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Abstract—The  simulation  of  quantum  algorithms  on  classical 
computers  is  computationally  hard,  mainly  due  to  the  parallel 
nature of  quantum systems.  To speed up these simulations,  some 
works have proposed to use programmable parallel hardware such 
as  FPGAs,  which  considerably  shorten  the  simulation  execution 
time. It is needed a big effort to port the quantum algorithm to a 
FPGA.  We present a new tool that automatically generates an RTL  
description  of  a  co-processor  dedicated  to  simulate  quantum  
algorithms using an FPGA.

INTRODUCTION

The search for new architectures and computational models is 
a  way  to  find  new  improved  solutions  at  the  same  time  the 
fabrication technologies are approaching their physical limits [1]
[2]. Many computational models have been proposed to replace or 
live  together  with  silicon  technologies  [2][3]  among  which 
quantum  computing  is  rather  promising  because  it  suggests 
considerable  gains  on  computational  power  and  appears  to  be 
compatible to all structure available today, which would soften its 
adoption as a new computational paradigm [4].

Quantum  computing  algorithms  have  been  developed  and 
tested through simulation using classical computers [5][6][7]. A 
problem is that such simulations are computationally hard due to 
the parallel nature of quantum world [8], since each operation of a 
quantum algorithm –  which  would be  performed in  parallel  if 
executed  in  a  quantum  computer  –  must  be  scheduled  to  a 
sequential execution in a classical computer.

Alternatively, some works have used the intrinsic parallelism 
of programmable logic devices such as FPGAs to realize these 
simulations  [9][10].  The  gains  in  execution  time  of  these 
approaches  are  about  three  orders  of  magnitude  better  than 
simulations on general purpose computers. The reason is that the 
needed  hardware  to  perform  small  operations  like  sum  and 
multiplications are simply replicated to execute in parallel, thus 
transporting the complexity of the problem from time domain to 
space domain.

This paper is organized as follows. In section 2 we present an 
brief overview of quantum computing. In section 3 we present 
how the co-processor is generated. Section 4 brings the results on 
logic  cells  usage  using  a  quantum  algorithms  benchmark  in 
comparison  with  related  works.  In  section  4  we  present  the 
conclusions.

III - DETAILS OF THE TOOL

A. Graphical Interface

The graphical interface of the tool is based on the JQuantum 
simulator  [7],  an  open  source  simulator  of  quantum  circuits 
written in Java. Modifications were made to support the FPGA 
execution flow. A screen shot of the tool is presented on Fig. 1. 

The  circuit  is  designed  using  the  circuit  model  and  its 
schematic is displayed on central panel. The state vector of the 
system is displayed in the lower panel, where each amplitude  is 
represented by the address of a quantum register. Colors represent 
complex values, according to the color map shown – a JQuantum 
original feature.

Once the designer describes its quantum algorithm using the 
circuit  model,  the  tool  automatically  generates  a  synthesizable 
circuit  description  in  the  RTL level  using  SystemVerilog.  Any 
third party tool can be used in order to synthesize and load it on 
FPGA.

B. Data Representation

The state vector is represented by a memory called quantum 
register. Each complex coefficient is stored in two registers, one 
for  real  and  other  for  the  imaginary  part,  whose  size  can  be 
configured in 8, 16 or 32 bits. The real and imaginary part of a 
coefficient are stored on the same address. The data is represented 
in  fixed  point  and  complex  arithmetic  operators  are 

Figure 1: Graphical User Interface of our tool



parameterized.  Considering  the  postulate  of  state  space  and 
postulate of evolution of quantum mechanics [8], only two bits are 
necessary to represent the signed integer part, and the remaining 
bits are used to represent the fractional part.

Since in quantum computing we can only prepare the initial 
state vector of a quantum algorithm in a pure state, just a string of 

 bits (where   is the number of qubits) are sent as input in 
order to load the initial state vector. Each bit controls a set of  
multiplexers  linked  to  each  address  to  load  the  correspondent 
complex values on the quantum register.

Differently that in the initial state, the resulting state vector 
can be in a superposition state. So, it is necessary to output the 
entire  quantum state  register.  The number  of  bits  necessary  to 
store the quantum register coefficients vector is given by , 
where M is the size of the mantissa.

