
control the MPSoC execution. The proposed work adopts 
distributed management, with dynamic task mapping, and task 
migration. The MPSoC is modeled at RTL level (SystemC), 
enabling accurate evaluation of performance figures. 
The goal of the present paper is to present a distributed resource 
management in NoC-based MPSoCs with dynamic cluster sizes. 
At system start-up each cluster has a fixed size, and during 
runtime clusters may borrow resources from neighbor clusters to 
map applications. 

2. ARCHITECTURAL ASSUMPTIONS 
Applications are assumed to be represented using task graphs, 
A=<T,C>, where T = {t1, t2, ..., tm} is the set of application tasks 
corresponding to the graph vertices, and C= {(ti, tj, wij) | (ti, tj) ∈ T 
and wij ∈ ℕ*} denotes the communications between tasks, 
corresponding to the graph edges. The communication between 
tasks occurs through message passing. 
The present work adopts a homogeneous MPSoC architecture, 
interconnecting PEs through a 2D-mesh NoC. Each PE contains a 
MIPS-like processor, a network interface, a DMA module, and a 
private memory for code and data. An external memory, named 
task repository, contains all applications tasks (set T), which are 
loaded into the system at runtime, using a dynamic task-mapping 
heuristics [10].  

Table 1. State-of-the art in adaptive techniques to control MPSoC, compared to the proposed work. 

Ref. Type of 
management 

Type of distributed 
management Monitoring Task migration Migration complete 

task 
Dynamic 
mapping Clusters Goal of the work 

[1] Distributed Application No No  No Yes Workload Balancing  
[3] Distributed Application No No  No No Scalability 
[4] Distributed Application No No  No No Scalability 

[5] Distributed Cluster No No  Yes Yes Detection of HW faults / Energy 
consumption  

[6] Centralized  Yes No  No No Deadline control 
[7] Centralized  Yes No  No No Resize depth buffer 
[8] Centralized  No Yes (master PE) No (code/data) No No Energy consumption 
[9] Centralized  No Yes (slave PE) No (code) No No Improve system performance 

This 
work Distributed Cluster Yes, manager 

PE 
Yes (local manager 

PE) 
Yes (code/data/ 

context) 
Yes (sharing 
resources) Yes 

Scalability / Balancing workload / 
Energy consumption / 

Reclustering 



 
The MPSoC is divided in n equally sized clusters, as illustrated in 
Figure 1. PEs may act as: Global Master (GMP), Local Master 
(LMP) and Slave (SP). SPs are responsible for task execution. 
Each SP runs a simple operating system, which enables the 
communication between PEs and multitask execution. Each SP 
may execute k simultaneous tasks. Therefore, each cluster may 
execute k*|SP| tasks simultaneously, corresponding to the number 
of resources that the cluster has. 
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Figure 1 – Clustered architecture for a homogeneous MPSoC. 
The LMP is responsible to control the cluster, executing functions 
such as monitoring, task mapping, deadlines verifications and 
communication with other LMPs and the GMP. The GMP has all 
functions of the LMP, and functions related to the overall system 
management, such as: select in which cluster a given application 
will be mapped, control the available resources in each cluster, 
receive debugging and control messages from LMPs. The GMP is 
the only PE having access to external memory (task repository). 

3. DISTRIBUTED RESOURCE 
MANAGEMENT 
The distributed resource management assumes an MPSoC divided 
in n regions, named clusters. At system startup, all clusters have 
the same size. At execution time, if an application does not fit in a 
given cluster, the LMP of the cluster may request resources to 
neighbor clusters. The LMP of the cluster monitors the resource 
availability, migrating tasks that should be in the cluster back to 
the cluster. Therefore, the cluster size varies dynamically at 
runtime. 

The next sections describe the three main distributed mechanisms: 
mapping, monitoring, and task migration. 

3.1 Distributed Mapping 
Figure 2 presents the mapping of a new application in the MPSoC. 
According to user requests, new applications can be loaded at 
runtime. This action is represented in the Figure by arrow “new 
application”.  
The required steps to map a new application include: 
1. When the GMP receives an application request, it executes 

the heuristic “cluster selection”, which chooses the cluster 
that can receive the application. The selected cluster is the 
one with resources to execute the application. If there are no 
clusters with enough resources, it is chosen the one with the 
smallest difference between the number of applications tasks 
and available resource. 

