
XXVII SIM - South Symposium on Microelectronics 1 
 

Introducing Read-Polarity-Once Functions 
 

Vinicius Callegaro, Renato P. Ribas, André I. Reis 
{vcallegaro, rpribas, andreis}@inf.ufrgs.br 

 
PPGC – UFRGS, Porto Alegre – RS, Brazil 

 
Abstract 

Efficient exact factoring algorithms exist in the literature, but they are limited to read-once (RO) 
functions where each variable appears once in the final equation. These algorithms have two limitations: (1) 
they do not consider incompletely specified functions; and (2) they are not applicable to binate functions. To 
overcome the first limitation, we propose an algorithm that finds RO formulas for incompletely specified 
functions, whenever possible. To overcome the second limitation, we propose a domain transformation that 
splits existing binate variables into two independent unate variables. This domain transformation leads to 
incompletely specified functions, which can be efficiently factored with the proposed algorithm. The 
combination of the proposed factoring algorithm and the domain transformation gives exact results for a 
novel broader class of functions called read-polarity-once (RPO) functions, where each polarity (positive or 
negative) of a variable appears at most once in the factored form. 

1. Introduction 
Factoring Boolean functions [1] is one of the basic operations in algorithmic logic synthesis [2]. Factoring 

is the process of deriving a parenthesized algebraic expression or factored form representing a given logic 
function, usually provided initially in a sum-of-products form (SOP) or product-of-sums (POS) form. For 
example, F=a*c+b*c+c*d*e can be factored into the logically equivalent form F=c(a+b+de). 

In general, a logic function will have many factored forms. The problem of factoring Boolean functions into 
shorter, more compact logically equivalent formulae is one of the basic operations in the early stages of 
algorithmic logic synthesis. In most design styles (like CMOS design) the implementation of a Boolean 
function corresponds directly to its factored form. Generating an optimum factored form (a shortest length 
expression) is an NP-hard problem, thus heuristic algorithms [1-5] have been developed in order to obtain 
good factored forms. Good heuristic algorithms include Xfactor [3-4], which provides good results but does 
not guarantee optimal results. Optimal results for general expressions are known for a long time [6], but the 
algorithms are too slow to be used in practice. Recently some exact results with better runtime properties have 
been proposed [7-8]. However, the runtimes are still not comparable to the runtime efficiency of heuristic 
algorithms like Xfactor [3-4]. 

Efficient exact algorithms exist [9-11], but they are limited to the class of Boolean functions known as read-
once functions [12]. Read once functions can be written by using formulae where each variable appears at 
most once. Exact algorithms for read once functions have two limitations: (1) they do not consider 
incompletely specified functions; and (2) they are not applicable to binate functions. To overcome the first 
limitation, we propose an algorithm that finds RO formulas for incompletely specified functions, whenever 
possible. To overcome the second limitation, we propose a domain transformation that splits existing binate 
variables into two independent unate variables. This domain transformation leads to incompletely specified 
functions, which can be efficiently factored with the proposed algorithm. The combination of the proposed 
factoring algorithm and the domain transformation gives exact results for a novel broader class of functions 
called read-polarity-once (RPO) functions, where each polarity (positive or negative) of a variable appears at 
most once in the factored form. 

This paper is organized as follows. Section 2 presents basic concepts for the understanding of the paper. 
Section 3 presents an algorithm for factoring Incompletely Specified Read-Once (ISRO) functions. Section 4 
presents the proposed domain transformation to split existing binate variables into two independent unate 
variables. The complete algorithm to perform factoring of Read-Polarity-Once (RPO) functions is presented in 
Section 5. Results are presented in Section 6, followed by conclusions in Section 7. 

