XXVII SIM - South Symposium on Microelectronics 1

Applications of Functional Composition

Mayler G. A. Martins, *Renato Perez RibastAndré Inécio Reis
{mgamartins,rpribas,andreis}@inf.ufrgs.br,

luniversidade Federal do Rio Grande do Sul - PGMICRO

Abstract

This paper presents functional composition (FC), a new paradigm for combinational logic synthesis. FC is
based on the following principles. (1) representation of logic functions as a bonded pair of
functional/structural representations; (2) it starts from a set of initially known functions; (3) simpler functions
are associated to create more complex functions; (4) a partial order that enables dynamic programming is
respected; (5) a set of allowed functions is maintained to reduce execution time/memory consumption. We
present functional composition algorithms variants for Boolean factoring, AlG rewriting, minimum decision
chain computation and SOP generation.

1. Introduction

Functional decomposition (FD) is a method for camtibnal logic synthesis in which a Boolean functio
is decomposed into a set of smaller functionsithptement it. FD has been introduced by the piongerorks
of Ashenhurst [1] and Curtis [2]. The results afidtional decomposition are highly Boolean by natareaning
it is able to produce non-trivial logic rewritingsat is very suitable to overcome the structurakjB]. FD has
been extensively used for FPGA mapping, as it $y éa control the number of inputs of each sub-fiamc[4].
However, FD has two critical drawbacks in this eomt Firstly, it is a top-down approach, which tkedhe
function to be decomposed into smaller ones. Thay,whe implementation cost of the functions is not
necessarily known. Secondly, as it involves cospigrations, it cannot be done in an exhaustive Veaying
parts of the solution space unexploited.

To overcome the drawbacks of functional decompmsitipplied to local function rewriting, we propose
functional composition (FC). It is a novel syntlseparadigm that performs bottom-up association adl&n
functions as opposed to top-down functional decasitiom. By performing bottom-up process, FC hastep
control of the implementation cost of the final tion. By relying on bonded-pair representation, ¢4h
perform a more complete search of the solutionespgelding better results.

FC is based on the following principles: (1) reprgation of logic functions as a bonded pair of
functional/structural representations; (2) it staftom a set of initial functions; (3) simpler fuimns are
associated to create more complex functions; @grtal order that enables dynamic programmingsépected;
(5) a set of allowed functions is maintained toues execution time/memory consumption. In this wavk
present FC algorithms variants for Boolean factprilG rewriting, minimum decision chain computatiand
SOP generation.

This paper is organized as follows. Section 2 prissgeneral principles of FC. The general flow 6f iE
shown in Section 3. Some applications for the F€@gligm are described in Section 4, to illustratev hbe
particularization of the general principles cardiéa FC algorithms for different applications. Tl section
discusses the conclusions.

2. General Principles

The FC paradigm is based on some general princiflesse principles include the use of bonded-pair
representation, the use of a set initial functiinstart the process, the association between sirfyohctions to
create more complex functions, the control of c@stsieved by using a partial order that enablesaniyn
programming, and the restriction of allowed funotido reduce execution time/memory consumptions&he
general principles are discussed below.

2.1. Bonded-Pair Representation

FC uses bonded pairs to represent logic functidie bonded pair contains one functional and one
structural representation of the same Boolean immctThe functional representation is used to avibiel
structural bias, making FC to be a highly Booleasthrad. Normally the functional representation ngedse a
canonical representation like a truth table or 8RO node. The structural element in bonded-paielated to
the final implementation of the target functionlte synthesized. The structural element in the babmpder is
used to control costs in the final implementatiod &y nature it is not a canonical implementatamgcosts may
vary.

2 XXVII SIM - South Symposium on Microelectronics

2.2. Initial Functions

The FC paradigm computes new functions by the &ssmes of known functions. As a consequence, a set
of initial functions is needed before the algorittstarts. The set of initial functions needs to hawe
characteristics. First, the bonded-pairs for thainfunctions have to be simple to compute, towlefficient
initialization. Second, the initial functions hateehave known (preferable minimum) costs for eastcfion, to
allow the computation of the cost for derived fimes. The set of initial functions can vary depegdon the
specific FC algorithm, as it wilbe discussed later.