2. The GMP reads from the application repository the 
application description (set T), transmitting it to the selected 
LMP.  

3. The LMP maps the initial tasks, i.e., those without 
dependences to other tasks. This heuristic searches for the SP 
with the highest number of available resources around it. 
This increases the probability of the remaining tasks of the 

application to be mapped close to each other, reducing 
communicating distance between tasks, and therefore the 
communication energy. 

4. The LMP sends the message “task allocation request” to the 
GMP with the identification of the task to be mapped, its 
address in the repository, and the address of the SP that will 
receive the task. 

5. The GMP configures its DMA module to transmit the task 
code to the selected SP. The use of the DMA ensures that the 
task is transmitted as a burst, reserving the NoC resources for 
a small amount of time. 

6. The task code is transmitted through the NoC, received and 
stored at the selected SP. The SP will schedule the new task 
at the end of the task allocation packet reception. In addition, 
the SP keeps a data structure, named task table, with the 
address the tasks assigned to it. 

7. When the initial task executes a communication with a task 
that it is not in its task table, a “task allocation request” is 
transmitted to its LMP.  

8. The LMP executes the mapping heuristic [10], and steps 9-
10-11 are similar to steps 4-5-6. 
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Figure 2 – Protocol to insert new applications into the system. 
The step 8 of Figure 2 can fail if the cluster has no available 
resources. The example in Figure 3 assumes the top-left cluster is 
requiring a task mapping, and there are no available resources in 
cluster. In this case, the LMP of the cluster sends a “loan request” 
message, requesting resources to all neighbor clusters LMPs (step 
1 of Figure 3). 
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Figure 3 – Protocol to task mapping in neighbor cluster. 

White SPs (slave PEs) are available PEs. 



Then the LMPs that received the “loan request” search for 
available resources in theirs cluster. If there is only one available 
resource, this resource is reserved to be borrowed; otherwise, if 
there is more than one available resource, the LMP will reserve 
the one as close as possible, in number of hops, between the task 
to be mapped and the source task in the cluster. After the 
reservation, all neighbor LMPs send a “loan delivery” message to 
the LMP that requested resources, notifying the resource position 
(step 2 of Figure 3, blue SPs are reserved), if it exist. 
The LMP chooses the closest resource from the one that requested 
the task, sending a “loan release” message to all LMPs which 
were not selected (step 3 of Figure 3). Next, the LMP send a “task 
allocation request” message to the GMP requesting the task 
mapping on the borrowed resource (step 4 of Figure 3). Therefore, 
the cluster size increases at runtime, because the borrowed 
resource is now part of this cluster. This process optimizes the 
system management, since applications can be mapped in clusters, 
even if the cluster has no sufficient resources. 

3.2 Monitoring 
As described in the previous section, a cluster can borrow SPs 
from neighbor clusters. This increases the hop number between 
tasks, with the following drawbacks: (i) performance degradation 
of the application, due to its fragmentation; (ii) increased data 
traffic volume in the NoC, (iii) increased communication energy, 
since it is proportional to the number of traversed hops. 
When a given task finishes its execution, its reserved resource is 
released. Two cases may arise: end of a task mapped in its cluster, 
or end of a task mapped in a neighbor cluster. In the former case, 
a message is sent to its LMP notifying the end of task. In the 
second case, two messages are sent, one to its LMP, and a second 
one to the cluster where the task is mapped.  
Each LMP monitors the resource usage of its SPs. The monitoring 
is implemented at the task level. When an “end of task” is 
received by a LMP, it verifies if there are tasks that should be 
mapped locally are mapped in other clusters. If this condition is 
true, this means that it is possible to optimize the application 
performance by migrating the task into the cluster. It is verified 
the Manhattan distance between the task to be migrated with its 
communicating tasks. If the Manhattan distance decreases, the 
LMP sends a migration message to the SP holding the task.  
The LMPs also monitor the end of applications. When a given 
application finishes, this action is transmitted to the GMP. The 
GMP then releases all resources reserved to the application, 
enabling their use by a new application. 

