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Abstract 
 

This paper presents functional composition (FC), a new paradigm for combinational logic synthesis. FC is 
based on the following principles: (1) representation of logic functions as a bonded pair of 
functional/structural representations; (2) it starts from a set of initially known functions; (3) simpler functions 
are associated to create more complex functions; (4) a partial order that enables dynamic programming is 
respected; (5) a set of allowed functions is maintained to reduce execution time/memory consumption. We 
present functional composition algorithms variants for Boolean factoring, AIG rewriting, minimum decision 
chain computation and SOP generation. 

1. Introduction 
Functional decomposition (FD) is a method for combinational logic synthesis in which a Boolean function 

is decomposed into a set of smaller functions that implement it. FD has been introduced by the pioneering works 
of Ashenhurst [1] and Curtis [2]. The results of functional decomposition are highly Boolean by nature, meaning 
it is able to produce non-trivial logic rewritings that is very suitable to overcome the structural bias [3]. FD has 
been extensively used for FPGA mapping, as it is easy to control the number of inputs of each sub-function [4]. 
However, FD has two critical drawbacks in this context. Firstly, it is a top-down approach, which breaks the 
function to be decomposed into smaller ones. This way, the implementation cost of the functions is not 
necessarily known. Secondly, as it involves costly operations, it cannot be done in an exhaustive way, leaving 
parts of the solution space unexploited.  

To overcome the drawbacks of functional decomposition applied to local function rewriting, we propose 
functional composition (FC). It is a novel synthesis paradigm that performs bottom-up association of Boolean 
functions as opposed to top-down functional decomposition. By performing bottom-up process, FC has a better 
control of the implementation cost of the final function. By relying on bonded-pair representation, FC can 
perform a more complete search of the solution space, yielding better results. 

FC is based on the following principles: (1) representation of logic functions as a bonded pair of 
functional/structural representations; (2) it starts from a set of initial functions; (3) simpler functions are 
associated to create more complex functions; (4) a partial order that enables dynamic programming is respected; 
(5) a set of allowed functions is maintained to reduce execution time/memory consumption. In this work, we 
present FC algorithms variants for Boolean factoring, AIG rewriting, minimum decision chain computation and 
SOP generation. 

This paper is organized as follows. Section 2 presents general principles of FC. The general flow of FC is 
shown in Section 3. Some applications for the FC paradigm are described in Section 4, to illustrate how the 
particularization of the general principles can lead to FC algorithms for different applications. The final section 
discusses the conclusions. 

2. General Principles 
The FC paradigm is based on some general principles. These principles include the use of bonded-pair 

representation, the use of a set initial functions to start the process, the association between simpler functions to 
create more complex functions, the control of costs achieved by using a partial order that enables dynamic 
programming, and the restriction of allowed functions to reduce execution time/memory consumption. These 
general principles are discussed below. 

2.1. Bonded-Pair Representation 
FC uses bonded pairs to represent logic functions. The bonded pair contains one functional and one 

structural representation of the same Boolean function. The functional representation is used to avoid the 
structural bias, making FC to be a highly Boolean method. Normally the functional representation needs to be a 
canonical representation like a truth table or a ROBDD node. The structural element in bonded-pair is related to 
the final implementation of the target function to be synthesized. The structural element in the bonded pair is 
used to control costs in the final implementation and by nature it is not a canonical implementation, as costs may 
vary. 
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2.2. Initial Functions 
The FC paradigm computes new functions by the associations of known functions. As a consequence, a set 

of initial functions is needed before the algorithm starts. The set of initial functions needs to have two 
characteristics. First, the bonded-pairs for the initial functions have to be simple to compute, to allow efficient 
initialization. Second, the initial functions have to have known (preferable minimum) costs for each function, to 
allow the computation of the cost for derived functions. The set of initial functions can vary depending on the 
specific FC algorithm, as it will be discussed later.  

2.3. Bonded-Pair Association 
The FC is done using bonded pairs, represented by a functional representation and a structural 

representation of the same function. When a logic operation (e.g. logic and) is applied to bonded pairs, the 
operation is applied independently to the functional and to the structural part of the bonded pair are associated. 
This way, the correspondence between the functional and the structural representation is still valid after the 
bonded pair association. The main advantage of the bonded pair association is the fact that it is much faster to 
compute the operations between the representations of the same type than it would be to convert a functional 
representation into a structural one or vice-versa. Fig. 1a presents the association of bonded pairs. The bonded 
pair <F3, S3> is obtained from bonded pairs <F1, S1> and <F2, S2>. The computation of the functional part 
(F3=F1+F2) is independent of the computation of the structural part (S3=S1+S2). The concept can be expanded 
to do complex operations, both in function and structure, as seen in Fig. 1b. 