2.3. Bonded-Pair Association

The FC is done using bonded pairs, represented Hynational representation and a structural
representation of the same function. When a logieration (e.g. logic and) is applied to bonded dine
operation is applied independently to the functi@mal to the structural part of the bonded pairsm®ociated.
This way, the correspondence between the functiandl the structural representation is still valitbrathe
bonded pair association. The main advantage obdimeled pair association is the fact that it is miaster to
compute the operations between the representatiotiee same type than it would be to convert a tional
representation into a structural one or vice-veF#g. 1a presents the association of bonded pHirs.bonded
pair <F3, S> is obtained from bonded paird;, S;> and<F,, S;>. The computation of the functional part
(Fs=F:+F,) is independent of the computation of the stradtpart &=S5+S,). The concept can be expanded
to do complex operations, both in function andcttite, as seen in Fig. 1b.

Fi[S:

E s OP(Fy,Fy.... F) | OP(S,S,,--, S)

2 2
+ op

[els] [els] [mls]lels]- [ads]
(@) (b)

Figure 1: Examples of bonded-pair association: (a) usingigisie operations (OR operation) and 2 simpler
elements; (b) using complex operations with k eletién a k-ary operation.

2.4. Partial Order and Dynamic Programming

The key idea behind dynamic programming (DP) isdtve a problem in which an optimal solution is
obtained by combining optimal sub-solutions. Thas de done for problems that have a so called apsob-
structure. DP starts by solving sub-problems aed tombines the sub-problem solutions to obtaionaptete
solution. In FC, DP is used associated to the qunakpartial ordering. The partial ordering is dte classify
costs of intermediate solutions. This is done tsuem that implementations (the structural eleméntthe
bonded pairs) with minimum costs are used for thb-moblems. Different partial orders can be used
depending on the costs to be minimized. To usectimeept of partial order, intermediate solutionssob
problems are classified into ‘buckets’ that segathém in an increasing order of costs for stradtelement of
the bonded-pair representation. The initial funtdiare stored into the respective buckets. Thisemnis
illustrated in Fig. 2. The buckets are computethaorder of growing costs, so that the first solufound has
minimum cost.

Figure 2: lllustration of buckets in FC: light gray bondedis are the initial functions, the white bondedrpa
are intermediate functions and dark gray bondedipaie target function, located in the k-bucket.

XXVII SIM - South Symposium on Microelectronics 3

2.5. Allowed Sub-Functions

The great number of intermediate functions credtgdexhaustive combination can make the FC approach
unfeasible. For performance optimization, a hastetaf allowed functions can be pre-computed befbee
algorithm starts. The allowed sub-functions arentbuy applying a heuristic algorithm that selecs¢eful
functions, given a problem. Functions that are praisent in the allowed functions hash table areadited
during the processing. The use of the allowed fansthash table helps to control the execution tirhéhe
algorithms. FC can (in some cases) achieve bettilts according to the number of allowed functidfar
some cases, solutions can be guaranteed optimalvétie a very limited set of allowed functions. $hs the
case of read once factoring [10], for instance.eBaveffort levels can be implemented for memorgéexion
time vs. quality tradeoff control. These effort éév can vary from a limited set of functions toeathaustive
effort including all possible functions.

3. General Flow

Fig. 3 shows a general flow chart for algorithmBofeing the FC principles. First step is to parke target
function. Then the initial bonded-pairs are gerestadnd checked against the target function. Thewvetl

functions are computed and inserted in a sepasatedhich is used to discard unwanted intermediiatetions,

reducing the solution space (memory) and the ei@ttiime. The initial bonded-pairs will be insertedthe

buckets. The bonded-pairs are associated to compmseelements that will be inserted in the nextkietic
(according to the cost). These new bonded-pairsbeilused in the sequence of the associations pidess
will continue until the target function is found.

Generate Allowed Insert Initial
Parse Target
. = Initial Bonded Functions Functionsin
Function . _
Pairs Computation the Buckets
Insertin next Associate
bucket Bonded-Pairs

Target
Found
?
N

Figure 3: General flow chart for the FC approach.

4. Applications

In this section, we describe four distinct applimas of FC: (1) Minimum Decision Chain computatig®)
Minimum SOP computation, (3) Boolean factoring withultiple objective goals and (4) reduced AIG
construction. All these methods are particularmai of the general FC procedure presented in Figca8h
specific algorithm is obtained by choosing adedyatee bonded-pair representation, the initial fiows, the
bonded pair associations, an adequate partial amtbassociated dynamic programming as well aaltbeed
functions. The four approaches are described ifiaff@ving.