C. Supported Quantum Gates

This tool supports Pauli X, Hadamard, CNot and Toffoli gates. 
They  are  implemented  extending  the  idea  of  Network  of 
Butterflies  model,  proposed  on  [11]  just  for  Pauli  X  gate.  By 
using  this  model  it  was  possible  to  do  a  programmable  gate 
implementation. The general idea of this model is shown on Fig. 
5, using the Pauli X gate as example.

Since  the  transformation  matrix  of  Pauli  X  gate  has  only 
complex constants 0 and 1, no sum or multiplication is necessary. 
The functionality of this single qubit gate, if applied to a system 
with only one qubit, consists on swapping the coefficients of the 
two  states  of  the  system.  However,  when  it  is  applied  in  a 
compound system, although being applied to just one qubit, the 
functionality of the Pauli X gate shall be reflected on the entire 
system state, represented by its state vector.

As it can be seen on Fig. 2, it is necessary to select the right 
pairs of coefficients to swap their values on previous state vector. 
It  is  easily  done  by  inverting  the  target bit  of  the  binary 
representation  of  each  coefficient  index,  where  target is  the 
number of the qubit to which the gate is applied. For instance, if 
the the Pauli X is applied to qubit 0 – ie. target is equals to 0 – the 
value to be stored on  of resultant state vector  comes from 

 of , and the value to be stored on  of  comes from 
 of , and so on.

In other words, to implement the Pauli X gate behavior, it is 
just necessary to identify the right pairs according to the target 
value, and swapping their values in the resultant state vector. This 
step can be done with multiplexers. The scheme is represented on 
Fig. 3.

On Fig.  3 is  also shown the implementation scheme of  the 
CNot gate.  The behavior  of  this  gate can be understood as an 
extension of  Pauli X gate,  but conditioned to the value of the 
qubit indicated by . In the implementation, if the  bit of 
binary  representation of  coefficient  index  is  equals  to  one,  the 
values of the selected pair of coefficients selected on first layer of 
multiplexers  are  exchanged;  otherwise  they  are  kept.  The 
implementation of Toffoli gate is straightforward.

The Hadamard gate implementation scheme is quite similar to 
the Pauli X. The difference is that in this gate the data of   
must be transformed before being written to   according to 
equations  (1)  and  (2),  derived  from  Hadamard  matrix 
representation

                                     (1)

                                     (2)

where  and  are a pair of coefficients of , and  and 
are a pair of coefficients of . It is also the value of target qubit 
that controls the multiplexes to select the right pairs of 
coefficients for each coefficient of .

D. Quantum Processor

To simulate the quantum algorithm, our tool generates a single 
cycle co-processor that  works at  50 MHz by default.  Its  block 
diagram is shown on Fig. 5. The ordered set of gates of a quantum 
algorithm  is  stored  as  instructions  on  Netlist  Memory.  The 
instructions have a format specified on Fig. 4. The operation of 
gates  is  controlled  by  the  multiplexers  according  to  the  value 
specified in each field, as explained before. 

The sequence of instructions must be loaded on the Netlist 
Memory. The Control Unit is responsible to address the Netlist 

Figure 2: Pauli X gate behavior in a two qubits system

Figure 3: Pauli X (left) and CNot(right) implementation scheme



Memory  neatly,  starting  when  the  START flag  is  sent,  and  to 
generate the FINISHED flag, that informs the end of computation.

The Quantum ALU module has just one instance of each gate, 
and it is responsible to select which output of them will be written 
on  Quantum  Register.  With  this  approach  only  one  quantum 
register is necessary to realize the computation.

The advantage of parallelism is taken when performing each 
complete operation in one clock cycle. If the same execution is 
done in  an  ordinary  computer,  it  would take several  processor 
cycles to perform each sum, multiplication and memory swap, for 
each pair of coefficients, sequentially.

IV – RESULTS

The execution time of any algorithm performed on our co-
processor  is  linear  with  the  number  of  gates,  since  each  gate 
performs  its  functionality  in  one  clock  cycle.  However,  as 
mentioned before, this approach of using FPGA just transfer the 
complexity from time domain to  space  domain.  Therefore,  the 
number  of  logic  cells  required  to  implement  the  co-processor 
increases exponentially with the number of qubits and the size of 
the mantissa, as can be verified on Table I. The Netlist Memory 
has a constant configurable size and therefore it is not shown.

