Automatic Generation of Co-Processor for Simulation
of Quantum Algorithms on FPGA

Calebe Conceigdo

Programa de Pos Graduacdo em Computagéo
Universidade Federal do Rio Grande do Sul - UFRGS
Porto Alegre, Brazil
calebe.conceicao@inf.ufrgs.br

Abstract—The simulation of quantum algorithms on classical
computers is computationally hard, mainly due to the parallel
nature of quantum systems. To speed up these simulations, some
works have proposed to use programmable parallel hardware such
as FPGAs, which considerably shorten the simulation execution
time. It is needed a big effort to port the quantum algorithm to a
FPGA. We present a new tool that automatically generates an RTL
description of a co-processor dedicated to simulate quantum
algorithms using an FPGA.

INTRODUCTION

The search for new architectures and computational models is
a way to find new improved solutions at the same time the
fabrication technologies are approaching their physical limits [1]
[2]. Many computational models have been proposed to replace or
live together with silicon technologies [2][3] among which
quantum computing is rather promising because it suggests
considerable gains on computational power and appears to be
compatible to all structure available today, which would soften its
adoption as a new computational paradigm [4].

Quantum computing algorithms have been developed and
tested through simulation using classical computers [5][6][7]. A
problem is that such simulations are computationally hard due to
the parallel nature of quantum world [8], since each operation of a
quantum algorithm — which would be performed in parallel if
executed in a quantum computer — must be scheduled to a
sequential execution in a classical computer.

Alternatively, some works have used the intrinsic parallelism
of programmable logic devices such as FPGAs to realize these
simulations [9][10]. The gains in execution time of these
approaches are about three orders of magnitude better than
simulations on general purpose computers. The reason is that the
needed hardware to perform small operations like sum and
multiplications are simply replicated to execute in parallel, thus
transporting the complexity of the problem from time domain to
space domain.

This paper is organized as follows. In section 2 we present an
brief overview of quantum computing. In section 3 we present
how the co-processor is generated. Section 4 brings the results on
logic cells usage using a quantum algorithms benchmark in
comparison with related works. In section 4 we present the
conclusions.

Ricardo Reis

Instituto de Informatica — PPGC/PGMicro
Universidade Federal do Rio Grande do Sul - UFRGS
Porto Alegre, Brazil
reis@inf.ufrgs.br

IIT - DETAILS OF THE TooL
A. Graphical Interface

The graphical interface of the tool is based on the JQuantum
simulator [7], an open source simulator of quantum circuits
written in Java. Modifications were made to support the FPGA
execution flow. A screen shot of the tool is presented on Fig. 1.

The circuit is designed using the circuit model and its
schematic is displayed on central panel. The state vector of the
system is displayed in the lower panel, where each amplitude is
represented by the address of a quantum register. Colors represent
complex values, according to the color map shown — a JQuantum
original feature.

Once the designer describes its quantum algorithm using the
circuit model, the tool automatically generates a synthesizable
circuit description in the RTL level using SystemVerilog. Any
third party tool can be used in order to synthesize and load it on
FPGA.

B. Data Representation

The state vector is represented by a memory called quantum
register. Each complex coefficient is stored in two registers, one
for real and other for the imaginary part, whose size can be
configured in 8, 16 or 32 bits. The real and imaginary part of a
coefficient are stored on the same address. The data is represented
in fixed point and complex arithmetic operators are

-~ -

jQuantum

File Configuration Help ==
Control Circuit Design

v o] BRI K= 2|0

‘
Il < o=

2 o=

o=
‘ '

=
-
@l Register States

X-register

Figure 1: Graphical User Interface of our tool

parameterized. Considering the postulate of state space and
postulate of evolution of quantum mechanics [8], only two bits are
necessary to represent the signed integer part, and the remaining
bits are used to represent the fractional part.

Since in quantum computing we can only prepare the initial
state vector of a quantum algorithm in a pure state, just a string of
2N bits (where N is the number of qubits) are sent as input in
order to load the initial state vector. Each bit controls a set of 2
multiplexers linked to each address to load the correspondent
complex values on the quantum register.

Differently that in the initial state, the resulting state vector
can be in a superposition state. So, it is necessary to output the
entire quantum state register. The number of bits necessary to
store the quantum register coefficients vector is given by M oN+ ,
where M is the size of the mantissa.