 

 
(a)                               (b) 

Figure 1: Examples of bonded-pair association: (a) using primitive operations (OR operation) and 2 simpler 
elements; (b) using complex operations with k elements in a k-ary operation. 

2.4. Partial Order and Dynamic Programming 
 
The key idea behind dynamic programming (DP) is to solve a problem in which an optimal solution is 

obtained by combining optimal sub-solutions. This can be done for problems that have a so called optimal sub-
structure. DP starts by solving sub-problems and then combines the sub-problem solutions to obtain a complete 
solution. In FC, DP is used associated to the concept of partial ordering. The partial ordering is used to classify 
costs of intermediate solutions. This is done to ensure that implementations (the structural elements in the 
bonded pairs) with minimum costs are used for the sub-problems. Different partial orders can be used 
depending on the costs to be minimized. To use the concept of partial order, intermediate solutions of sub 
problems are classified into ‘buckets’ that separate them in an increasing order of costs for structural element of 
the bonded-pair representation. The initial functions are stored into the respective buckets. This concept is 
illustrated in Fig. 2. The buckets are computed in the order of growing costs, so that the first solution found has 
minimum cost. 

 

 
Figure 2: Illustration of buckets in FC: light gray bonded-pairs are the initial functions, the white bonded-pairs 
are intermediate functions and dark gray bonded-pair is the target function, located in the k-bucket. 
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2.5. Allowed Sub-Functions 
The great number of intermediate functions created by exhaustive combination can make the FC approach 
unfeasible. For performance optimization, a hash table of allowed functions can be pre-computed before the 
algorithm starts. The allowed sub-functions are found by applying a heuristic algorithm that selects useful 
functions, given a problem. Functions that are not present in the allowed functions hash table are discarded 
during the processing. The use of the allowed functions hash table helps to control the execution time of the 
algorithms. FC can (in some cases) achieve better results according to the number of allowed functions. For 
some cases, solutions can be guaranteed optimal even with a very limited set of allowed functions. This is the 
case of read once factoring [10], for instance. Several effort levels can be implemented for memory/execution 
time vs. quality tradeoff control. These effort levels can vary from a limited set of functions to an exhaustive 
effort including all possible functions.  

3. General Flow 
Fig. 3 shows a general flow chart for algorithms following the FC principles. First step is to parse the target 
function. Then the initial bonded-pairs are generated and checked against the target function. The allowed 
functions are computed and inserted in a separated set which is used to discard unwanted intermediate functions, 
reducing the solution space (memory) and the execution time. The initial bonded-pairs will be inserted in the 
buckets. The bonded-pairs are associated to compose new elements that will be inserted in the next bucket 
(according to the cost). These new bonded-pairs will be used in the sequence of the associations. The process 
will continue until the target function is found.  
 

 
Figure 3: General flow chart for the FC approach. 

4. Applications 
In this section, we describe four distinct applications of FC: (1) Minimum Decision Chain computation, (2) 

Minimum SOP computation, (3) Boolean factoring with multiple objective goals and (4) reduced AIG 
construction. All these methods are particularizations of the general FC procedure presented in Fig. 3. Each 
specific algorithm is obtained by choosing adequately the bonded-pair representation, the initial functions, the 
bonded pair associations, an adequate partial order and associated dynamic programming as well as the allowed 
functions. The four approaches are described in the following. 
 

4.1. Minimum Decision Chain Computation 
The minimum decision chain (MDC) of a logic function is related to the number of transistors in series 

in switch networks that implement such function [8]. A prime implicant of an arbitrary function f can be viewed 
as a variable assignment for which two conditions are respected: (1) the output of the function f is true; and, (2) 
the removal of any assigned variable from the assignment makes f to become undetermined. This way, a set of 
prime implicants that cover the function can be viewed as a set of variable assignments that decide a function. 
The largest number of variables in a single assignment among a set of assignments that decide a function is the 
Decision Chain (DC) of the set. Different sets of assignments that decide a function are possible, and each set of 
assignments has its own DC. In the following we present a method to compute the Minimum Decision Chain 
(MDC) among all possible Decision Chains of a function. The adaption of FC to compute MDCs is described in 
[8]. 

 
MDC can be calculated using a top-down approach through a modified Quine-McCluskey algorithm 

(QMC-MDC), or a bottom-up process considering the FC strategy (FC-MDC) [8]. Some comparison results 
demonstrate that the FC method is more efficient than the Quine-McCluskey based method, as shown in Table 
1. 
 
 



4 XXVII SIM - South Symposium on Microelectronics 
 
Table 1: Execution time of on-set MDC computation [8]. 

