
XXVII SIM - South Symposium on Microelectronics 1

Applications of Functional Composition

1Mayler G. A. Martins, 1Renato Perez Ribas, 1André Inácio Reis
{mgamartins,rpribas,andreis}@inf.ufrgs.br,

1Universidade Federal do Rio Grande do Sul - PGMICRO

Abstract

This paper presents functional composition (FC), a new paradigm for combinational logic synthesis. FC is
based on the following principles: (1) representation of logic functions as a bonded pair of
functional/structural representations; (2) it starts from a set of initially known functions; (3) simpler functions
are associated to create more complex functions; (4) a partial order that enables dynamic programming is
respected; (5) a set of allowed functions is maintained to reduce execution time/memory consumption. We
present functional composition algorithms variants for Boolean factoring, AIG rewriting, minimum decision
chain computation and SOP generation.

1. Introduction
Functional decomposition (FD) is a method for combinational logic synthesis in which a Boolean function

is decomposed into a set of smaller functions that implement it. FD has been introduced by the pioneering works
of Ashenhurst [1] and Curtis [2]. The results of functional decomposition are highly Boolean by nature, meaning
it is able to produce non-trivial logic rewritings that is very suitable to overcome the structural bias [3]. FD has
been extensively used for FPGA mapping, as it is easy to control the number of inputs of each sub-function [4].
However, FD has two critical drawbacks in this context. Firstly, it is a top-down approach, which breaks the
function to be decomposed into smaller ones. This way, the implementation cost of the functions is not
necessarily known. Secondly, as it involves costly operations, it cannot be done in an exhaustive way, leaving
parts of the solution space unexploited.

To overcome the drawbacks of functional decomposition applied to local function rewriting, we propose
functional composition (FC). It is a novel synthesis paradigm that performs bottom-up association of Boolean
functions as opposed to top-down functional decomposition. By performing bottom-up process, FC has a better
control of the implementation cost of the final function. By relying on bonded-pair representation, FC can
perform a more complete search of the solution space, yielding better results.

FC is based on the following principles: (1) representation of logic functions as a bonded pair of
functional/structural representations; (2) it starts from a set of initial functions; (3) simpler functions are
associated to create more complex functions; (4) a partial order that enables dynamic programming is respected;
(5) a set of allowed functions is maintained to reduce execution time/memory consumption. In this work, we
present FC algorithms variants for Boolean factoring, AIG rewriting, minimum decision chain computation and
SOP generation.

This paper is organized as follows. Section 2 presents general principles of FC. The general flow of FC is
shown in Section 3. Some applications for the FC paradigm are described in Section 4, to illustrate how the
particularization of the general principles can lead to FC algorithms for different applications. The final section
discusses the conclusions.

2. General Principles
The FC paradigm is based on some general principles. These principles include the use of bonded-pair

representation, the use of a set initial functions to start the process, the association between simpler functions to
create more complex functions, the control of costs achieved by using a partial order that enables dynamic
programming, and the restriction of allowed functions to reduce execution time/memory consumption. These
general principles are discussed below.

2.1. Bonded-Pair Representation
FC uses bonded pairs to represent logic functions. The bonded pair contains one functional and one

structural representation of the same Boolean function. The functional representation is used to avoid the
structural bias, making FC to be a highly Boolean method. Normally the functional representation needs to be a
canonical representation like a truth table or a ROBDD node. The structural element in bonded-pair is related to
the final implementation of the target function to be synthesized. The structural element in the bonded pair is
used to control costs in the final implementation and by nature it is not a canonical implementation, as costs may
vary.

2 XXVII SIM - South Symposium on Microelectronics

2.2. Initial Functions
The FC paradigm computes new functions by the associations of known functions. As a consequence, a set

of initial functions is needed before the algorithm starts. The set of initial functions needs to have two
characteristics. First, the bonded-pairs for the initial functions have to be simple to compute, to allow efficient
initialization. Second, the initial functions have to have known (preferable minimum) costs for each function, to
allow the computation of the cost for derived functions. The set of initial functions can vary depending on the
specific FC algorithm, as it will be discussed later.