4.1. Minimum Decision Chain Computation

The minimum decision chain (MDC) of a logic functis related to the number of transistors in series
in switch networks that implement such function [8]prime implicant of an arbitrary functidrcan be viewed
as a variable assignment for which two conditiomsraspected: (1) the output of the function figf and, (2)
the removal of any assigned variable from the assant make$ to become undetermined. This way, a set of
prime implicants that cover the function can beméd as a set of variable assignments that decfdacdion.
The largest number of variables in a single ass@giramong a set of assignments that decide a Gmigtithe
Decision Chain (DC) of the set. Different sets sgignments that decide a function are possiblegant set of
assignments has its own DC. In the following wesprgé a method to compute the Minimum Decision Chain
(MDC) among all possible Decision Chains of a fistt The adaption of FC to compute MDCs is desctiine

[8].

MDC can be calculated using a top-down approacbutiit a modified Quine-McCluskey algorithm
(QMC-MDC), or a bottom-up process considering tl& $trategy (FC-MDC) [8]. Some comparison results
demonstrate that the FC method is more efficiem tthe Quine-McCluskey based method, as shown lifeTa
1.

4 XXVII SIM - South Symposium on Microelectronics

Table 1: Execution time of on-set MDC computation [8].

Function set Number of functions Average MDC QMC-®ID FC-MDC
4-NPN 221 3.46 34 ms 9 ms
5-NPN 616,125 4.67 92s 104.3 s
44-6.genlib 3,503 3.87 >4h 5.9s

4.2. SOP Generation

We can use FC to compute a Sum-of-Products (SORg. @rime computation using FC takes
advantage from the MDC computation to generate & S@specting the MDC with some algorithm
modifications. A SOP that has the primary goalesfpecting the MDC while minimizing literals is uskeds the
start point for algorithms of transistor networkngeation. The algorithm proposed by Kagaris [9]dzea SOP
that respects the MDC as input, in order to gereaatupergate that respects the MDC of the tangetibn.

As the prime computation using FC has almost thmesalgorithm of the MDC computation, the
execution times tend to be similar to those in €dbOne advantage is that the generated SOP clmdsel to

respect the MDC. The algorithm proposed by Kagé&ijiso generate supergates needs a SOP that respect
MDC as input, in order to generate a supergateréispiects the MDC.

4.3. Boolean Factoring

In [18] we present an algorithm to compute minimfactored forms using FC. Factoring based on FC
starts from literals and constructs larger funcidosy association. Costs are computed from the qusly
known simpler functions, which allow the methodrimimize multi-objective cost functions [10]. Ke&pck of

the number of series transistors (besides numbéteodls) is important for library free approach@d. 12]
aimed to use a cell generator [13].

The factoring process using FC was compared witickBactor (QF) and GoodFactor (GF) methods
described in [14]; with the factoring available MBC [15] and with the Xfactor method [16, 17]. FGsed
factoring has some important advantages against atkethods: (1) FC factoring can minimize exprassigith
multiple objective goals beyond literal minimizatjce.g. factored forms respecting the MDC valutheftarget
function; (2) the results of FC factoring were ajaqual or better than the other methods; (3ydad-once
functions, it always give the optimal result. TaBleshows results comparing FC factoring approactther

factoring methods. However, FC factoring can bghsly slower as a method, but still completes neasonable
time.

Table 2: Results of some MCNC benchmarks [18].

Logic function SOP QF GF ABC XF FC
b9 _al 56 12 12 12 12 12
rd53_0 20 14 14 14 12 12
rd53_1 80 28 28 28 46 28
cml62a_o 29 16 16 16 13 12
cml62a_p 36 18 18 16 14 14
cml62a_q 43 20 20 18 16 16
cml63a_r 31 13 13 13 13 12

4.4. AIG Rewriting

In [7], is presented an And-Inverter-Graph (AlGriéing approach using FC. This approach constra¢@s
from simpler graphs, while minimizing a cost fuocti(e.g., the number of nodes or the graph hejght)

AIG rewriting using FC has been compared to twéedint approaches: using the GF factoring [11] +
FRAIG [19] and the FC factoring [10] + FRAIG [19The set chosen for the analysis is the 3,982 reptatve
functions [20] of permutation equivalent classedafr input functions. Table 3 shows the sum ofraltles
generated in the test and the average number @snddhere is an improvement of around 5% in thebsurof
nodes when compared to the ABC + FRAIG, and 2.2Hénxcompared to the FC factoring + FRAIG approach.
Table 4 shows the sum of all logical depth in tkpegiment and the average logical depth. FC AlGritewy
has an improvement of around 16.88% in the loglegith when compared to the FC Factoring + FRAIG. Fo
depth minimization, the partial order is based mapy depth.

XXVII SIM - South Symposium on Microelectronics 5

5.

