
XXVII SIM - South Symposium on Microelectronics 1

Introducing K-cuts and KL-cuts in Circuit Re-Mapping

1Lucas Machado, 1Osvaldo Martinello, 1Renato Perez Ribas, 1André Reis
{lmachado, omjunior, rpribas, andreis}@inf.ufrgs.br,

1PGMICRO, UFRGS, Porto Alegre, Brazil.

Abstract

This paper introduces the concept of k-cuts and kl-cuts on top of a mapped circuit. These concepts are
useful for local optimization of integrated circuit designs. Also, this paper compares the introduced cuts to the
former And Inverter Graph (AIG) k-cuts and kl-cuts, pointing out the differences and advantagesthat motivate
the use of kl-cuts on top of an already mapped netlist. An algorithm for computing the k-cuts and the kl-cuts on
top of a mapped circuit is presented and applied to a combinational circuit example. The use of kl-cuts in a
local optimization flow is shown.

1. Introduction
Logic synthesis is an important area of study in the field of microelectronics, regarding the transformation

of a design written in HDL (Hardware Description Language) to a netlist that instantiates logic gates of a given
technology. Recent advances in logic synthesis are based on And-Inverter-Graphs – AIGs, for scalability
reasons [1]-[2]. Part of these advances is based on the concept of k-feasible cuts [3]-[4], including algorithms
for re-synthesis based on AIG rewriting [5]. Algorithms for efficient cut computation are well known for single
output cuts. Particularly, algorithms for exhaustive computation of k-cuts were introduced by Cong [3] and Pan
[4].

The concept of kl-feasible cutson top of AIGs was introduced in[6]-[7], demonstrating an algorithm that is
able to calculate kl-cuts on top of AIGs and discussing its potential use in local optimization [8], regularity
extraction [9] and technology mapping. The use of kl-cuts in local optimization is justified as a cut of the
circuit, potentially with multiple outputs, can be exchanged by another, taking into account all signals which it
affects.

Martinello[6]-[7] demonstrated improvements in the number of multiple outputLUTs in FPGA mapped
circuits. Multiple output LUTs are able to implement any function of up to k inputs and l outputs, as determined
by the specific FPGA technology.

However, when it comes to local optimization over an ASIC flow, the use of AIGs does not address a very
good correlation with the previous combinational circuit, since it keeps only the logical information.
Information about buffering, drive strengths, area, delay, inverter chains, clock gating and arithmetic cells are
simply lost in the AIG translation. This level of information opens possibilities to perform different approaches
of local optimization, after a conventional logic synthesis flow, and the kl-cuts over a netlist can partition the
circuit keeping this information.

This paper introduces the calculation of kl-cuts on top of mapped circuits and its use as a method for local
optimization after the logic synthesis process, considering the standard cell IC flow. It focuses on the
combinational part of the design. This method can take into account different methods of remapping, different
remapping objectives and it tends to results in significant circuit improvement. Since kl-cuts are usually small
combinational circuits, it is possible to apply a higher computational effort to improve the kl-cuts locally.
Notice that applying computationally expensive algorithms to the entire design is not feasible, but it is feasible
for kl-cuts.

This paper is organized as follows. Section 2 presents background knowledge and motivation for kl-cuts
over netlist approach. The k-cuts and kl-cuts computation over mapped circuits are described in section 3.
Section 4 will introduce how a local optimization flow can be done. Some comparison results with AIG are
shown in Section 5and the final section concludes the paper.

2. Background
This section provides a review concerning AIGs, k-feasible cuts[3]-[4] and kl-feasible cuts[6]-[7] on top of

AIG representation. Also, the netlist representation and the AIG representation are compared, and the
motivation to use kl-cuts on top of a mapped circuit is discussed.

2.1. AIGs
An And-Inverter-Graph (AIG), , is a specific type of a Directed Acyclic Graph (DAG), where each node

has either 0 incoming edges – theprimary inputs (PI) – or 2 incoming edges – the AND nodes. Each edge can
be negated or not. Some nodes are marked as primary outputs (PO).

2 XXVII SIM - South Symposium on Microelectronics

2.2. K-cuts on AIGs

A cut of a node n is a set of nodes c such that every path between a PI and n contains a node in c. A cut of
n is irredundant if no subset of it is a cut. A k-cut is an irredundant cut containing k or fewer nodes. Let A and B
to be two sets of cuts. Let the auxiliary operation to be:

 | , | | < }

Let () to be the set of k-feasible cuts of and if n is an AND node, let n1 and n2 to be its inputs.

Then, () is defined recursively as follows:

()
{ } ,
{ } { () ()}

The operation can also easily remove the redundant cuts, by comparing the cuts with one another, or by

making use of signatures [10].