C. Supported Quantum Gates

This tool supports Pauli X, Hadamard, CNot and Toffoli gates.
They are implemented extending the idea of Network of
Butterflies model, proposed on [11] just for Pauli X gate. By
using this model it was possible to do a programmable gate
implementation. The general idea of this model is shown on Fig.
5, using the Pauli X gate as example.

Since the transformation matrix of Pauli X gate has only
complex constants 0 and 1, no sum or multiplication is necessary.
The functionality of this single qubit gate, if applied to a system
with only one qubit, consists on swapping the coefficients of the
two states of the system. However, when it is applied in a
compound system, although being applied to just one qubit, the
functionality of the Pauli X gate shall be reflected on the entire
system state, represented by its state vector.

As it can be seen on Fig. 2, it is necessary to select the right
pairs of coefficients to swap their values on previous state vector.
It is easily done by inverting the target bit of the binary
representation of each coefficient index, where farget is the
number of the qubit to which the gate is applied. For instance, if
the the Pauli X is applied to qubit 0 — ie. target is equals to 0 — the
value to be stored on vy of resultant state vector |11) comes from
a1 of [1)p), and the value to be stored on a1 of |11) comes from
a1 of |g), and so on.

In other words, to implement the Pauli X gate behavior, it is
just necessary to identify the right pairs according to the target
value, and swapping their values in the resultant state vector. This
step can be done with multiplexers. The scheme is represented on
Fig. 3.

On Fig. 3 is also shown the implementation scheme of the
CNot gate. The behavior of this gate can be understood as an
extension of Pauli X gate, but conditioned to the value of the
qubit indicated by ctrly. In the implementation, if the ctrly bit of
binary representation of coefficient index is equals to one, the
values of the selected pair of coefficients selected on first layer of
multiplexers are exchanged; otherwise they are kept. The
implementation of Toffoli gate is straightforward.

The Hadamard gate implementation scheme is quite similar to
the Pauli X. The difference is that in this gate the data of [i)g)
must be transformed before being written to [11) according to

equations (1) and (2), derived from Hadamard matrix
representation

ap + Bo

o] = ——— 1

BO) @
a0 — Bo

P — 2

A 73 ()

where o and 3 are a pair of coefficients of |1}), and cv; and (3
are a pair of coefficients of |11). It is also the value of target qubit
that controls the multiplexes to select the right pairs of
coefficients for each coefficient of |11).

D. Quantum Processor

To simulate the quantum algorithm, our tool generates a single
cycle co-processor that works at 50 MHz by default. Its block
diagram is shown on Fig. 5. The ordered set of gates of a quantum
algorithm is stored as instructions on Netlist Memory. The
instructions have a format specified on Fig. 4. The operation of
gates is controlled by the multiplexers according to the value
specified in each field, as explained before.

The sequence of instructions must be loaded on the Netlist
Memory. The Control Unit is responsible to address the Netlist

|0) i) |0) 1)

/o) |1+0i[0+0i[0+0i[0+0i]
[00> |01> |10> |11>

|t/0) |1+0i[0+0i[0+0i[0+0i]
00> 01> |10> |11>

|¥1) [0+0i[1+0i[0+0i[0+0i]
|00> |01> |10> |11>

|t1) [0+0i]0+0i[1+0i[0+0i]
00> |01> |10> |11>
Figure 2: Pauli X gate behavior in a two qubits system

o) L1 [] o) L1 [[]

00> 01> |10> 11> [00> 01> [10> 11>

target

) [T]

00> (01> |10>

|11>

[00>
Figure 3: Pauli X (left) and CNot(right) implementation scheme

01> 10> |11>

Memory neatly, starting when the START flag is sent, and to
generate the FINISHED flag, that informs the end of computation.

The Quantum ALU module has just one instance of each gate,
and it is responsible to select which output of them will be written
on Quantum Register. With this approach only one quantum
register is necessary to realize the computation.

The advantage of parallelism is taken when performing each
complete operation in one clock cycle. If the same execution is
done in an ordinary computer, it would take several processor
cycles to perform each sum, multiplication and memory swap, for
each pair of coefficients, sequentially.

IV — REsuLts

The execution time of any algorithm performed on our co-
processor is linear with the number of gates, since each gate
performs its functionality in one clock cycle. However, as
mentioned before, this approach of using FPGA just transfer the
complexity from time domain to space domain. Therefore, the
number of logic cells required to implement the co-processor
increases exponentially with the number of qubits and the size of
the mantissa, as can be verified on Table I. The Netlist Memory
has a constant configurable size and therefore it is not shown.