2. Basic concepts 
The algorithms we propose here are strongly based on the concept of cofactor. The operation of 

cofactoring a logic function can be performed in several ways, and comparison between cofactors of a same 
variable can be used to determine the polarity of variables in the function. Consider the three example 
functions shown in Table 1. Function f could be written in hexadecimal code as f=(80)hexa. Similarly, g and h 



2 XXVII SIM - South Symposium on Microelectronics 
 
could be written as g=(01)hexa and h=(96)hexa. The positive cofactor of function f with respect to variable a 
is obtained by making a=1 in f, which results f(a=1)=88hexa. The negative cofactor of function f with respect 
to variable a is obtained by making a=0 in f, which results f(a=0)=00hexa. Notice that when functions are 
represented by strings of bits, cofactoring can be done by performing masking and rotations in the strings of 
bits. This is common practice for current logic synthesis tools [13] and details can be found in [14]. 

Tab. I - Three example functions 
a b c f=a*b*c g=!(a+b+c) h=a^b^c 
0 0 0 0 1 0 
0 0 1 0 0 1 
0 1 0 0 0 1 
0 1 1 0 0 0 
1 0 0 0 0 1 
1 0 1 0 0 0 
1 1 0 0 0 0 
1 1 1 1 0 1 

 
Consider now the polarity of variables in the functions f, g and h. A variable can have one out of four 

distinct possible polarities in a function: (1) don’t care, (2) positive unate, (3) negative unate and binate. 
Consider the cofactors of variable a shown in Table 2. For function f, variable a is a positive unate variable, as 
the bitwise or of the positive and negative cofactors is equal to the positive cofactor. For function g, variable a 
is a negative unate variable, as the bitwise or of the positive and negative cofactors is equal to the negative 
cofactor. For function h, variable a is a binate variable, as both cofactors are not equal and they are distinct 
from the bitwise (BW) or of themselves. 

Tab. II - Positive and negative cofactors of variable a for functions f, g and h 
FUNCTIO

N 
COFACTOR 

A=1 
COFACTOR 

A=0 
BW OR OF 

COFACTORS 
BW AND OF 
COFACTORS 

F 88 00 88 00 
G 00 11 11 00 
H 99 66 FF 00 

 
Computing the polarity of the variables is important because all read once functions are unate functions. 

This means that in a read once-function every variable has to be either positive unate or negative unate. This 
is expressed by lemma 1. However, not every unate function is a read once function. This is expressed by 
lemma 2. The work of Elbassioni et al [15] investigates how many times a variable has to be read in unate 
functions. Lemma 3 states an optimality observation for functions containing binate variables. 

Lemma 1: every read-once function is unate in all its variables. 
Lemma 2: not every unate function is a read-once function. 
Lemma 3: an equation is in the minimum literal form if each variable is read at most once for each polarity 

of the variable, considering a binate variable as having both positive and negative polarities. 

3. Factoring RO functions 
Efficient algorithms exist to perform factoring of read once formulas. Most of them readily abandon 

functions containing binate variables, as a read-once formula is not possible according to lemma 1. In this 
work we will extend the approach proposed by Lee et al [11]. The original approach by Lee is described in this 
section. The modification for treating incompletely specified functions is described in Section 5. Several 
approaches [9-11] have been proposed to identifying read-once functions (ROF). Golumbic described the 
current state-of-the-art algorithm. The IROF [9] algorithm needs an irredundant-sum-of-product (ISOP) as 
input and produces read-once formulae if it is possible or reports a failure otherwise. Despite the efficiency of 
the IROF algorithm, it cannot be modified to deal with incomplete-specified functions (ISF), since it depends 
on an ISOP as input. This is the reason why we choose to extend the approach by Lee et al [11]. 

The  read-once  algorithm  proposed  by  Lee  et  al  is  based  on  some  very  simple  observations  given  by  the  
following Lemmas. For explaining these Lemmas, we consider all variables positive unate without loss of 
generality. 

Lemma 4: if a read once formula exist for a function depending on more than one variable, at least one pair 
of variables can be tied together by a “+” or by a “*” operator. 

Lemma 5: the tied variables described in lemma 4 can be substituted by a new single variable. 
Lemma 6: When two variables a and b can be tied together by a “+” operator, the positive cofactors of both 

variables are equal. 
Lemma 7: When two variables a and b can be tied together by a “*” operator, the negative cofactors of both 



XXVII SIM - South Symposium on Microelectronics 3 
 

variables are equal. 
The approach proposed by Lee et al [11] ties two variables at a time substituting them for a single 

variable. The process is repeated until just one variable remains (in this case a read-once formula has been 
found) or the association is no longer possible (in which case the function is not read-once). 