2.3. KL-cuts on AIGs
The k-cuts are an efficient way of representing a region of an AIG regarding one output generation.

However, when it comes to multiple output regions, multiple k-cuts would be needed. The kl-cuts introduced in
[6,7] make use of multiple outputs to use a single cut for a given region of the AIG.

A kl-cut defines a sub-graph of which has no more than k inputs and no more than loutputs. It is
represented as two sets of nodes { , }: being the inputs set and the outputs set.

If a node n belongs to a path between n andn , and , then n is contained in . Notice that
all nodes in are contained in . However, does not contain any node of .

A KL-cut is said to be complete when all the following conditions are met:
 Condition 1: Every path between a PI and a node n contains a node in ;
 Condition 2: Every path between a node contained in and a PO contains a node in ;
 Condition 3: No kl-cut defined by a subset of and the same is complete;
 Condition 4: No kl-cut defined by the same and a subset of is complete.

2.4. Netlists vs. AIGs
A mapped circuit, , is a specific type of a DAG, where each node has either 0 incoming edges – the

primary inputs (PI) – or up to m incoming edges, where m is an integer value bigger or equal to 1, , defined by
the gate with the largest number of inputs in the design – the logic gate nodes. Some nodes are marked as
primary outputs (PO). The main differences between the AIG and netlist descriptions are: (1) the number of
incoming edges, which is not limited by 2 in the netlist, and (2) the existence of inverters and buffers instead of
simple negated or direct edges. Furthermore, it is possible to have inverter chains and buffering information in
the mapped circuit. This information is suppressed in the AIG description.

Notice that it is possible to perform k-cuts and kl-cuts directly on top of netlists, given the similarities
between an AIG and a netlist. This can be done extending the amount of inputs and handling with inverters and
buffers. The algorithm and its particularities are shown in Section 3.

3. K-cuts and KL-cuts on Netlists
This section demonstrates how the computation of k-cuts and kl-cuts can be done in netlists, introducing

the algorithms and demonstrating it through an example of a combinational circuit

3.1. K-cuts on Netlists
The difference of k-cuts in netlists and AIGs addresses the higher amount of inputs in the logic gate nodes

and handles with single input logic gates (inverters and buffers).
Let) to be the set of k-cuts of and if n is a logic gate node, let , … , , with g an integer value

representing the number of inputs of the logic gate, 1 g m, to be its inputs. Using the same operation
described in section 2, which is commutative,) is defined recursively as follows:

()
{ } ,

() , = 1
{ } () ()

XXVIISIM - South Symposium on Microelectronics 3

Fig. 1 shows a combinational circuit example. Calculating the k-cuts with k equals to 6 for this example,

we obtain the values in Tab. 1.

Tab. 1 – The k-cuts for all nodes in the combinational circuit example
Node k-cuts Node k-cuts

a {a} wire0 {a}
b {b} wire1 {wire1}, {d, a}
c {c} wire2 {a, b, c, d}, {a, b, c, wire1}
d {d} wire3 {wire3}, {e, f, g, h}
e {e} o0 {a, b, c, d}, {a, b, c, wire1}
f {f} o1 {o1}, {a, wire3}, {a, e, f, g, h}
g {g} o2 {o2}, {a, e, f, h}
h {h}

Fig. 1 – A combinational circuit example to demonstrate the k-cuts and kl-cuts computation.

3.2. KL-cuts on Netlists
The kl-cuts computation on netlists has different approaches compared AIGs. The l is defined as

unbounded to discover all possible shared logic, keeping track of all outputs that depend on the same set of
variables. It is possible to have several intermediate outputs in a k-cut that need to be covered in the kl-cut.
Also, since the main focus is the local optimization, kl-cuts consisted of a single cell and kl-cuts with k equals to
one (inverter and buffer chains) are discarded.

Fig. 2 shows a pseudo-code for kl-cuts enumeration on top of a mapped circuit. The algorithm receives as
input the maximum kinputs to the kl-cuts and a combinational circuit. If the design has sequential elements, it is
necessary to split the design into combinational and sequential parts.

Fig.2.Pseudo-code for kl-cuts calculation on top of a mapped netlist.