TaBLE I. LC USAGE OF MODULES WITH THE NUMBER OF QUBITS AND SIZE OF MANTISSA

Data

‘ ctrly ‘ target

ctrly ‘ opcode

Size (bits)

[loga N

[logaN |

[logaN |

2

Figure 4 Instruction format (N is the number of qubits)

/ Instruction 1
Instruction 2
Instruction 3

Initial State

Quantum Register

Result

Instruction 4
Instruction 5

&)

Instruction N

Netlist
Memory

Processor

Quantum ALU

ctrl_0

\@
Control
Unit

opcode target

ctrl_1

Figure 5: Quantum processor generic block diagram

TasLe II. Locic CeLLs UsaGE For BENCHMARK CIRCUITS

3 qubits L Ours [10] [9]
Unity | 1 qubit | 2 qubits 4 qubits | S qubits Circuit
8 bits | 16 bits | 32 bits 8 bits 16 bits 8 bits | 16 bits | 8 bits | 16 bits
Q. ALU 229 531 1402 | 3526 | 9408 2982 6869 3 17tc 150 150 24 24 960 1728
Q. Reg 32 64 128 256 512 256 512 ham3tc 140 140 24 24 800 1440
Mantissa fixed on 8 bits where it is not mentioned. Q. Reg values are expressed in number of flip-flops rd32 191 191 48 48 1280 2304
On the other hapd, our sol}ltlpn is invariant to the number. of hwba-11-23 230 230 64 64 | 3520 | 6336
gates in the algorithm description, differently of the solution
proposed on [10], that depends on that. The results on Table I xor5dl 416 409 128 | 128 | 2560 | 4608
shows that Quantum ULA is the main responsib_le. to the Mod5d1 571 573 224 | 224 | 5120 | 9216
exponential increase of the size of the system. Also, it is better ot 903 905 120 | 320 | 6200 | 11520
than [9] in terms of memory usage, which includes a new greycode
quantum register after each quantum gate. rd53d2 4019 4019 3072 | 3072 - -

We also measured the logic cells usage for circuits of a
quantum algorithm benchmark of reversible circuits avaliable in
[12] and used as metrics in previous work. In order to fairly
compare our results, we kept in the Quantum ALU only instances
of quantum gates that are used in the circuit description.
Additionally, we also reduce the size of the Netlist Memory to
hold up only the number of gates in the quantum algorithm
description. The logic cell usage of the generated co-processor for
8 and 16 bits in the mantissa is shown on Table II. The benchmark
circuits are ordered by the number of qubits.

The results in logic cells of our automatically generated RTL
description is comparable to the best results available in literature
[10], as can be seen on Table II. There is almost no variation when
increasing the mantissa of a circuit, which differs from results
shown on Table L. It is because no circuit of the benchmark uses
Hadamard gate, whose size is the most sensible this variation.

The results of [9] are shown on paper [10].

To evaluate the Hadamard gate scalability, we plot on Fig. 6
the logic cell usage of this gate for systems with up to 4 qubits,
with 8, 16 and 32 bits on mantissa. Looking at this, it is
straightforward to conclude that this gate is the main responsible
for the Quantum ALU exponential increase. This is due to the use
of multipliers and adders in the implementation of this gate, as
mentioned on previous section.

Lastly, we tried to discover the largest co-processor we are
able to fit in our FPGA, an Altera Cyclone II EP2C35F672C6
chip, that contains about 35 thousand logic elements [13]. Fig. 7
illustrates the exponential shape of the curve representing the
logic cell usage in function of the number of qubits. However, by
using our tool, one can generate a co-processor for a fixed number
of qubits (up to 6 qubits on this FPGA platform) and mantissa,
and synthesize it just once for any circuit he want to simulate. Its
is an advance compared to the others solutions, since the
compilation time can also increase exponentially.

100000

10000

\\g

—— 1 qubit

—4— 2 qubits
10 3 qubits

== 4 qubits

8 bits 16 bits 32 bits

Figure 6: Logic Cell usage of Hadamard gate

20000
18000
16000
14000
12000
10000
8000
6000
4000
2000

o
1 qubit 2 qubits 3 qubits 4 qubits 3 qubits 6 qubits

Figure 7: Logic Cells with the number of qubits (mantissa = 8)

V — CONCLUSIONS

We presented a tool that automatically generates a library
independent RTL description of a co-processor for simulation of
quantum algorithms on FPGA. The results in logic cell usage are
comparable to the best manually generated descriptions found on
literature. Besides that, our method is programmable, which
makes the logic cell scaling independent of the number of
quantum gates in the quantum algorithm and eliminates the need
of re-synthesis the RTL description if the number of qubits is kept.