4. Domain transformation 
According to Lemma 3, binate functions do not have read-once formulas. However, still according to 

lemma 3, a function is minimal if each polarity of a binate variable is read at most once. This leads us to the 
definition of read-polarity-once (RPO) functions. A RPO function read each polarity of a variable at most once 
in an optimized equation. An example of an RPO function is a two input exclusive or, which can be given by 
equations !a*b+a*!b and (!a+!b)*(a+b). Notice that each variable is read at most once with each polarity. 
Strangely, the two equations are equal, but if they are rewritten as na*b+a*nb and (na+nb)*(a+b), they 
become different logic functions. Notice that by introducing variables na and nb, a domain transformation is 
performed and the function become a 4-input function, with most of the lines appearing as don’t cares. This is 
illustrated in Figure 1. 

011

101

110

000

!a*b+a*!bba

011

101

110

000

!a*b+a*!bba

X1111

X0111

X1011

X0011

X1101

00101

11001

X0001

X1110

10110

01010

X0010

X1100

X0100

X1000

X0000

!a*b+a*!bnbbnaa

X1111

X0111

X1011

X0011

X1101

00101

11001

X0001

X1110

10110

01010

X0010

X1100

X0100

X1000

X0000

!a*b+a*!bnbbnaa

 X=1

X=1

X=1

X

X=1

0

1

X=0

X=1

1

0

X=0

X

X=0

X=0

X=0

!a*b+a*!b

X

X

X

X

X

0

1

X

X

X

X

X

X

0

1

X

f(a=1)

X

1

0

X

X

X

X

X

X

1

0

X

X

X

X

X

f(a=0)

x

1

x

x

x

1

x

x

x

1

0

x

x

1

0

x

f(na=1)

x

0

1

x

x

0

1

x

x

0

x

x

x

0

x

x

f(na=0)

x

1

x

1

x

0

x

0

x

1

x

1

x

0

x

0

f(b=1)

1

x

1

x

1

x

1

x

0

x

0

x

0

x

0

x

f(b=0)

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

nb

1

1

1

1

1

1

1

1

x

x

0

0

x

x

0

0

f(nb=1)

1111

1111

x011

x011

0101

0101

0001

0001

1110

1110

x010

x010

0100

0100

0000

0000

f(nb=0)bnaa

X=1

X=1

X=1

X

X=1

0

1

X=0

X=1

1

0

X=0

X

X=0

X=0

X=0

!a*b+a*!b

X

X

X

X

X

0

1

X

X

X

X

X

X

0

1

X

f(a=1)

X

1

0

X

X

X

X

X

X

1

0

X

X

X

X

X

f(a=0)

x

1

x

x

x

1

x

x

x

1

0

x

x

1

0

x

f(na=1)

x

0

1

x

x

0

1

x

x

0

x

x

x

0

x

x

f(na=0)

x

1

x

1

x

0

x

0

x

1

x

1

x

0

x

0

f(b=1)

1

x

1

x

1

x

1

x

0

x

0

x

0

x

0

x

f(b=0)

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

nb

1

1

1

1

1

1

1

1

x

x

0

0

x

x

0

0

f(nb=1)

1111

1111

x011

x011

0101

0101

0001

0001

1110

1110

x010

x010

0100

0100

0000

0000

f(nb=0)bnaa

 
Fig. 1. Expanding a 2-input xor to 4 variables. Fig. 2. Cofactors that are set to force the function to 

become positive unate. 
 
The function represented by the truth table in Fig. 1 is not positive unate. By computing cofactors of the 

function and setting values to force the function to become positive unate in all of its variables, a new function 
is obtained. The computation of the co-factors and the new obtained function is shown in Figure 2. Notice that 
two unspecified lines remained unspecified after the process. This is directly related to the two different 
equations obtained for the xor2. Notice that the don’t cares are set differently to obtain two possible different 
read once formulas for the 4-input function where presented initially. 