3.3 Task Migration 
In [11] a task migration heuristic is detailed, with the following 
features: (i) it is not necessary to have migration checkpoints, i.e. 
tasks may be migrated at any moment; (ii) complete task 
migration, including context, code and data; (iii) in-order message 
delivery, i.e. tasks communicating with migrated tasks will 
receive the messages in order they were created.  
An important feature of the task migration is the message delivery 
control. The process to ensure the correct in-order message 
consumption is to locally store in the operating system the 
produced messages. When the task is migrated, the produced 
message remains in the original PE. Therefore, the tasks that 
communicate with the migrated task still use the task address 
before migration. Once all messages are consumed, the 
communication requests are forwarded to the new position and the 
new position forward the message with the new task address. 

4. RESULTS 
Results were obtained using three benchmarks: MPEG; multispec 
image analysis, evaluate the similarity between two images using 
different frequencies; synthetic. The experiments use the HeMPS 
MPSoC [12], described in RTL cycle accurate modeling 
(SystemC). Relevant features of the MPSoC include: 32-bit PE 
word and 16-bit flit; page size with 16 Kbytes (4,096 works); 
time-slice: 16,384 clock cycles (amount of time each task is 
scheduled); NoC router: wormhole packet switching, XY routing, 
centralized round-robin arbitration.  

4.1 Total Execution Time 
Table 2 presents the execution time normalized w.r.t the 
centralized management in a 12x12 MPSoC, with an MPSoC load 
equal to 75%. As can be observed, the distributed management 
leads to a total execution time reduction. The smaller reduction 
observed in the MPEG benchmark is due to its periodicity feature. 
The reduction in the total execution time reduction comes from: 
(i) several PEs execute the task mapping in parallel; (ii) each 
manager treats a smaller number of control packets (mapping 
request, end of task, monitoring events) compared to the 
centralized approach. This reduces the manager load and the 
traffic in the NoC. 
A relevant issue is the cluster size. Is there an optimal cluster 
size? Even with few clusters, as two, the total execution time is 
reduced, due to the parallelism of the management tasks. A large 
number of clusters use too much MPSoC resources, reducing the 
number of applications that can run simultaneously. From Table 
2, a cluster size with 18 (6x3) or 16 (4x4) PEs represents a good 
trade-off between execution time reduction and resources reserved 
for management.  

Table 2. Total execution time normalized w.r.t. the centralized 
management (cluster sized 12x12), in a 12x12 MPSoC 

instance, with an MPSoC load equal to 75%. 
Cluster 

Size 
Nb of 

Clusters 
Benchmark 

MPEG Synthetic Multispec 
12x12  1 1,00 1,00 1,00 
12x6 2 0,94 0,78 0,77 
6x6 4 0,90 0,67 0,63 
6x4 6 0,88 0,58 0,71 
6x3 8 0,86 0,57 0,56 
4x4 9 0,88 0,58 0,52 
3x3 16 0,87 0,54 0,49 

In a smaller MPSoC the number of simultaneous tasks is smaller 
compared to a lager MPSoC. Therefore, the management load is 
smaller. In such a case, the partitioning of a smaller MPSoC is 
less effective than a large MPSoC. This point out to a second 
issue: when a centralized or distributed management should be 
used? From the Authors results, MPSoCs starting with 64 PEs, 
with four 4x4 clusters, presents significant reduction in the 
execution time, as observed in Table 2. 
Summarizing the evaluation of the total execution: (i) distributed 
management is effective for large MPSoCs, i.e., more than 64 
PEs; (ii) a cluster size with 16-18 PEs represents a good trade-off 
between total execution time and PEs dedicated to management; 
(iii) the distributed management reduced the augmentation of the 
total execution time when increasing the system load. 