Function set Number of functions Average MDC QMC-MDC FC-MDC 
4-NPN 221 3.46 34 ms 9 ms 
5-NPN 616,125 4.67 92 s 104.3 s 
44-6.genlib 3,503 3.87 > 4 h 5.9 s 

 

4.2. SOP Generation 
We can use FC to compute a Sum-of-Products (SOP). The prime computation using FC takes 

advantage from the MDC computation to generate a SOP respecting the MDC with some algorithm 
modifications. A SOP that has the primary goal of respecting the MDC while minimizing literals is useful as the 
start point for algorithms of transistor network generation. The algorithm proposed by Kagaris [9] needs a SOP 
that respects the MDC as input, in order to generate a supergate that respects the MDC of the target function. 

As the prime computation using FC has almost the same algorithm of the MDC computation, the 
execution times tend to be similar to those in Table I. One advantage is that the generated SOP can be forced to 
respect the MDC. The algorithm proposed by Kagaris [9] to generate supergates needs a SOP that respects the 
MDC as input, in order to generate a supergate that respects the MDC. 

4.3. Boolean Factoring 
In [18] we present an algorithm to compute minimum factored forms using FC. Factoring based on FC 

starts from literals and constructs larger functions by association. Costs are computed from the previously 
known simpler functions, which allow the method to minimize multi-objective cost functions [10]. Keep track of 
the number of series transistors (besides number of literals) is important for library free approaches [11. 12] 
aimed to use a cell generator [13]. 

 
The factoring process using FC was compared with QuickFactor (QF) and GoodFactor (GF) methods 

described in [14]; with the factoring available in ABC [15] and with the Xfactor method [16, 17]. FC based 
factoring has some important advantages against other methods: (1) FC factoring can minimize expressions with 
multiple objective goals beyond literal minimization, e.g. factored forms respecting the MDC value of the target 
function; (2) the results of FC factoring were always equal or better than the other methods; (3) for read-once 
functions, it always give the optimal result. Table 2 shows results comparing FC factoring approach to other 
factoring methods. However, FC factoring can be slightly slower as a method, but still completes in a reasonable 
time. 
 

Table 2: Results of some MCNC benchmarks [18]. 
Logic function SOP QF GF ABC XF FC 

b9_a1 56 12 12 12 12 12 

rd53_0 20 14 14 14 12 12 

rd53_1 80 28 28 28 46 28 

cm162a_o 29 16 16 16 13 12 

cm162a_p 36 18 18 16 14 14 

cm162a_q 43 20 20 18 16 16 

cm163a_r 31 13 13 13 13 12 

 

4.4. AIG Rewriting 
In [7], is presented an And-Inverter-Graph (AIG) rewriting approach using FC. This approach constructs AIGs 
from simpler graphs, while minimizing a cost function (e.g., the number of nodes or the graph height) [7].  

AIG rewriting using FC has been compared to two different approaches: using the GF factoring [11] + 
FRAIG [19] and the FC factoring [10] + FRAIG [19]. The set chosen for the analysis is the 3,982 representative 
functions [20] of permutation equivalent classes of four input functions. Table 3 shows the sum of all nodes 
generated in the test and the average number of nodes. There is an improvement of around 5% in the number of 
nodes when compared to the ABC + FRAIG, and 2.2 % when compared to the FC factoring + FRAIG approach. 
Table 4 shows the sum of all logical depth in the experiment and the average logical depth. FC AIG rewriting 
has an improvement of around 16.88% in the logical depth when compared to the FC Factoring + FRAIG. For 
depth minimization, the partial order is based on graph depth.  
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Table 3: Comparison of AIGs number of nodes generated using different methods [7]. 

 
ABC + 
FRAIG 

FC Factoring + 
FRAIG 

FC AIG 
rewriting 

Number of 
nodes 

32,813 31,904 31,25 

Average number 
of nodes 

8.24 8.01 7.84 

 
Table 4: Comparison of AIGs Logical Depth using FRAIG and FC AIG rewriting [7]. 

 

 
FC Factoring + 

FRAIG 
FC AIG 
rewriting 

Sum of Logical 
Depth 

17,933 15,356 

Average Logical 
Depth 

4.50 3.85 

 

5. Conclusions 
This paper proposed a novel paradigm for performing logic synthesis, called functional composition (FC). 

FC is based in a bottom up approach using extensive composition of Boolean functions to have an efficient cost 
control, while enhancing quality by exploiting a large portion of the solution space. Four applications methods 
have been presented with promising results, demonstrating the potential for generalization of functional 
composition to be used for new applications in logic synthesis.  
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