 

11111

10111

11011

00011

11101

00101

11001

00001

11110

10110

01010

00010

01100

00100

01000

00000

na*b+a*nbnbbnaa

11111

10111

11011

00011

11101

00101

11001

00001

11110

10110

01010

00010

01100

00100

01000

00000

na*b+a*nbnbbnaa

11111

10111

11011

10011

11101

00101

11001

00001

11110

10110

01010

00010

11100

00100

01000

00000

(na+nb)*(a+b) nbbnaa

11111

10111

11011

10011

11101

00101

11001

00001

11110

10110

01010

00010

11100

00100

01000

00000

(na+nb)*(a+b) nbbnaa

 
Fig. 3. How the remaining don’t cares produce different read-polarity-once formulas. 

 
The domain transformation proposed here is composed of two distinct steps. The first step expands a 

single variable (e.g a) into two separate variables (e.g. a and na). The first step is illustrated in Figure 1, for a 
2-input exor. Notice that all the invalid combinations are set to don’t care. Only the original valid values 
remain set to 0 or 1. The second step has the purpose to guarantee that all introduced variables have positive 
unate polarity. The second step is illustrated in Figure 2, for a 2-input exor. Cofactors are computed for every 
variable and don’t cares are set in such a way that the polarity of the variable is guaranteed to be positive 
unate. This way, the two polarities of original binate variables are split into two separate variables with 
positive polarity. The resulting function is an incompletely specified function, for which one or more potential 
read-once formulae can be found. For this reason we introduce an algorithm to factor read once formula for 
incompletely specified functions in the next section. 



4 XXVII SIM - South Symposium on Microelectronics 
 
5. Factoring ISRO functions 

The read-once algorithm proposed by Lee et al [11] is based on some very simple observations given by the 
Lemmas explained in section 3. To expand the algorithm proposed by Lee et al to consider incompletely 
specified functions, we propose a new set of Lemmas. Again, we consider all variables positive unate without 
loss of generality; especially because the variables are forced to become positive unate by the second step of the 
domain transformation proposed in the previous section. 

Lemma 8: if a read once formula exist for an incompletely specified function depending on more than one 
variable, at least one pair of variables can be tied together by a “+” or by a “*” operator. 

Lemma 9: the tied variables described in lemma 8 can be substituted by a new single variable. 
Lemma 10: When two variables a and b can be tied together by a “+” operator, the positive cofactors of 

both variables can be made equal by adequately setting don’t cares. 
Lemma 11: When two variables a and b can be tied together by a “*” operator, the negative cofactors of 

both variables can be made equal by adequately setting don’t cares. 
Our approach is a modified version of the approach proposed by Lee et al [11], that ties two variables at a 

time setting some don’t cares and substituting them for a single variable. The process is repeated until just one 
variable remains (in this case a read-once formula has been found in the expanded set of variables) or the 
association is no longer possible (in which case the function is not read-once). Notice that finding a read once 
formula in the expanded set of variables, after the domain transformation, is equivalent to find a read-polarity-
once formula for the variables before the domain transformation. 

6. Complete algorithm 
The complete algorithm proceeds in two steps. The first step reads a function and computes the polarity of 

the variables. Every binate variable is split into two separate positive unate variables according to the domain 
transformation presented in section 4. The second step performs the search for a read once formula for the 
incompletely specified function resulting from the domain transformations. The read once formula is then 
rewritten as a function of the original variables before the domain transformation. 

7. Results 
This section presents results to prove the efficiency of the proposed algorithm. In a first experiment, the set 

of all functions up to five inputs was studied. These functions were grouped into NPN (negation-permutation-
negation) equivalence classes for enumeration feasibility. The total number of functions studied is 616125. To 
run the algorithm for all these functions 4 min of execution time were needed. The worst case optimization 
was 800ms and the average case was less than 1ms. Out of these 616125 functions, 1462 functions were read-
polarity-once, while only 21 were read-once. Interestingly, the universe of read-once functions seems to be 
very limited compared to the universe of read-polarity-once functions. Our results demonstrate that the 
universe of RPO is quite broader than the universe of RO functions, for which many works have been devoted 
[9-12]. 