4.2 Hop Number 
The evaluation of the average hop number is a key parameter to 
evaluate the mapping quality. A small hop number between tasks 
favors QoS, since communication tasks are mapped closer to each 
other, and reduces the communication energy. Higher values of 
hop number on the other side penalize the performance of 



applications, since disturbing traffic may interfere in the 
communication. 
Table 3 presents statistical data related to the hop number between 
tasks, for two benchmarks and three cluster sizes. In both 
benchmarks the centralized management (cluster size 12x12) 
presented a higher average hop number than the distributed 
management. The mapping in the centralized management 
potentially could generate better solutions than the distributed 
management, because the mapper has a global view of the 
MPSoC. This is true when the load applied to the MPSoC is 
small. In such cases, both management techniques present similar 
results in terms of hop number. In scenarios with a higher load 
(Table 3), the number of continuous regions using centralized 
management reduces, increasing in this way the hop number. On 
the other side, the use of clusters favors the usage of the MPSoC 
resources, keeping continuous regions even under higher loads 
applied to the MPSoC. The results presented in Table 3, are also 
related to the total execution time (previous section). The higher is 
the average number of hops, higher is the total execution time. 

The standard deviation observed in the centralized management is 
high (2.17 and 7.98), meaning that some applications have their 
tasks mapped far from each other. The distributed management 
presents a smaller standard deviation, from 0.31 to 1.65. This 
means that most applications were mapped in a continuous region, 
inside the cluster, favoring composability, an important feature for 
QoS. 

Table 3. Hop number between tasks, in a 12x12 MPSoC, load 
equal to 75%. 

Cluster Size Nb of Clusters MPEG (5 tasks) 
min avg max Std dev 

12x12 1 4 5.14 14 2.17 
6x3 8 4 4.05 6 0.31 
4x4 9 4 4.45 8 1.15 

Cluster Size Nb of Clusters Synthetic (6 tasks) 
min avg max Std dev 

12x12 1 2 9.66 38 7.98 
6x3 8 2 5.65 10 1.51 
4x4 9 2 6.00 10 1.65 

4.3 Reclustering 
This Section evaluates monitoring with task migration. Two 
scenarios were evaluated: (i) main application - MApp (evaluated 
application) with disturbing applications, without task migration; 
(ii) MApp with disturbing applications and two task migrations 
(tasks E and D). 
Figure 4(a) shows the initial mapping. Tasks D and E of the MApp 
were mapped in neighbor clusters, not in the cluster that contains 
the manager PE of the MApp (top-left cluster). These two tasks 
were mapped in neighbor clusters due to absence of resources in 
the cluster managing MApp. When tasks belonging to the 
disturbing application finish, the manager of the cluster verify if 
exists tasks running in other clusters. In this case, the LMP sends 
migration requests to SPs running these tasks. In Figure 4(b) tasks 
D and E were migrated to cluster managing MApp. This results in 
a smaller number of hops between the tasks of MApp, with an 
improvement in its execution performance. 
The MApp is periodic, with a pipeline behavior, repeating each 
task for parameterizable number of iterations. The iteration time 
of task F stabilizes in 10,000 clock cycles. With task migration, as 
expected, during migration the iteration time of task F increases, 
because the application is stalled since the data is not consumed 
by tasks D and E. After migration, the iteration time of task F 
stabilizes in 8,600 clock cycles. Such improvement came from the 
hop number reduction between MApp tasks. 
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Figure 4 – Experimental setup to task migration. 

The total execution time for both scenarios was 2,772,692 and 
2,698,812, in clock cycles. This corresponds to a reduction of 
2.67% in the total execution time, considering two task 
migrations. Therefore, even if task migration momently increases 
the execution time, the final result is an improvement in the 
overall performance. 

5. CONCLUSIONS AND FUTURE WORKS 
This work proposed a distributed resource management for NoC-
based MPSoCs with dynamic cluster sizes. The proposal divides 
the system in fixed sized cluster at startup that may be resized 
according to a reclustering protocol. Compared to a centralized 
system, the proposed management technique reduced the distance 
among tasks, resulting in an important reduction in the total 
execution time. In addition, it was shown that monitoring coupled 
to task migration is an effective adaptive method to improve the 
system performance. 
Future works include the measurement of performance metrics, as 
latency and communicating energy. Even if they are proportional 
to the hop number, its evaluation is important to corroborate the 
distributed management approach. It is also important to add in 
the monitoring system QoS parameters, as throughput, to adapt 
applications dynamically according the the system load. 
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