Distributed Resource Management in NoC-Based MPSoCs
with Dynamic Cluster Sizes

Guilherme Castilhos, Marcelo Mandelli, Guilherme Madalozzo and Fernando Moraes
FACIN — PUCRS — Av. Ipiranga 6681— Porto Alegre — RS — Brazil
{guilherme.castilhos, marcelo.mandelli, guilherme.madalozzo }@acad.pucrs.br, fernando.moraes@pucrs.br

ABSTRACT

Scalability is an important issue in large MPSoCs. MPSoCs may
execute several applications in parallel, with dynamic workload,
and tight QoS constraints. Thus, the MPSoC management must be
distributed to cope with such constraints. This paper presents a
distributed resource management in NoC-Based MPSoC, using a
clustering method, enabling the modification of the cluster size at
runtime. This work addresses the following distributed
techniques: task mapping, monitoring and task migration. Results
show an important reduction in the total execution time of
applications, reduced number of hops between tasks (smaller
communication energy), and a reclustering method through
monitoring and task migration.

Keywords
MPSoC, NoC, Distributed Management, Mapping.

1. INTRODUCTION AND RELATED WORK

MPSoCs are able to execute several applications in parallel,
supporting dynamic workload, i.e., applications may start at any
moment. Another important feature is QoS (quality of service),
because multimedia and telecom applications have tight
performance requirements that must be respected by the system.

The background enabling several simultaneous applications, with
QoS constraints executing on the MPSoC is the system
management. System management may include monitoring, task
mapping, task migration, NoC control, DVFS. The monitoring is
responsible to detect deadline violations, and may be applied at
the processor and/or at the NoC level. According to the violation
severity, the system management selects a strategy to restore the
application performance (diagnosis), as task migration, switching
method, DVFS. Once selected the adaptation strategy, the system
management execute it. This characterizes a closed-loop control:
monitoring, diagnosis, and action.

The system management may be centralized or distributed.
Centralized management is suited for small MPSoCs due to
scalability reasons. A central manager may be overloaded very
quickly, due to the execution of mapping actions and treatment of
monitoring events, for example. Also, the traffic around the

central manager induces a hot-spot, compromising reliability in
long term

An alternative is the distributed management [1][2]. Two main
approaches are discussed in the literature: one manager per
application, and one manager per MPSoC region. The second
approach is preferable, since the number of management
resources remains constant, regardless the number of applications
executing in the MPSoC. The regions are defined as clusters. All
application tasks are executed inside the cluster, if possible,
favoring composabilitity.

Distributed management can guarantee gains of performance,
fault tolerance and scalability [3]. Table 1 compares our proposal
to state-of-art. The present work has as main originality the
deployment of a full set of heuristics, enabling to adaptively
control the MPSoC execution. The proposed work adopts
distributed management, with dynamic task mapping, and task
migration. The MPSoC is modeled at RTL level (SystemC),
enabling accurate evaluation of performance figures.

The goal of the present paper is to present a distributed resource
management in NoC-based MPSoCs with dynamic cluster sizes.
At system start-up each cluster has a fixed size, and during
runtime clusters may borrow resources from neighbor clusters to
map applications.

2. ARCHITECTURAL ASSUMPTIONS
Applications are assumed to be represented using task graphs,
A=<T,C>, where T = {tl, t2, ..., tm} is the set of application tasks
corresponding to the graph vertices, and C= {(ti, tj, wij) | (ti,) E T
and wij €N*} denotes the communications between tasks,
corresponding to the graph edges. The communication between
tasks occurs through message passing.

The present work adopts a homogeneous MPSoC architecture,
interconnecting PEs through a 2D-mesh NoC. Each PE contains a
MIPS-like processor, a network interface, a DMA module, and a
private memory for code and data. An external memory, named
task repository, contains all applications tasks (set T), which are
loaded into the system at runtime, using a dynamic task-mapping
heuristics [10].

Table 1. State-of-the art in adaptive techniques to control MPSoC, compared to the proposed work.