Comparative results for the quality of the algorithm are shown in Table 3, restricted to the set of 1462 
RPO functions. The proposed algorithm performed better in terms of literals when compared to Quick factor 
[16], Good Factor [16], ABC [17] and XFactor [3,4]. The gain in terms of number of literals compared to X-
factor is not very significant. However, the proposed algorithm guarantees exactness for Read-Polarity-Once 
functions. 

Tab III - Number of literals for different approaches 
QF [16] GF [16] ABC [17] X-FACTOR [3,4] RPO (THIS PAPER) 

16086 15671 15981 13253 13064 

 
In a second experiment, we have mapped all the benchmarks investigated by the Xfactor paper [4]. For 

the function cm163a_r Xfactor has found a 13 literal solution, while our algorithm found a 12 literal solution 
which is a RPO solution. This benchmark has seven inputs. 

In a third experiment, we have investigated all circuits from ISCAS 85 [21]. The main idea of this 
experiment consists in evaluate how abundant are the RPO functions in the universe of industrial benchmarks. 
Since all RO functions are also RPO functions, we provide results for both classes. In order to do that, we use 
as input the mapped circuit (Verilog). A partition algorithm returns an AIG (And Inverter Graph) of this 
circuit, and a K-Cut [20] algorithm (with K=6) was performed in order to return the Boolean functions that 
appears in the mapped circuit  



XXVII SIM - South Symposium on Microelectronics 5 
 

Tab IV – Abundance of functions in ISCAS 85 circuits. 
  K=2 K=3 K=4 K=5 K=6 

CIRCUIT R.O. R.P.O R.O. R.P.O R.O. R.P.O R.O. R.P.O R.O. R.P.O 
S1196 0,75 1,00 0,65 1,00 0,46 0,88 0,49 0,86 0,53 0,88 
S1238 0,75 1,00 0,55 1,00 0,49 0,89 0,49 0,85 0,52 0,85 

S13207 0,60 1,00 0,42 1,00 0,36 0,96 0,45 0,94 0,51 0,90 
S1423 0,60 1,00 0,43 0,96 0,35 0,92 0,40 0,89 0,44 0,87 
S1488 0,75 1,00 0,46 0,96 0,39 0,89 0,44 0,84 0,45 0,81 
S1494 0,75 1,00 0,46 0,96 0,38 0,88 0,41 0,82 0,44 0,79 

S15850 0,60 1,00 0,35 0,94 0,37 0,91 0,40 0,89 0,41 0,88 
S208 0,75 1,00 0,82 1,00 0,94 1,00 0,97 1,00 0,95 1,00 
S27 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00 

S298 0,75 1,00 0,71 1,00 0,73 1,00 0,76 0,96 0,69 0,90 
S344 0,75 1,00 0,50 1,00 0,44 0,90 0,37 0,79 0,36 0,72 
S349 0,60 1,00 0,44 0,88 0,36 0,75 0,32 0,65 0,28 0,57 

S35932 0,60 1,00 0,37 0,89 0,29 0,84 0,24 0,72 0,22 0,70 
S382 0,60 1,00 0,65 1,00 0,61 0,95 0,62 0,95 0,59 0,92 

S38417 0,75 1,00 0,40 0,96 0,25 0,90 0,18 0,84 0,16 0,80 
S38584 0,71 1,00 0,42 0,95 0,24 0,92 0,20 0,87 0,21 0,84 

S386 1,00 1,00 0,85 1,00 0,80 0,96 0,73 0,88 0,67 0,81 
S400 0,60 1,00 0,65 1,00 0,63 0,96 0,67 0,97 0,61 0,97 
S420 0,60 1,00 0,70 1,00 0,80 1,00 0,75 1,00 0,69 1,00 
S444 0,75 1,00 0,58 1,00 0,71 1,00 0,66 0,97 0,62 0,93 
S510 0,75 1,00 0,71 1,00 0,67 0,97 0,62 0,93 0,50 0,85 
S526 0,60 1,00 0,57 1,00 0,67 0,95 0,59 0,87 0,60 0,86 
S526 0,60 1,00 0,50 1,00 0,60 1,00 0,57 0,94 0,59 0,93 