01. compute_klcuts(k, circuit) {
02. kcuts = compute_kcuts(circuit, k)
03. for all kcut in kcuts {
04. insts<- ø
05. outputs<- ø
06. for all node in kcut {
07. addInsts(node, insts, outputs)
08. }
09. klcut = createKLcut(kcut, insts, outputs)
10. klcuts.add(klcut)
11. }
12. returnklcuts
13. }
14. addInsts(node, insts, outputs) {
15. ifKCutsOK(node) and node is not PO then {
16. insts.add(node.inst)
17. for all out in node.inst.outputs {
18. addInsts(out, insts, outputs)
19. }
20. } else {
21. outputs.add(node)
22. }

4 XXVII SIM - South Symposium on Microelectronics

It starts enumerating all k-feasible cuts for all nodes in the circuit. All k-cuts of the circuit are grouped and
used to find the kl-cuts. The grouped k-cuts for the Fig. 1 example would be: {d, a}, {a, b, c, d}, {a, b, c,
wire1}, {e, f, g, h}, {a, wire3}, {a, e, f, g, h} and{a, e, f, h}.The function addInsts() traverses the circuit from
the k-cut nodes to the outputs direction, saving the logic gate instances, the outputs and logic equation for each
logic gate found. Each node is checked by the function KCutsOK(), which returns true if the node has at least
one k-cut formed only by nodes in kcut (the current k-cut evaluated in the pseudo-code).

Further rework must be done to inverters in the inputs of the kl-cuts. If this kind of inverter is used only
inside the kl-cut, there is no need to rework, since the kl-cut encapsulates the inverter. If the inverter is used
somewhere else in the circuit, it is important to save this information in the kl-cut, in a way the re-mapper is
able to reuse the already negated input (the negated variable has no extra cost in the remapping). Fig. 1 shows
the three kl-cuts found in the combinational circuit example, with rectangles around the instances contained in
each kl-cut.

4. Local Optimization with KL-cuts
The local optimization flow using kl-cuts is based on a basic standard cell flow. After the conventional

logic synthesis process, the output is a netlist containing all logic gates to implement the hardware described,
using the cells of a given library. On top of this netlist, all kl-cuts are found, given a k maximum number of
inputs.The amount of kl-cuts can be very high. One way to overcome this issue is to group the kl-cuts into P
classes (inputs and outputs),decreasing greatly the quantity of different kl-cuts. This can be done through an
extension of the work presented in [11].

For each kl-cut found (or grouped), it is possible to remap its output equations using more advanced
techniques found in the literature, targeting improvement in area. For instance, the functional composition
algorithm in [12] is able to identify shared logic between equations, providing the best logic trees for a kl-cut
logic. Logic tree mapping techniques, as presented in [13], can result in better mapping for the given logic trees.

Besides the remapping methods, libraries with larger number of complex logic gates can be better explored
using this local optimization approach.After the remapping, each kl-cut, that has a significant improvement in
area compared to previous mapping, must be checked if timing constraints are still attained. It is necessary to
match the input and output capacitances and compare the delays between the mapped and remapped kl-cut. It is
possible to do sizing and buffering to keep the timing constraints met. If the kl-cut does not meet timing, it is
discarded.

Fig.3a shows a kl-cut example found on top of a commercial benchmark mapped using a commercial
library. Fig. 3b shows the same kl-cut after a remapping in which the timing constraints are still met, obtaining
an area decrease of 20%.

(a) (b)

Fig.3.A kl-cut remapping example with the timing constraints still met and the area decreases in 20%

After all kl-cuts are remapped and checked timing, it is necessary to select the best kl-cuts subset to replace

in the design, in a way they do not overlap. Two kl-cuts do not overlap if (1) their set of instances covered are
disjoint and (2) their intermediate wires covered and input/output sets are disjoint. An intermediate wire of a kl-
cut cannot be reused by another kl-cut after changing its internal logic.

The choice of the best subset of kl-cuts that do not overlap can be a very time-consuming task. The
selection of a kl-cuts subset can be done by using a greedy algorithm, selecting the kl-cuts that give a higher
improvement at first. This kind of choice algorithm does not give the best result, but it is much faster and
feasible.

XXVIISIM - South Symposium on Microelectronics 5

5. Results
Some initial results, with naive remapping implementations, already show up to 5% improvement in

combinational area for commercial benchmarks. It is worth to notice that this decreasing in area occurs after all
possible improvements given by a commercial logic synthesis tool.

Tab. 2 shows a comparison of the number of kl-cuts found on top of AIG and on top of the mapped circuit.
All the experiments were done using the ISCAS benchmarks in the IWLS 2005 benchmarks set [14], with k
equals to 6 and unbounded l.

In the results of Tab. 2, notice that there are approximately 70% more kl-cuts in the AIG than in the netlist.
This can be easily explained by the purpose of each algorithm and the different data structures.

The kl-cuts on top of an AIG are created to cover the AIG functionality afterwards. Thus, there are kl-cuts
with a single AND node and kl-cuts with more than one node that end up as a single cell in the netlist. The kl-
cuts are created in the AIG version in a way the covering has more options to give a better AIG
implementation, using those kl-cuts.

The kl-cuts on top of a netlist are created to be improved and then replaced in the original netlist. Hence,
there are not kl-cuts with a single cell, for example. A single cell can have lots of AND nodes in an AIG
representation, creating extra kl-cuts in the AIG version.