Ref. Lo et e etttz Monitoring Task migration R comly Dynarplc Clusters Goal of the work
management management task mapping
[1] Distributed Application No No No Yes Workload Balancing
[3] Distributed Application No No No No Scalability
[4] Distributed Application No No No No Scalability
[5] Distributed Cluster No No Yes Yes Detection of HW fa}] lts / Energy
consumption
[6] Centralized Yes No No No Deadline control
[7] Centralized Yes No No No Resize depth buffer
[8] Centralized No Yes (master PE) No (code/data) No No Energy consumption
[9] Centralized No Yes (slave PE) No (code) No No Improve system performance
This - Yes, manager| Yes (local manager | Yes (code/data/ Yes (sharing ScalabilityiBalancing \yorkload /
Distributed Cluster Yes Energy consumption /
work PE PE) context) resources) .
Reclustering

The MPSoC is divided in n equally sized clusters, as illustrated in
Figure 1. PEs may act as: Global Master (GMP), Local Master
(LMP) and Slave (SP). SPs are responsible for task execution.
Each SP runs a simple operating system, which enables the
communication between PEs and multitask execution. Each SP
may execute & simultaneous tasks. Therefore, each cluster may
execute £*|SP| tasks simultaneously, corresponding to the number
of resources that the cluster has.

)

Task
Repository

Figure 1 — Clustered architecture for a homogeneous MPSoC.

The LMP is responsible to control the cluster, executing functions
such as monitoring, task mapping, deadlines verifications and
communication with other LMPs and the GMP. The GMP has all
functions of the LMP, and functions related to the overall system
management, such as: select in which cluster a given application
will be mapped, control the available resources in each cluster,
receive debugging and control messages from LMPs. The GMP is
the only PE having access to external memory (task repository).

3. DISTRIBUTED RESOURCE
MANAGEMENT

The distributed resource management assumes an MPSoC divided
in n regions, named clusters. At system startup, all clusters have
the same size. At execution time, if an application does not fit in a
given cluster, the LMP of the cluster may request resources to
neighbor clusters. The LMP of the cluster monitors the resource
availability, migrating tasks that should be in the cluster back to
the cluster. Therefore, the cluster size varies dynamically at
runtime.

The next sections describe the three main distributed mechanisms:
mapping, monitoring, and task migration.

3.1 Distributed Mapping

Figure 2 presents the mapping of a new application in the MPSoC.
According to user requests, new applications can be loaded at
runtime. This action is represented in the Figure by arrow “new
application”.

The required steps to map a new application include:

1. When the GMP receives an application request, it executes
the heuristic “cluster selection”, which chooses the cluster
that can receive the application. The selected cluster is the
one with resources to execute the application. If there are no
clusters with enough resources, it is chosen the one with the
smallest difference between the number of applications tasks
and available resource.

2. The GMP reads from the application repository the
application description (set T), transmitting it to the selected
LMP.

3. The LMP maps the initial tasks, i.e., those without
dependences to other tasks. This heuristic searches for the SP
with the highest number of available resources around it.
This increases the probability of the remaining tasks of the

application to be mapped close to each other, reducing
communicating distance between tasks, and therefore the
communication energy.

4. The LMP sends the message “task allocation request” to the
GMP with the identification of the task to be mapped, its
address in the repository, and the address of the SP that will
receive the task.

5. The GMP configures its DMA module to transmit the task
code to the selected SP. The use of the DMA ensures that the
task is transmitted as a burst, reserving the NoC resources for
a small amount of time.

6. The task code is transmitted through the NoC, received and
stored at the selected SP. The SP will schedule the new task
at the end of the task allocation packet reception. In addition,
the SP keeps a data structure, named task table, with the
address the tasks assigned to it.

7. When the initial task executes a communication with a task
that it is not in its task table, a “fask allocation request” is
transmitted to its LMP.

8. The LMP executes the mapping heuristic [10], and steps 9-
10-11 are similar to steps 4-5-6.

e
e‘%%o GMP LMP sp2 SP1
7+

o
1 -Cluster 2.

Applicat;
Selection Pelication pee,

3 - Initial Tasks

4 -Task Allocation Mapping
5 -Task L Request
transmission
%

7-Task Rpquest _—— |

8 - Task Mapping
Heuristic

9 -Task Allocation
10 -Task L Request
transmission 11 Task o ocation

LR

LR

2

Figure 2 — Protocol to insert new applications into th?system.