S5378 0,67 1,00 0,45 0,95 0,34 0,92 0,35 0,87 0,39 0,85 
S641 1,00 1,00 0,85 1,00 0,86 0,98 0,88 0,96 0,87 0,95 
S713 1,00 1,00 0,85 1,00 0,81 1,00 0,81 0,99 0,80 0,96 
S820 0,75 1,00 0,61 0,94 0,65 0,94 0,67 0,94 0,66 0,90 
S832 0,75 1,00 0,76 1,00 0,63 0,94 0,63 0,93 0,61 0,92 
S838 0,60 1,00 0,69 1,00 0,84 1,00 0,80 1,00 0,77 1,00 

S9234 0,71 1,00 0,47 0,94 0,38 0,90 0,39 0,87 0,37 0,83 
AVG 0,72 1,00 0,60 0,98 0,57 0,94 0,56 0,90 0,55 0,87 

 
RPO functions appears in average 94% of the total functions on the ISCAS circuits, while RO functions 

represents in average only 60% of the functions. It is possible to see in the table IV that there are circuits with 
100% of RPO functions. Since this in an ongoing work, these cases will be better investigated on. 

We have also investigated if mapped circuits could drive the results to a wrong way doing the synthesis of 
the AIG from BLIF file instead of the mapped circuit. This exercise shows the same behavior of our previously 
results. In Fig. 4 it is possible to see results for one specific circuit (s38584). 

 

 
Fig. 4. Abundance of RO and RPO functions on the circuit s38584. 



6 XXVII SIM - South Symposium on Microelectronics 
 

 

8. Conclusions 
This paper has presented the concept of read-polarity once functions. Besides introducing the class of read-

polarity-once functions, several related contributions were also introduced in this paper. Main contributions 
include: (1) an algorithm for factoring incompletely specified functions into Read-Once equations; (2) a 
domain transformation that splits existing binate variables into two independent unate variables; and (3) a 
complete algorithm for exact factoring of read-polarity-once functions. This algorithm was implemented and 
compared against state of the art factoring algorithms. The proposed algorithm presented better results in 
terms of quality and in terms of runtime. 

Out of 616125 5-input studied functions, 1462 functions were read-polarity-once, while only 21 were 
read-once. Interestingly, the universe of read-once functions seems to be very limited compared to the universe 
of read-polarity-once functions. Our investigation under benchmark ISCAS demonstrate that the universe of 
RPO is quite broader than the universe of RO functions, for which many works have been devoted [9-12]. 

9. Acknowledgements 
Research partially funded by Nangate Inc. under a Nangate/UFRGS research agreement, by CNPq 

Brazilian funding agency, by FAPERGS under grant 11/2053-9 (Pronem)., and by the European Community's 
Seventh Framework Programme under grant 248538 – Synaptic. 

10. References 
[1] R. K. Brayton. 1987. Factoring logic functions. IBM J. Res. Dev. 31, 2 (March 1987), 187-198. 
[2] Hachtel, G. D. and Somenzi, F. 2000. Logic Synthesis and Verification Algorithms (1st ed.). Kluwer Academic Publishers, Norwell, MA, 

USA. 
[3] Golumbic, M. C. and Mintz, A. 1999. Factoring logic functions using graph partitioning. In Proceedings of the 1999 IEEE/ACM 

international conference on Computer-aided design (ICCAD '99). IEEE Press, Piscataway, NJ, USA, 195-199. 
[4] Mintz, A. and Golumbic, M. C. 2005. Factoring Boolean functions using graph partitioning. Discrete Applied Mathematics, Volume 149, 

Issues 1–3, Pages 131-153. 
[5] Stanion, T. and Sechen, C. 1994. Boolean division and factorization using binary decision diagrams. Computer-Aided Design of 