TABLE I. LC USAGE OF MODULES WITH THE NUMBER OF QUBITS AND SIZE OF MANTISSA

Unity 1 qubit 2 qubits
3 qubits

4 qubits 5 qubits
8 bits 16 bits 32 bits

Q. ALU 229 531 1402 3526 9408 2982 6869

Q. Reg 32 64 128 256 512 256 512

Mantissa fixed on 8 bits where it is not mentioned. Q. Reg values are expressed in number of flip-flops

On the other hand, our solution is invariant to the number of 
gates  in  the  algorithm  description,  differently  of  the  solution 
proposed on [10],  that  depends on that.  The results on Table I 
shows  that  Quantum  ULA  is  the  main  responsible  to  the 
exponential increase of the size of the system. Also, it is better 
than  [9]  in  terms  of  memory  usage,  which  includes  a  new 
quantum register after each quantum gate. 

We  also  measured  the  logic  cells  usage  for  circuits  of  a 
quantum algorithm benchmark of reversible circuits avaliable in 
[12]  and  used  as  metrics  in  previous  work.  In  order  to  fairly 
compare our results, we kept in the Quantum ALU only instances 
of  quantum  gates  that  are  used  in  the  circuit  description. 
Additionally, we also reduce the size of the Netlist Memory to 
hold  up  only  the  number  of  gates  in  the  quantum  algorithm 
description. The logic cell usage of the generated co-processor for 
8 and 16 bits in the mantissa is shown on Table II. The benchmark 
circuits are ordered by the number of qubits.

The results in logic cells of our automatically generated RTL 
description is comparable to the best results available in literature 
[10], as can be seen on Table II. There is almost no variation when 
increasing the mantissa of  a  circuit,  which differs  from results 
shown on Table I. It is because no circuit of the benchmark uses 
Hadamard gate, whose size is the most sensible this variation.

Data

Size (bits) 2

Figure 4  Instruction format (N is the number of qubits)

       TABLE II. LOGIC CELLS USAGE FOR BENCHMARK CIRCUITS

Circuit
Ours [10] [9]

8 bits 16 bits 8 bits 16 bits 8 bits 16 bits

3_17tc 150 150 24 24 960 1728

ham3tc 140 140 24 24 800 1440

rd32 191 191 48 48 1280 2304

hwb4-11-23 230 230 64 64 3520 6336

xor5d1 416 409 128 128 2560 4608

Mod5d1 571 573 224 224 5120 9216

greycode6 903 905 320 320 6400 11520

rd53d2 4019 4019 3072 3072 - -

The results of [9] are shown on paper [10].

To evaluate the Hadamard gate scalability, we plot on Fig. 6 
the logic cell usage of this gate for systems with up to 4 qubits,  
with  8,  16  and  32  bits  on  mantissa.  Looking  at  this,  it  is 
straightforward to conclude that this gate is the main responsible 
for the Quantum ALU exponential increase. This is due to the use 
of multipliers and adders in the implementation of this gate, as 
mentioned on previous section.

Lastly,  we tried to discover the largest  co-processor we are 
able to fit  in our FPGA, an Altera Cyclone II EP2C35F672C6 
chip, that contains about 35 thousand logic elements [13]. Fig. 7 
illustrates  the  exponential  shape  of  the  curve  representing  the 
logic cell usage in function of the number of qubits. However, by 
using our tool, one can generate a co-processor for a fixed number 
of qubits (up to 6 qubits on this FPGA platform) and mantissa, 
and synthesize it just once for any circuit he want to simulate. Its 
is  an  advance  compared  to  the  others  solutions,  since  the 
compilation time can also increase exponentially.

Figure 5: Quantum processor generic block diagram



V – CONCLUSIONS

We  presented  a  tool  that  automatically  generates  a  library 
independent RTL description of a co-processor for simulation of 
quantum algorithms on FPGA. The results in logic cell usage are 
comparable to the best manually generated descriptions found on 
literature.  Besides  that,  our  method  is  programmable,  which 
makes  the  logic  cell  scaling  independent  of  the  number  of 
quantum gates in the quantum algorithm and eliminates the need 
of re-synthesis the RTL description if the number of qubits is kept. 

This  approach  of  using  FPGA on  simulation  of  quantum 
algorithms just transfers the complexity of this problem from time 
domain  to  space  domain,  and  therefore  the  space  scales 

exponentially. However, if one could deal with scaling on space 
domain,  quantum  algorithms  would  be  executed  efficiently  in 
time even using classical hardware.
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