2.3. Bonded-Pair Association
The FC is done using bonded pairs, represented by a functional representation and a structural

representation of the same function. When a logic operation (e.g. logic and) is applied to bonded pairs, the
operation is applied independently to the functional and to the structural part of the bonded pair are associated.
This way, the correspondence between the functional and the structural representation is still valid after the
bonded pair association. The main advantage of the bonded pair association is the fact that it is much faster to
compute the operations between the representations of the same type than it would be to convert a functional
representation into a structural one or vice-versa. Fig. 1a presents the association of bonded pairs. The bonded
pair <F3, S3> is obtained from bonded pairs <F1, S1> and <F2, S2>. The computation of the functional part
(F3=F1+F2) is independent of the computation of the structural part (S3=S1+S2). The concept can be expanded
to do complex operations, both in function and structure, as seen in Fig. 1b.

(a) (b)

Figure 1: Examples of bonded-pair association: (a) using primitive operations (OR operation) and 2 simpler
elements; (b) using complex operations with k elements in a k-ary operation.

2.4. Partial Order and Dynamic Programming

The key idea behind dynamic programming (DP) is to solve a problem in which an optimal solution is

obtained by combining optimal sub-solutions. This can be done for problems that have a so called optimal sub-
structure. DP starts by solving sub-problems and then combines the sub-problem solutions to obtain a complete
solution. In FC, DP is used associated to the concept of partial ordering. The partial ordering is used to classify
costs of intermediate solutions. This is done to ensure that implementations (the structural elements in the
bonded pairs) with minimum costs are used for the sub-problems. Different partial orders can be used
depending on the costs to be minimized. To use the concept of partial order, intermediate solutions of sub
problems are classified into ‘buckets’ that separate them in an increasing order of costs for structural element of
the bonded-pair representation. The initial functions are stored into the respective buckets. This concept is
illustrated in Fig. 2. The buckets are computed in the order of growing costs, so that the first solution found has
minimum cost.

Figure 2: Illustration of buckets in FC: light gray bonded-pairs are the initial functions, the white bonded-pairs
are intermediate functions and dark gray bonded-pair is the target function, located in the k-bucket.

XXVII SIM - South Symposium on Microelectronics 3

2.5. Allowed Sub-Functions
The great number of intermediate functions created by exhaustive combination can make the FC approach
unfeasible. For performance optimization, a hash table of allowed functions can be pre-computed before the
algorithm starts. The allowed sub-functions are found by applying a heuristic algorithm that selects useful
functions, given a problem. Functions that are not present in the allowed functions hash table are discarded
during the processing. The use of the allowed functions hash table helps to control the execution time of the
algorithms. FC can (in some cases) achieve better results according to the number of allowed functions. For
some cases, solutions can be guaranteed optimal even with a very limited set of allowed functions. This is the
case of read once factoring [10], for instance. Several effort levels can be implemented for memory/execution
time vs. quality tradeoff control. These effort levels can vary from a limited set of functions to an exhaustive
effort including all possible functions.

3. General Flow
Fig. 3 shows a general flow chart for algorithms following the FC principles. First step is to parse the target
function. Then the initial bonded-pairs are generated and checked against the target function. The allowed
functions are computed and inserted in a separated set which is used to discard unwanted intermediate functions,
reducing the solution space (memory) and the execution time. The initial bonded-pairs will be inserted in the
buckets. The bonded-pairs are associated to compose new elements that will be inserted in the next bucket
(according to the cost). These new bonded-pairs will be used in the sequence of the associations. The process
will continue until the target function is found.

Figure 3: General flow chart for the FC approach.

4. Applications
In this section, we describe four distinct applications of FC: (1) Minimum Decision Chain computation, (2)

Minimum SOP computation, (3) Boolean factoring with multiple objective goals and (4) reduced AIG
construction. All these methods are particularizations of the general FC procedure presented in Fig. 3. Each
specific algorithm is obtained by choosing adequately the bonded-pair representation, the initial functions, the
bonded pair associations, an adequate partial order and associated dynamic programming as well as the allowed
functions. The four approaches are described in the following.

4.1. Minimum Decision Chain Computation
The minimum decision chain (MDC) of a logic function is related to the number of transistors in series

in switch networks that implement such function [8]. A prime implicant of an arbitrary function f can be viewed
as a variable assignment for which two conditions are respected: (1) the output of the function f is true; and, (2)
the removal of any assigned variable from the assignment makes f to become undetermined. This way, a set of
prime implicants that cover the function can be viewed as a set of variable assignments that decide a function.
The largest number of variables in a single assignment among a set of assignments that decide a function is the
Decision Chain (DC) of the set. Different sets of assignments that decide a function are possible, and each set of
assignments has its own DC. In the following we present a method to compute the Minimum Decision Chain
(MDC) among all possible Decision Chains of a function. The adaption of FC to compute MDCs is described in
[8].