Integrated Circuits and Systems, IEEE Transactions on, vol.13, no.9, pp.1179-1184, Sep 1994. 
[6] Lawler, E. L. 1964. An Approach to Multilevel Boolean Minimization. J. ACM 11, 3 (July 1964), 283-295. 
[7] Yoshida, H.; Ikeda, M. and Asada, K. 2006. Exact Minimum Logic Factoring via Quantified Boolean Satisfiability. Electronics, Circuits 

and Systems, 2006. ICECS '06. 13th IEEE International Conference on, vol., no., pp.1065-1068, 10-13 Dec. 2006. 
[8] Yoshida, H. and Fujita M. 2011. Exact Minimum Factoring of Incompletely Specified Logic Functions via Quantified Boolean 

Satisfiability. IPSJ Transactions on System LSI Design Methodology, Vol. 4, pp. 70-79, Feb. 2011. 
[9] Golumbic, M. C.; Mintz, A. and Rotics, U. 2001. Factoring and recognition of read-once functions using cographs and normality. In 

Proceedings of the 38th annual Design Automation Conference (DAC '01). ACM, New York, NY, USA, 109-114. 
[10] Golumbic, M. C.; Mintz, A. and Rotics, U. 2008. An improvement on the complexity of factoring read-once Boolean functions. Discrete 

Appl. Math. 156, 10 (May 2008), 1633-1636. 
[11] Lee, T. and Wang, C. 2007. Recognition of Fanout-free Functions. Design Automation Conference, ASP-DAC '07. Asia and South 

Pacific, vol., no., pp.426-431, 23-26 Jan. 2007. 
[12] Golumbic, M. C. and Gurvich, V. A. Read-once functions. Crama, Y and Hammer, P. L. 2008. Boolean Functions: Theory, Algorithms 

and Applications. Cambridge University Press, Cambridge, MA (2008) (Chapter 12).  
[13] Mishchenko, A.; Chatterjee, S. and Brayton, R. 2006. DAG-aware AIG rewriting a fresh look at combinational logic synthesis. In 

Proceedings of the 43rd annual Design Automation Conference (DAC '06). ACM, New York, NY, USA, 532-535. 
[14] H.S. Warren. Hacker's Delight. Addison-Wesley Professional, 2002. 
[15] Elbassioni, K.; Makino, K. and Rauf, I. 2009. On the readability of monotone Boolean formulae. Journal of Combinatorial 

Optimization.Volume 22, Number 3, 293-304. 
[16] Sentovich, E.; Singh, K.; Lavagno, L.; Moon, C.; Murgai, R.; Saldanha, A.; Savoj, H.; Stephan, P.; Brayton, R. and Sangiovanni-

Vincentelli, A. L. 1992. SIS: A system for sequential circuit synthesis. Tech. Rep. UCB/ERL M92/41. UC Berkeley, Berkeley. 1992. 
[17] Berkeley Logic Synthesis and Verification Group, ABC: A System for Sequential Synthesis and Verification, Release 051205. 

http://www.eecs.berkeley.edu/~alanmi/abc/ 
[18] Martins, M.G.A.; da Rosa Junior, L. S.; Rasmussen, A.B.; Ribas, R.P. and Reis, A.I. 2010. Boolean factoring with multi-objective goals. 

Computer Design (ICCD), 2010 IEEE International Conference on, vol., no., pp.229-234, 3-6 Oct. 2010. 
[19] Werber, J.; Rautenbach, D. and Szegedy, C. 2007.Timing optimization by restructuring long combinatorial paths. Computer-Aided 

Design, 2007. ICCAD 2007. IEEE/ACM International Conference on, vol., no., pp.536-543, 4-8 Nov. 2007. 
[20] Martinello, O. Jr.; Marques, F. S.; Ribas, R. P. and Reis, A. I. 2010. KL-cuts: a new approach for logic synthesis targeting multiple output 

blocks. In Proceedings of the Conference on Design, Automation and Test in Europe (DATE '10). European Design and Automation 
Association, 3001 Leuven, Belgium, Belgium, pp.777-782. 

[21] IWLS 2005 Benchmarks. http://www.iwls.org 

 