The step 8 of Figure 2 can fail if the cluster has no available
resources. The example in Figure 3 assumes the top-left cluster is
requiring a task mapping, and there are no available resources in
cluster. In this case, the LMP of the cluster sends a “/oan request”
message, requesting resources to all neighbor clusters LMPs (step
1 of Figure 3).

Step 1: Loan Request

Step 2: Loan Delivery

Figure 3 — Protocol to task mapping in neighbor cluster.
White SPs (slave PEs) are available PEs.

Then the LMPs that received the “loan request” search for
available resources in theirs cluster. If there is only one available
resource, this resource is reserved to be borrowed; otherwise, if
there is more than one available resource, the LMP will reserve
the one as close as possible, in number of hops, between the task
to be mapped and the source task in the cluster. After the
reservation, all neighbor LMPs send a “loan delivery” message to
the LMP that requested resources, notifying the resource position
(step 2 of Figure 3, blue SPs are reserved), if it exist.

The LMP chooses the closest resource from the one that requested
the task, sending a “loan release” message to all LMPs which
were not selected (step 3 of Figure 3). Next, the LMP send a “fask
allocation request” message to the GMP requesting the task
mapping on the borrowed resource (step 4 of Figure 3). Therefore,
the cluster size increases at runtime, because the borrowed
resource is now part of this cluster. This process optimizes the
system management, since applications can be mapped in clusters,
even if the cluster has no sufficient resources.

3.2 Monitoring

As described in the previous section, a cluster can borrow SPs
from neighbor clusters. This increases the hop number between
tasks, with the following drawbacks: (i) performance degradation
of the application, due to its fragmentation; (i/) increased data
traffic volume in the NoC, (iii) increased communication energy,
since it is proportional to the number of traversed hops.

When a given task finishes its execution, its reserved resource is
released. Two cases may arise: end of a task mapped in its cluster,
or end of a task mapped in a neighbor cluster. In the former case,
a message is sent to its LMP notifying the end of task. In the
second case, two messages are sent, one to its LMP, and a second
one to the cluster where the task is mapped.

Each LMP monitors the resource usage of its SPs. The monitoring
is implemented at the task level. When an “end of task” is
received by a LMP, it verifies if there are tasks that should be
mapped locally are mapped in other clusters. If this condition is
true, this means that it is possible to optimize the application
performance by migrating the task into the cluster. It is verified
the Manhattan distance between the task to be migrated with its
communicating tasks. If the Manhattan distance decreases, the
LMP sends a migration message to the SP holding the task.

The LMPs also monitor the end of applications. When a given
application finishes, this action is transmitted to the GMP. The
GMP then releases all resources reserved to the application,
enabling their use by a new application.

3.3 Task Migration

In [11] a task migration heuristic is detailed, with the following
features: (i) it is not necessary to have migration checkpoints, i.e.
tasks may be migrated at any moment; (ii) complete task
migration, including context, code and data; (iii) in-order message
delivery, i.e. tasks communicating with migrated tasks will
receive the messages in order they were created.

An important feature of the task migration is the message delivery
control. The process to ensure the correct in-order message
consumption is to locally store in the operating system the
produced messages. When the task is migrated, the produced
message remains in the original PE. Therefore, the tasks that
communicate with the migrated task still use the task address
before migration. Once all messages are consumed, the
communication requests are forwarded to the new position and the
new position forward the message with the new task address.

4. RESULTS

Results were obtained using three benchmarks: MPEG; multispec
image analysis, evaluate the similarity between two images using
different frequencies; synthetic. The experiments use the HeMPS
MPSoC [12], described in RTL cycle accurate modeling
(SystemC). Relevant features of the MPSoC include: 32-bit PE
word and 16-bit flit; page size with 16 Kbytes (4,096 works);
time-slice: 16,384 clock cycles (amount of time each task is
scheduled); NoC router: wormhole packet switching, XY routing,
centralized round-robin arbitration.

4.1 Total Execution Time

Table 2 presents the execution time normalized w.r.t the
centralized management in a 12x12 MPSoC, with an MPSoC load
equal to 75%. As can be observed, the distributed management
leads to a total execution time reduction. The smaller reduction
observed in the MPEG benchmark is due to its periodicity feature.
The reduction in the total execution time reduction comes from:
(i) several PEs execute the task mapping in parallel; (ii) each
manager treats a smaller number of control packets (mapping
request, end of task, monitoring events) compared to the
centralized approach. This reduces the manager load and the
traffic in the NoC.