Table 3: Comparison of AIGs number of nodes generated ulifferent methods [7].

ABC + FC Factoring + FCAIG
FRAIG FRAIG rewriting
Number of 32,813 31,904 3125
nodes
Average number 8.24 8.01 7.84
of nodes

Table 4: Comparison of AIGs Logical Depth using FRAIG ar@d AIG rewriting [7].

FC Factoring + FCAIG
FRAIG rewriting
Sum of Logical 17,933 15,356
Depth
Average Logical
Depth 4.50 3.85

Conclusions

This paper proposed a novel paradigm for perforntogic synthesis, called functional composition JFC

FC is based in a bottom up approach using extersirgosition of Boolean functions to have an effiticost
control, while enhancing quality by exploiting aga portion of the solution space. Four applicatiorethods
have been presented with promising results, demaiimgf the potential for generalization of functbn
composition to be used for new applications indagjinthesis.

6.
(1]

(2]
(3]

(4]
(5]

(6]
[7]

(8]
9]
(10]

(11]
(12]

(13]

(14]

(15]

[16]
(17]

(18]

References

R. L. Ashenhurst. The decomposition of switehifunctions. Computation Lab, Harvard University].

29, pp.74-116, 1959.

H. A. Curtis. A New Approach to the Design ofi&hing Circuits. Von Nostrand, 1962.

S. Chatterjee, A. Mishchenko, R. Brayton, X. MgaT. Kam. "Reducing structural bias in technology
mapping," ICCAD-2005, pp. 519- 526.

T.Stanion, C.Sechen; A Method for Finding GoAshenhurst Decompositions and its Application to
FPGA Synthesis. DAC95, pp.60-64.

A.Mishchenko, S.Chatterjee, and R.Brayton. DA®are AIG rewriting a fresh look at combinational
logic synthesis. DAC '06, pp.532-535.

A. Mishchenko, R. Brayton, S.Jang, V.Kravef@gfay optimization using SOP balancing”, IWLS 2011.
T.Figueiro, R.P. Ribas, A.l. Reis. Constructi&s optimization considering input weights; ISQE2D11,
pp. 1-8

M.G.A. Martins, V. Callegaro, R. P. Ribas, A.Reis. Efficient method to compute minimum deaisio
chains of Boolean functions. GLSVLSI 2011, pp. 412

D. Kagaris, T. Haniotakis. A methodology foamsistor-efficient supergate design. IEEE TVLSI|.\ib,

N. 4, pp. 488-492.

M.G.A.Martins, L.S.Rosa Jr, A.B. RasmussenP.Ribas, A.l. Reis. "Boolean factoring with multi-
objective goals," ICCD 2010, pp.229-234.

A.l.LReis. Covering strategies for library frechnology mapping. SBCCI'99, pp. 180-183.

V.Correia, A.Reis. "Advanced technology mappfor standard-cell generators," SBCCI 2004, ppt-25
259.

J.D.Togni, F.R.Schneider, V.P.Correia, R.PaRib A.l.Reis. "Automatic generation of digital cell
libraries," SBCCI 2002, pp. 265- 270.

Sentovich, E., Singh, K., Lavagno, L., Moon,, ®urgai, R., Saldanha, A., Savoj, H., Stephan, P.
Brayton, R., and Sangiovanni-Vincentelli, A. SIS:spstem for sequential circuit synthesis. Tech..Rep
UCB/ERL M92/41. UC Berkeley, Berkeley. 1992.

Berkeley Logic Synthesis and Verification GpouABC: A System for Sequential Synthesis and
Verification. December 2005 Release. http://www-eads.berkeley.edu/~alanmi/abc

M.C.Golumbic, A.Mintz. Factoring logic functig using graph partitioning. ICCAD '99, pp. 195-199
Mintz, A. and Golumbic, M. C. Factoring boofedunctions using graph partitioning. Discrete Appl
Math. 149, 1-3 (Aug. 2005), 131-153.

S. Yang, Logic Synthesis and Optimization Benearks User Guide Version 3.0, Technical Report1199
IWLS-UG-Saeyang, MCNC Research Triangle Park, N@uary 1991.

6 XXVII SIM - South Symposium on Microelectronics

[19] A. Mishchenko, S. Chatterjee, R. Jiang, R.yBoa, “FRAIGs: A Unifying Representation for Logic
Synthesis and Verification”, ERL Technical Rep&ECS Dept., UC Berkeley, March 2005.
[20] V.P.Correia, A.l.Reis. "Classifying n-Input Blean Functions". IBERCHIP 2001, pp. 58-66.

