
XXVII SIM - South Symposium on Microelectronics 1

Comparing Two Asynchronous IC Design Flows

Matheus Moreira, Ney Calazans
matheus.moreira@acad.pucrs.br ney.calazans@pucrs.br

GAPH – FACIN – Pontifícia Universidade Católica do Rio Grande do Sul

Abstract

This work presents and compares two design flows for implementing asynchronous ASICs. The first flow
is fully automated and generates circuits from Balsa descriptions, a high level language dedicated to the
description of asynchronous circuits. Balsa descriptions are synthesized through Teak, a synthesis tool that
accepts inputs in the Balsa language. The other flow uses conventional EDA tools to synthesize asynchronous
circuits initially captured in some typical HDL, such as Verilog or VHDL, where each asynchronous
component is described using language constructs. The resulting circuits were validated through simulation
and then compared. This work shows that, albeit manually designed circuits provide higher performance, in
terms of power and speed, for a lower area cost, their design and implementation present much higher
complexity. In this way, automatically generated circuits are advantageous depending of the requirements
and restrictions of an implementation.

1. Introduction
The interest in non-synchronous circuits is increasing. The International Technology Roadmap for

Semiconductors (ITRS) in its 2008 edition [1] describes a clear need for asynchronous communication
protocols in integrated circuits (ICs) control and synchronization along the next decades. The ITRS estimates
that global clock-based integrated circuits (ICs), which comprised 93% of the chips sold worldwide in 2007,
will have only 55% of the market by 2022. The remaining 45% will be local handshaking circuits, including
clockless or multi-clock ICs. However, the lack of adequate electronic design automation (EDA) tools imposes
a great barrier to the design of asynchronous circuits.

Most commercial EDA tools currently focus on purely synchronous designs. Also, typical standard cell
libraries, one of the factors responsible for the rapid growth of IC technology [2], do not include components
required to implement most of the asynchronous design styles in an off the shelf manner. Therefore, when
implementing asynchronous circuits, designers have very limited support when it comes to design automation.
Consequently, asynchronous designs are usually implemented through full-custom approaches. However, the
semi-custom design of asynchronous circuits through higher levels of abstraction descriptions are becoming a
reality as the interest for this paradigm increases.

This work presents a comparison between manual and automated semi-custom design of asynchronous
circuits in DSM technologies with current EDA tools support. The objective is to provide a better
understanding of the complexity of designing efficient asynchronous circuits in the present scenario of EDA
development. Two design flows are proposed and evaluated. Both make use of a specially designed standard
cell library to implement asynchronous ICs. For the automated design flow, the Balsa language [3] is used to
describe circuits and the Teak System [4] is the tool chosen for synthesizing Balsa descriptions. The generated
netlist is placed and routed using Cadence Encounter. For the manual design, the circuit is described in some
HDL where asynchronous gates are manually interconnected in the description and synthesized through the
Cadence RTL Compiler. In this process, standard cells which were not manually deployed are automatically
mapped. The generated netlist is then placed and routed through Cadence Encounter. Both flows are
compared in terms of design complexity, power, area and speed efficiency.

2. Design of Asynchronous Circuits
EDA tools and standard cell libraries development for asynchronous circuits still lag behind their

synchronous counterpart by any measure. However, in the last years, different tools have been developed for
this purpose, testifying the growing interest for asynchronous circuits. As instances of this trend, it is possible
to cite, the design flows offered by Handshake Solutions or Tiempo, two asynchronous circuits EDA tools
vendors. One drawback is that most of these tools are proprietary. However, there is an open source tool for
automatically generating asynchronous circuits, developed in the University of Manchester, and called Balsa.
Balsa is both a language to describe asynchronous circuits and a framework to synthesize such circuits [3].
The approach adopted by the language is the syntax directed compilation into handshaking components. In
this way, changes in the Balsa description reflect predictable changes on the generated hardware.

Another option to synthesize Balsa descriptions is Teak [4] a second open source back-end system also
designed in the University of Manchester. It differs from the traditional Balsa system flow by using a new

2 XXVII SIM - South Symposium on Microelectronics

target parameterizable component set and a synthesis scheme that aims at the improvement of circuits
described in the Balsa language. The tool optimizes Balsa descriptions synthesis by replacing data-less
activation channels with separate control channels. Albeit the Balsa System allows different data encodings
over different communication protocols, Teak implementations are typically QDI four-phase dual rail
asynchronous circuits. Hence, circuits synthesized through this tool are limited to that choice of protocol and
data encoding. This work employs the Balsa language and Teak to automatically generate asynchronous
circuits.