A relevant issue is the cluster size. Is there an optimal cluster
size? Even with few clusters, as two, the total execution time is
reduced, due to the parallelism of the management tasks. A large
number of clusters use too much MPSoC resources, reducing the
number of applications that can run simultaneously. From Table
2, a cluster size with 18 (6x3) or 16 (4x4) PEs represents a good
trade-off between execution time reduction and resources reserved
for management.

Table 2. Total execution time normalized w.r.t. the centralized
management (cluster sized 12x12), in a 12x12 MPSoC
instance, with an MPSoC load equal to 75%.

Cluster Nb of Benchmark
Size Clusters MPEG Synthetic Multispec

12x12 1 1,00 1,00 1,00
12x6 2 0,94 0,78 0,77
6x6 4 0,90 0,67 0,63
6x4 6 0,88 0,58 0,71
6x3 8 0,86 0,57 0,56
4x4 9 0,88 0,58 0,52
3x3 16 0,87 0,54 0,49

In a smaller MPSoC the number of simultaneous tasks is smaller
compared to a lager MPSoC. Therefore, the management load is
smaller. In such a case, the partitioning of a smaller MPSoC is
less effective than a large MPSoC. This point out to a second
issue: when a centralized or distributed management should be
used? From the Authors results, MPSoCs starting with 64 PEs,
with four 4x4 clusters, presents significant reduction in the
execution time, as observed in Table 2.

Summarizing the evaluation of the total execution: (i) distributed
management is effective for large MPSoCs, i.e., more than 64
PEs; (i) a cluster size with 16-18 PEs represents a good trade-off
between total execution time and PEs dedicated to management;
(iii) the distributed management reduced the augmentation of the
total execution time when increasing the system load.

4.2 Hop Number

The evaluation of the average hop number is a key parameter to
evaluate the mapping quality. A small hop number between tasks
favors QoS, since communication tasks are mapped closer to each
other, and reduces the communication energy. Higher values of
hop number on the other side penalize the performance of

applications, since disturbing traffic may interfere in the
communication.

Table 3 presents statistical data related to the hop number between
tasks, for two benchmarks and three cluster sizes. In both
benchmarks the centralized management (cluster size 12x12)
presented a higher average hop number than the distributed
management. The mapping in the centralized management
potentially could generate better solutions than the distributed
management, because the mapper has a global view of the
MPSoC. This is true when the load applied to the MPSoC is
small. In such cases, both management techniques present similar
results in terms of hop number. In scenarios with a higher load
(Table 3), the number of continuous regions using centralized
management reduces, increasing in this way the hop number. On
the other side, the use of clusters favors the usage of the MPSoC
resources, keeping continuous regions even under higher loads
applied to the MPSoC. The results presented in Table 3, are also
related to the total execution time (previous section). The higher is
the average number of hops, higher is the total execution time.

The standard deviation observed in the centralized management is
high (2.17 and 7.98), meaning that some applications have their
tasks mapped far from each other. The distributed management
presents a smaller standard deviation, from 0.31 to 1.65. This
means that most applications were mapped in a continuous region,
inside the cluster, favoring composability, an important feature for

QoS.

Table 3. Hop number between tasks, in a 12x12 MPSoC, load
equal to 75%.

Cluster Size Nb of Clusters - MPEG (5 tasks
i avg max Std dev
12x12 1 4 5.14 14 2.17
6x3 8 4 4.05 6 0.31
4x4 9 4 4.45 8 1.15
Cluster Size Nb of Clusters : Synthetic (6 tasks)
I avg max Std dev
12x12 1 2 9.66 38 7.98
6x3 8 2 5.65 10 1.51
4x4 9 2 6.00 10 1.65

4.3 Reclustering

This Section evaluates monitoring with task migration. Two
scenarios were evaluated: (i) main application - MA,,, (evaluated
application) with disturbing applications, without task migration;
(ii) MA,, with disturbing applications and two task migrations
(tasks E and D).