MDC can be calculated using a top-down approach through a modified Quine-McCluskey algorithm

(QMC-MDC), or a bottom-up process considering the FC strategy (FC-MDC) [8]. Some comparison results
demonstrate that the FC method is more efficient than the Quine-McCluskey based method, as shown in Table
1.

4 XXVII SIM - South Symposium on Microelectronics

Table 1: Execution time of on-set MDC computation [8].

Function set Number of functions Average MDC QMC-MDC FC-MDC
4-NPN 221 3.46 34 ms 9 ms
5-NPN 616,125 4.67 92 s 104.3 s
44-6.genlib 3,503 3.87 > 4 h 5.9 s

4.2. SOP Generation
We can use FC to compute a Sum-of-Products (SOP). The prime computation using FC takes

advantage from the MDC computation to generate a SOP respecting the MDC with some algorithm
modifications. A SOP that has the primary goal of respecting the MDC while minimizing literals is useful as the
start point for algorithms of transistor network generation. The algorithm proposed by Kagaris [9] needs a SOP
that respects the MDC as input, in order to generate a supergate that respects the MDC of the target function.

As the prime computation using FC has almost the same algorithm of the MDC computation, the
execution times tend to be similar to those in Table I. One advantage is that the generated SOP can be forced to
respect the MDC. The algorithm proposed by Kagaris [9] to generate supergates needs a SOP that respects the
MDC as input, in order to generate a supergate that respects the MDC.

4.3. Boolean Factoring
In [18] we present an algorithm to compute minimum factored forms using FC. Factoring based on FC

starts from literals and constructs larger functions by association. Costs are computed from the previously
known simpler functions, which allow the method to minimize multi-objective cost functions [10]. Keep track of
the number of series transistors (besides number of literals) is important for library free approaches [11. 12]
aimed to use a cell generator [13].

The factoring process using FC was compared with QuickFactor (QF) and GoodFactor (GF) methods

described in [14]; with the factoring available in ABC [15] and with the Xfactor method [16, 17]. FC based
factoring has some important advantages against other methods: (1) FC factoring can minimize expressions with
multiple objective goals beyond literal minimization, e.g. factored forms respecting the MDC value of the target
function; (2) the results of FC factoring were always equal or better than the other methods; (3) for read-once
functions, it always give the optimal result. Table 2 shows results comparing FC factoring approach to other
factoring methods. However, FC factoring can be slightly slower as a method, but still completes in a reasonable
time.

Table 2: Results of some MCNC benchmarks [18].
Logic function SOP QF GF ABC XF FC

b9_a1 56 12 12 12 12 12

rd53_0 20 14 14 14 12 12

rd53_1 80 28 28 28 46 28

cm162a_o 29 16 16 16 13 12

cm162a_p 36 18 18 16 14 14

cm162a_q 43 20 20 18 16 16

cm163a_r 31 13 13 13 13 12

4.4. AIG Rewriting
In [7], is presented an And-Inverter-Graph (AIG) rewriting approach using FC. This approach constructs AIGs
from simpler graphs, while minimizing a cost function (e.g., the number of nodes or the graph height) [7].

AIG rewriting using FC has been compared to two different approaches: using the GF factoring [11] +
FRAIG [19] and the FC factoring [10] + FRAIG [19]. The set chosen for the analysis is the 3,982 representative
functions [20] of permutation equivalent classes of four input functions. Table 3 shows the sum of all nodes
generated in the test and the average number of nodes. There is an improvement of around 5% in the number of
nodes when compared to the ABC + FRAIG, and 2.2 % when compared to the FC factoring + FRAIG approach.
Table 4 shows the sum of all logical depth in the experiment and the average logical depth. FC AIG rewriting
has an improvement of around 16.88% in the logical depth when compared to the FC Factoring + FRAIG. For
depth minimization, the partial order is based on graph depth.

XXVII SIM - South Symposium on Microelectronics 5

Table 3: Comparison of AIGs number of nodes generated using different methods [7].

ABC +
FRAIG

FC Factoring +
FRAIG

FC AIG
rewriting

Number of
nodes

32,813 31,904 31,25

Average number
of nodes

8.24 8.01 7.84

Table 4: Comparison of AIGs Logical Depth using FRAIG and FC AIG rewriting [7].