Tab. 2. Comparison of the number of kl-cuts found:AIG vs. Netlist.
Benchmark Netlist AIG Difference Benchmark Netlist AIG Difference

s27 36 38 5.26% s838 1031 4097 74.84%
s208 104 444 76.58% s832 1049 3498 70.01%
s420 348 1608 78.36% s510 1094 2779 60.63%
s382 425 1217 65.08% s15850 1726 4363 60.44%
s400 473 1047 54.82% s1196 2373 7560 68.61%
s386 482 1328 63.70% s13207 2406 7453 67.72%
s444 485 1150 57.83% s1238 2592 8915 70.93%
s298 489 1187 58.80% s1488 2698 8049 66.48%
s349 552 1516 63.59% s1423 2880 7760 62.89%
s344 604 1855 67.44% s1494 3129 8100 61.37%
s526 714 1930 63.01% s9234 5920 16469 64.05%
s713 783 1823 57.05% s5378 7688 22861 66.37%

s526n 812 2028 59.96% s35932 20113 63197 68.17%
s641 826 1840 55.11% s38584 20265 96172 78.93%
s820 992 3323 70.15% s38417 43499 195031 77.70%

6. Conclusion
This paper presented a comparison of k-cuts and kl-cuts performed on top of mapped circuits as opposed to

computing k-cuts and kl-cuts on top of AIG representations. The main differences lie on (1) the number of
inputs for the 2-input AND nodes used on AIGs and the nodes of a gate netlist which may have several inputs,
and (2) the existence of explicit inverters and buffers, appearing as nodes, in the netlist compared to the use of
negated or direct edges used in the AIG. Also, we presented a method to perform k-cuts and kl-cuts on top of a
netlist representation. We have also demonstrated that kl-cuts on top of mapped circuits can be very useful for
local optimization of integrated circuit designs.

7. Acknowledgements
Research partially funded by Nangate Inc. under a Nangate/UFRGS research agreement, by CAPES and

CNPq Brazilian funding agencies, by FAPERGS under grant 11/2053-9 (Pronem), and by the European
Community's Seventh Framework Programme under grant 248538 – Synaptic.

8. References
[1] Ling, A. C., Zhu, J., “Scalable Synthesis and Clustering Techniques Using Decision Diagrams”, IEEE

Trans. on CAD, 2008.

[2] Mishchenko, A., Brayton, R., “Scalable Logic Synthesis using a Simple Circuit Structure”, Int’l
Workshop on Logic & Synthesis, 2006.

6 XXVII SIM - South Symposium on Microelectronics

[3] Cong, J., Wu, C., Ding, Y., “Cut Ranking and Pruning: Enabling A General And Efficient FPGA

Mapping Solution”, Int’l Symp. on FPGA, 1999.

[4] Pan, P., Lin C., “A New Retiming-based Technology Mapping Algorithm for LUT-based FPGAs”, Int’l
Symp. on FPGA, 1998.

[5] Mishchenko, A., Chatterjee, S., Brayton, R., “DAG-aware AIG Rewriting: A Fresh Look at
Combinational Logic Synthesis”, Design Automation Conference, 2006.

[6] MartinelloJr, O. and Marques, F.S. and Ribas, R.P. and Reis, A.I., “KL-cuts: a new approach for logic
synthesis targeting multiple output blocks”, Design Automation & Test in Europe, 2010.

[7] MartinelloJr, O. and Marques, F.S. and Ribas, R.P. and Reis, A.I., “KL-cuts”, Int’l Workshop on Logic
& Synthesis, 2009.

[8] Werber, J., Rautenbach, D., Szegedy, C., “Timing Optimization by Restructuring Long Combinatorial
Paths”, Int’l Conf. on CAD, 2007.

[9] Rosiello, A. P. E., Ferrandi, F., Pandini, D., Sciuto, D., “A Hash-based Approach for Functional
Regularity Extraction During Logic Synthesis”, IEEE Comp. Soc. Annual Symp. on VLSI, 2007.

[10] Mishchenko, A., Chatterjee, S., Brayton, R., “Improvements to Technology Mapping for LUT-Based
FPGAs”, Int’l Symp. on FPGA, 2006.

[11] U. Hinsberger and R. Kolla, “Boolean matching for large libraries”, Design Automation Conference,
1998.

[12] Martins, M. G. A.; Rosa JR, L. S.; Rasmussen, A.B.; Ribas, R.P.; Reis, A. I., “Boolean Factoring with
Multi-Objective Goals”, Int’l Conference on Computer Design, 2010.

[13] Correia, V.; Reis, A., "Advanced technology mapping for standard-cell generators", Symposium on
Integrated Circuits and Systems Design, 2004.

[14] http://iwls.org/iwls2005/benchmarks.html.