Figure 4(a) shows the initial mapping. Tasks D and E of the MA,
were mapped in neighbor clusters, not in the cluster that contains
the manager PE of the MA, (top-left cluster). These two tasks
were mapped in neighbor clusters due to absence of resources in
the cluster managing MA,,. When tasks belonging to the
disturbing application finish, the manager of the cluster verify if
exists tasks running in other clusters. In this case, the LMP sends
migration requests to SPs running these tasks. In Figure 4(b) tasks
D and E were migrated to cluster managing MA,,,. This results in
a smaller number of hops between the tasks of MA,, with an
improvement in its execution performance.

The MA,, is periodic, with a pipeline behavior, repeating each
task for parameterizable number of iterations. The iteration time
of task F stabilizes in 10,000 clock cycles. With task migration, as
expected, during migration the iteration time of task F increases,
because the application is stalled since the data is not consumed
by tasks D and E. After migration, the iteration time of task F
stabilizes in 8,600 clock cycles. Such improvement came from the
hop number reduction between MA,, tasks.

I
I

II o
II
we H ost

Main Application

® ©
(© Q)
® ®

Figure 4 — Experimental setup to task migration.

Disturbing Application

The total execution time for both scenarios was 2,772,692 and
2,698,812, in clock cycles. This corresponds to a reduction of
2.67% in the total execution time, considering two task
migrations. Therefore, even if task migration momently increases
the execution time, the final result is an improvement in the
overall performance.

5. CONCLUSIONS AND FUTURE WORKS

This work proposed a distributed resource management for NoC-
based MPSoCs with dynamic cluster sizes. The proposal divides
the system in fixed sized cluster at startup that may be resized
according to a reclustering protocol. Compared to a centralized
system, the proposed management technique reduced the distance
among tasks, resulting in an important reduction in the total
execution time. In addition, it was shown that monitoring coupled
to task migration is an effective adaptive method to improve the
system performance.

Future works include the measurement of performance metrics, as
latency and communicating energy. Even if they are proportional
to the hop number, its evaluation is important to corroborate the
distributed management approach. It is also important to add in
the monitoring system QoS parameters, as throughput, to adapt
applications dynamically according the the system load.

6. REFERENCES

[1] Kobbe, S., et al. “DistRM: Distributed Resorce Management for On-
Chip Many-Core Systems”. In: ISSS11, 2011.

[2] Shabbir, A., et al. “Distributed Resource Management for
Concurrent Execution of Multimedia Applications on MPSoC
Platforms”. In: SAMOS, 2011, pp. 132-139.

[3] Fattah, M., et al. “Exploration of MPSoC Monitoring and
Management Systems”. In: ReCoSoC, 2011.

[4] Al Faruque, M.A., Krist, R., and Henkel, J. “ADAM: Run-time
Agent-based Distributed Application Mapping for on-chip
Communication”. In: DAC, 2008.

[5] Stan, A., Valachi, A., and Bérleanu, A. “The design of a run-time
monitoring structure for a MPSoC”. In: ICSTCC, 2011, 4p.

[6] Matos, D., et al. “Monitor-Adapter Coupling for NoC Perfomance
Tuning”. In: ICECS, 2010, pp. 193-199

[7] Bertozzi, S., et al. “Supporting task migration in multi-processor
systems-on-chip: a feasibility study”. In: DATE, 2006, pp. 15-20.

[8] Goodarzi, B., and Sarbazi-Azad, H. “Task Migration in Mesh NoCs
over Virtual Point-to-Point Connections”. In: Euromicro, 2011,
pp.463-469.

[9] Almeida, G.; et al. “Evaluating the Impact of Task Migration in
Multi-Processor Systems-on-Chip”. In: SBCCI, 2010, pp. 73-78.

[10] Mandelli, M.; et al. “Multi-task dynamic mapping onto NoC-based
MPSoCs”. In: SBCCI, 2011, pp 191-196.

[11] Moraes, F., et al. “Proposal and Evaluation of a Task Migration
Protocol for NoC-based MPSoCs”. In: ISCAS, 2012, pp. 644-647.

[12] Carara, E., et al. "HeMPS - a Framework for NoC-based MPSoC
Generation". In: ISCAS, 2009, pp. 1345-1348