FC Factoring +

FRAIG
FC AIG
rewriting

Sum of Logical
Depth

17,933 15,356

Average Logical
Depth

4.50 3.85

5. Conclusions
This paper proposed a novel paradigm for performing logic synthesis, called functional composition (FC).

FC is based in a bottom up approach using extensive composition of Boolean functions to have an efficient cost
control, while enhancing quality by exploiting a large portion of the solution space. Four applications methods
have been presented with promising results, demonstrating the potential for generalization of functional
composition to be used for new applications in logic synthesis.

6. References
[1] R. L. Ashenhurst. The decomposition of switching functions. Computation Lab, Harvard University, vol.

29, pp.74-116, 1959.
[2] H. A. Curtis. A New Approach to the Design of Switching Circuits. Von Nostrand, 1962.
[3] S. Chatterjee, A. Mishchenko, R. Brayton, X. Wang, T. Kam. "Reducing structural bias in technology

mapping," ICCAD-2005, pp. 519- 526.
[4] T.Stanion, C.Sechen; A Method for Finding Good Ashenhurst Decompositions and its Application to

FPGA Synthesis. DAC95, pp.60-64.
[5] A.Mishchenko, S.Chatterjee, and R.Brayton. DAG-aware AIG rewriting a fresh look at combinational

logic synthesis. DAC '06, pp.532-535.
[6] A. Mishchenko, R. Brayton, S.Jang, V.Kravets, "Delay optimization using SOP balancing", IWLS 2011.
[7] T.Figueiro, R.P. Ribas, A.I. Reis. Constructive AIG optimization considering input weights; ISQED 2011,

pp. 1-8
[8] M.G.A. Martins, V. Callegaro, R. P. Ribas, A. I. Reis. Efficient method to compute minimum decision

chains of Boolean functions. GLSVLSI 2011, pp. 419-422.
[9] D. Kagaris, T. Haniotakis. A methodology for transistor-efficient supergate design. IEEE TVLSI. Vol. 15,

N. 4, pp. 488-492.
[10] M.G.A.Martins, L.S.Rosa Jr, A.B. Rasmussen, R.P.Ribas, A.I. Reis. "Boolean factoring with multi-

objective goals," ICCD 2010, pp.229-234.
[11] A.I.Reis. Covering strategies for library free technology mapping. SBCCI'99, pp. 180-183.
[12] V.Correia, A.Reis. "Advanced technology mapping for standard-cell generators," SBCCI 2004, pp. 254-

259.
[13] J.D.Togni, F.R.Schneider, V.P.Correia, R.P.Ribas, A.I.Reis. "Automatic generation of digital cell

libraries," SBCCI 2002, pp. 265- 270.
[14] Sentovich, E., Singh, K., Lavagno, L., Moon, C., Murgai, R., Saldanha, A., Savoj, H., Stephan, P.,

Brayton, R., and Sangiovanni-Vincentelli, A. SIS: A system for sequential circuit synthesis. Tech. Rep.
UCB/ERL M92/41. UC Berkeley, Berkeley. 1992.

[15] Berkeley Logic Synthesis and Verification Group. ABC: A System for Sequential Synthesis and
Verification. December 2005 Release. http://www-cad.eecs.berkeley.edu/~alanmi/abc

[16] M.C.Golumbic, A.Mintz. Factoring logic functions using graph partitioning. ICCAD '99, pp. 195-199.
[17] Mintz, A. and Golumbic, M. C. Factoring boolean functions using graph partitioning. Discrete Appl.

Math. 149, 1-3 (Aug. 2005), 131-153.
[18] S. Yang, Logic Synthesis and Optimization Benchmarks User Guide Version 3.0, Technical Report 1991-

IWLS-UG-Saeyang, MCNC Research Triangle Park, NC, January 1991.

6 XXVII SIM - South Symposium on Microelectronics

[19] A. Mishchenko, S. Chatterjee, R. Jiang, R. Brayton, “FRAIGs: A Unifying Representation for Logic

Synthesis and Verification”, ERL Technical Report, EECS Dept., UC Berkeley, March 2005.
[20] V.P.Correia, A.I.Reis. "Classifying n-Input Boolean Functions". IBERCHIP 2001, pp. 58-66.