3. Proposed Circuit Design Flows
This section presents two design flows for designing and implementing asynchronous ICs. Both flows

make use of a specially designed standard cell library for building asynchronous circuits together with a
conventional commercial standard cell library. Fig. 1 (a) depicts the fully automated design flow. The circuit
is described in the Balsa language and simulated through the Teak simulator to verify if it meets the
specification. Once the correct functionality of the circuit is verified through simulation, the circuit is
synthesized by Teak using a standard cell library composed of typical components, provided by the foundry,
and specific asynchronous components specially designed for the target technology at the standard cell level.
The generated netlist is then simulated with Cadence Incisive, to check its functionality. Once the correct
operation is verified, the circuit is placed and routed with Cadence Encounter. The resulting circuit has its
paths delays annotated and is timing simulated with Incisive, to validate the circuit in the target technology.

Fig. 1 – Asynchronous circuits design flows, fully automated (a) and manual (b).

Fig. 1 (b) illustrates the manual design flow. First, the designer draws a schematic for each handshaking

component to fulfill the specification. This schematic is then described in VHDL making use of predesigned
circuit blocks, which implement asynchronous logic and communication, defined as handshaking components.
This description is then functionally simulated with Incisive. Once the description is functionally verified, it is
synthesized by the Cadence RTL Compiler. However, this tool is not designed to support asynchronous circuit
design. Therefore, the “preserve” property must be addressed so that during the synthesis, asynchronous cells,
used to implement the handshaking components, will not be touched. The generated netlist is then simulated
without taking into account any delay of wires and gates. Once validation is achieved, the Cadence Encounter
tool places and routes the design, and the resulting circuit has its paths delays annotated. A final verification
is performed through timing simulation, to verify the correct functionality of the designed circuit.

4. Case Study
In order to compare the efficiency of the design flows, a dual rail asynchronous 32 bit RSA cryptographic

core was designed using each flow. Fig. 2 shows the block diagram for the asynchronous RSA core.

Fig. 2 – Asynchronous RSA cryptographic circuit block diagram. Each arrow represents a handshake channel.

The circuit consists of a multiplier, a mod function, a modular exponentiation block, internal registers

and a controller. Both the multiplier and the mod function operate shifting bits and performing successive sum

XXVII SIM - South Symposium on Microelectronics 3

operations. Thus, the implementation is not targeted to high performance operation. The modular
exponentiation block is responsible for implementing the RSA encryption/decryption algorithm. To do so, it
requires the services of both the multiplier and the mod function. Four internal registers are available to
perform the cryptographic operations: “rsa_n”, “rsa_e” and “rsa_d” for the public and private keys and
“rsa_b” for the message. The controller is not only in charge of writing the registers, it also feeds the modular
exponentiation core with a message and the private or the public key, for encryption or decryption operations,
respectively. Tab. 1 details the operation of the circuit, as a function of its inputs.

Tab.1 - Operation of the asynchronous RSA cryptographic circuit as a function of its inputs.
Control_in Operation

0x0 Write “Data_in” value in “rsa_b” register
0x1 Write “Data_in” value in “rsa_e” register
0x2 Write “Data_in” value in “rsa_n” register
0x3 Write “Data_in” value in “rsa_d” register
0x4 Decrypt the message contained in “rsa_m” with the public key (“rsa_n”, “rsa_e”)
0x5 Encrypt the message contained in “rsa_m” with the public key (“rsa_n”, “rsa_d”)

The same functionality was implemented with both asynchronous design flows to compare design

efficiency and resulting complexity. Two circuits were generated for the STMicroelectronics 65nm technology,
and both were validated through simulation. The average delay to perform a cryptographic operation for the
circuit generated through the automated flow was of 34.084µs, while for the manually generated circuit it was
14.902µs. These results were obtained for the same cryptography/decryptography operations scenario. In
short, the circuit generated with the manual design flow managed to perform its functionality 229% faster
than the one using the automated flow. Additionally, the obtained delays are reasonably large for the target
technology. However, this is due to the fact that the circuits perform multiply and mod operations through
successive sum operations.

Tab. 2 presents area results for the physical implementation of the circuits generated with each flow. The
automatically generated circuit, as expected, presents a significant area overhead, of roughly 263%. This is
due to the fact that synthesis tools for asynchronous circuits are still in their early stages of development, and
the circuits that they generate are not really sufficiently optimized. The circuit generated through the manual
flow presents better characteristics, but the complexity to design the circuit is huge compared to the automated
flow. The total number of asynchronous devices testifies such affirmation. A total of 5795 asynchronous
devices were used in 135 handshaking elements. Each of these was manually instantiated in a schematic
approach during the design.