This approach of using FPGA on simulation of quantum
algorithms just transfers the complexity of this problem from time
domain to space domain, and therefore the space scales

exponentially. However, if one could deal with scaling on space
domain, quantum algorithms would be executed efficiently in
time even using classical hardware.

REFERENCES

[1] J. Powell, “The Quantum Limit to Moore’s Law,” Proceedings of the IEEE,
vol. 96, no. 8, pp. 1247 —1248, aug. 2008. DOI 10.1109/JPROC.2008.925411

[2] S. Bampi and R. Reis, "Challenges and Emerging Technologies for System
Integration beyond the End of the Roadmap of Nano-CMOS", VLSI-SoC:
Technologies for Systems Integration, vol. 360, pp.21-33, Springer Berlin
Heidelberg, 2011. DOI 10.1007/978-3-642-23120-9_2

[3] P. Warren, “The future of computing - new architectures and new
technologies,” Nanobiotechnology, IEE Proceedings -, vol. 151, no. 1 pp. 1 -9, 5
2004. DOI 10.1049/ip-nbt:20030876

[4] E. Rieffel and W. Polak, “An Introduction to Quantum Computing for Non-
Physicists,” ACM Comput. Surv., vol. 32, no. 3, pp. 300-335, 2000. DOI
10.1145/367701.367709

[5] I. Karafyllidis, “Quantum computer simulator based on the circuit model of
quantum computation,” Circuits and Systems I: Regular Papers, IEEE
Transactions on, vol. 52, no. 8, pp. 1590 - 1596, aug. 2005. DOI
10.1109/TCSI.2005.851999

[6] B. Butscher and H. Weimer, “Libquantum: the c¢ library for quantum
computing and quantum simulation,” 2004-2011. [Online]. Available:
http://www.libquantum.de/

[7]1 A. de Vries, “JQuantum - a Quantum Computer Simulator,” 2004-2011.
[Online]. Available: http://jquantum.sourceforge.net/

[8] M. A. Nielsen and 1. L. Chuang, “Quantum Computation and Quantum
Information”, Bookman, 2000. ISBN-10: 0521635039

[9] A. Khalid, Z. Zilic, and K. Radecka, “Fpga emulation of quantum circuits,” in
Computer Design: VLSI in Computers and Processors, 2004. ICCD 2004.
Proceedings. IEEE International Conference on, 11- 13 2004, pp. 310 — 315. DOI
10.1109/ICCD.2004.1347938

[10] M. Aminian, M. Saeedi, M. Zamani, and M. Sedighi, “Fpga-based circuit
model emulation of quantum algorithms,” in Symposium on VLSI, 2008. ISVLSI
’08. IEEE Computer Society Annual, 7-9 2008, pp. 399 -404. DOI
10.1109/ISVLSI.2008.43

[11] G. Negovetic, M. Perkowski, M. Lukac, A. Buller, “Evolving Quantum
Circuits and an FPGA-Based Quantum Computing Emulator”, International
Workshop on Boolean Problems, 2002.
[12] D. Maslov, “Reversible Logic
http://webhome.cs.uvic.ca/~dmaslov/
[13] Altera, “DE2 Development and Education Board - User Manual”, PDF file,
Altera Corporation, 2001.

[14] P. Shor, “Algorithms for quantum computation: discrete logarithms and
factoring”. In:Foundations of Computer Science, 1994 Proceedings., 35th Annual
Symposium on. [S.1.: 5.n.],1994. p. 124 —134. DOI 10.1109/SFCS.1994.365700
[15] L. K. Grover, “A fast quantum mechanical algorithm for database search”.
In: STOC ’96: Proc. the 28th annual ACM symposium on Theory of computing.
New York, NY, USA: ACM, 1996. p. 212-219. DOI 10.1145/237814.237866

Synthesis Benchmarks”, Available:

http://dx.doi.org/10.1109/ISVLSI.2008.43

	Introduction
	III - Details of the Tool
	A. Graphical Interface
	B. Data Representation
	C. Supported Quantum Gates
	D. Quantum Processor

	IV – Results
	V – Conclusions
	References