Tab.2 - Standard cell area and wire length for the RSA cryptographic cores designed through manual and
an automatic design flows.

Design Flow Automatic Flow Manual Flow
Number of standard cells 132274 49965

Total cell area (mm2) 0.411 0.156
Number of standard cells – physical cells 55290 20920

Cell area – physical cells (mm2) 0.288 0.108
Number of asynchronous devices 17041 5795

Total wire length (mm) 843.669 315.282
Average wire length (mm) 0.015 0.015

Power results also illustrate how the manual design flow generates more efficient designs, as expected.

Assuming a multiple cryptographic operations scenario for both circuits, Tab. 3 presents results obtained for
power consumption. In this scenario, 10 messages are encrypted through a public key and then the encrypted
message is decrypted through the private key. The automatically generated circuit presented overheads of
112%, 424% and 601% for internal, switching and leakage power consumption respectively, when compared
to the manual design. The total power consumption overhead was of 308%.

4 XXVII SIM - South Symposium on Microelectronics

Tab.3 - Power results for the RSA cryptographic cores designed through a manual and an automatic
design flow for a multiple cryptographic operations scenario.

Design Flow Automatic Flow Manual Flow
Internal Power (mW) 2.335 1.103

Switching Power (mW) 4.3 0.82
Leakage Power (mW) 2.201 0.314

Total Power (mW) 8.836 2.165

The power consumption distribution is presented in Fig. 3 (a) and (b) for the automatically and manually

generated circuits, respectively. As it is clear, leakage power, which gets harder to deal with as CMOS
technologies shrink [5], was significantly reduced in the circuit generated with the manual design flow. This
is mainly due to the area overhead imposed by the automatically generated circuit. In this way, dynamic power
consumption represents a bigger portion of total power consumption for the manually designed circuit.
Additionally, the switching power is the main power component for the circuit generated through the
automated design flow, while for the manually generated circuit the main power component is the internal
power.

(a) (b)

Fig. 3 – Power consumption distribution for the RSA cryptographic cores designed with manual and automatic
design flows for the multiple cryptographic operations scenario.

One of the reasons for the automatically generated circuit to present such a hogh power consumption is

the fact that Teak still cannot choose the best output driving strengths when mapping a cell. In other words,
this tool does not consider the load that the cell must drive before it maps it. In this way, the cells can end up
being underutilized. Moreover, the cell can also be overused, for instance if the load it needs to drive its output
exceeds its capability. In this scenario, the circuit would end up operating at a lower speed.

5. Conclusions and Future Work
The development of EDA tools that support the asynchronous paradigm is still in its early stages of

development. The circuits generated through automated tools and asynchronous description languages are still
not optimized for specific requirements such as high density, low power or high performance. Manually
generated designs can still provide circuits that are much more optimized for these aspects. However, this
work showed that the complexity to manually design asynchronous circuits is much higher which can prevent
time-to-market fulfillment.

As ongoing work, the authors are conducting a study to scrutiny Teak synthesis. In this way it will be
possible to detect where the tool fails to achieve designs that may compete in quality figure with manual
design. An evaluation of other automatic design flows for asynchronous circuits is also expected as future
work, to assess the relative efficiency of different available tools and methods. Finally, prototyping of the
circuits described here is under way to validate the design flows on silicon and evaluate physical results.

6. Acknowledgements
This work is partially supported by the CAPES-PROSUP and by the FAPERGS (under grant 10/0814-9).

Professor Calazans also acknowledge the CNPq support under grant 309255/2008-2. Authors would like to
acknowledge the support granted by CNPq to the INCT-SEC (National Institute of Science and Technology –
Critical Embedded Systems – Brazil), process no. 573963/2008-8.

7. References
[1] Semiconductor Industry Association. “The International Technology Roadmap for Semiconductors”

ITRS 2008 Edition.

XXVII SIM - South Symposium on Microelectronics 5

[2] H. Eriksson et al. “Full-Custom vs Standard-Cell Design Flow – an Adder Case Study”. In: ASPDAC,
pp. 507-510, Jan 2003.

[3] J. Sparsø and S. Furber. “Principles of Asynchronous Circuit Design – A Systems Perspective”. Kluwer
Academic Publishers, Boston, 354 p., 2001.

[4] A. Bardsley et al. “Teak: A Token-Flow Implementation for the Balsa Language”. In: ACSD, pp. 23-
31, Jul 2009.

[5] N. Ekekwe “Power dissipation and interconnect noise challenges in nanometer CMOS technologies”.
IEEE Potentials, Vol. 29(3), pp. 26-31, May 2010.

