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Abstract

This paper presents a graph-based methodology to determine if an ISOP may be implemented in NSP
arrangement. The experiments demonstrate that the proposed method deliver exact answers for unate logic
functions. Furthermore, the method was able to determine exact answers in 82.69% of the cases when
considering binate logic functions. The experiments were performed over the set of four inputs P-class logic
function and the topology of our results was compared to the Moore catalog. In another experiment, using a
synthetic benchmark, the results demonstrate that the proposed method was able to find NSP Kernels,
delivering good clue to generate optimal transistors networks or, at least, the closest possible solution.

1. Introduction

In VLSI design, the total number of transistors necessary to implement a logic cell and the number of
transistors associated in series are directly related to the power consumption, area and delay of the circuit [1].
In this sense, CAD tools have held designers to manipulate more transistors allowing achieving optimized cell
libraries. Nowadays, in the literature there are some methods to optimize and generate transistors networks.
The most traditional are based on algebraic and Boolean factorization [2-4], where a Boolean expression is
manipulated to reduce the number of literals necessaries to represent the function. In a Boolean expression,
every instance of a Boolean variable is called literal, and a product of literals is formally called cube.
Afterward, the factored expression is translated in a transistor network using only series-parallel
arrangements.

Other existent methods are based in graph optimizations, where a Boolean expression is translated in a
graph that is optimized by edges sharing [5, 8] or an optimized graph is graduating composed from the initial
Boolean expression [6]. These techniques are able to deliver better results when comparing to the factorization
methods. This is possible because Wheatstone bridges arrangements (non-series-parallel - NSP) may be found
during the graph optimization process. This kind of arrangement can implements a logic function with a
reduced number of transistors, because it haves a large sharing between the cubes of the function, overcoming
the series-parallel arrangements [7].

The existent techniques to generate optimized transistors networks usually using greed strategies and
deliver satisfactory results. However, to the best-known of the authors, no one of these methods can achieves
good results for a set of simple functions when thinking in a literal count. This set of functions respects the
lower bound of transistors stack, being able to be used in current CMOS technology. Since several available
techniques cannot deliver exact results, one question becomes obvious: is there some way to discover if a
transistor network that represents a given logic function may be implemented in a NSP arrangement? This
paper proposes a graph-based method able to identify if a Boolean expression can be or not implemented using
a NSP arrangement.

2. NSP Kernel Finder

The proposed method starts from an ISOP and builds a graph where the cubes of the function are the
vertices and the edges exist if the vertices have common literals. If the obtained graph is an isomorphic sub-
graph to a Wheatstone bridge arrangement and each cube have all literals shared through the edges, then this
function can be implemented using NSP arrangements.
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2.1. Standard Algorithm

For n = cubes( f), select four cubes in combinations C . Afterward, for each combination the algorithm
builds a graph as is explained following. We define a graph G = (V, E) of a function H which is given as a
sum of products with exactly four cubes. The vertices in V = {Vl,VZ,VS,V4} represent different cubes in H ,
and |V| is the number of vertices in the set V . An edge € = (Vi,vj) in E exists if and only if at least one

literal appears in both V;,V; . The operation (v, mvj) represents common literals in both V;,V; vertices. So,
an edge € formally exists if and only if:
(v, V) 2@
1)
We define the label of € by the following: label(e) = (Iit(vi) N Iit(vj)) where lit(v;) are the literals
in the vertexV; . Let E,; be the set of edges that are connected toV, . Let#edges=| E,, |. The function could

be implemented in NSP if: u(i =1;#edges)=v1for allveV . For instance considerate the fig. 1.a that
shows the NSP Kernel obtained from the Equation 2.

f=ab+ace+de+d.cb
)

a*b

a*c*e

d*e
a)

Fig. 1 — NSP Kernel find from Equation 2.

2.2.  Fake Cubes Insertion

If the standard algorithm not found NSP arrangements, the cubes are selected by combinations Cf

and the algorithm tries to complement the graph using a fake cube. Fake cubes are cubes that lead to
redundant sub-functions. Eg: let f be the original function. Let f'be the function represented by the fake

cube. The fake cube is valid only if f'< f(f'+f = f). This means that the cube's function f' is covered
by another original cube from the function.

We define a graph G = (V, E)of a function H which is given as a sum of products form with
exactly three cubes. The vertices in V = {Vl,VZ,VS} represent the different cubes inH , so [\/| =3. The

conditions to insert a labeled edge in the graph are the same of the standard algorithm. In order to complete
the graph G , a new vertex V, is inserted into the set V as the following: Let E, be the set of edges

E,,

connected to the vertexV; , and the number of edges in the set. The literals of the new vertex are defined

lit(v,) = Hi\;(lit(vi) — U abel (e, ) )

)

and formula (1) is applied to the vertex V,in order to insert the new edges E,,in E. This process is

as:

illustrated by fig. 2.a that shows a NSP Kernel with a not sensitized cube (cube that haves least one variable in
both the polarities as !c*d*c) obtained from Equation 4. The fake cube also can be introduced when the

algorithm performs combinations C:. It is easily and naturally found by the labels of the edges. One instance
this is illustrated by the fig. 2.b that shows a redundant switch ‘a’ in the NSP Kernel of the Equation 5.
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f =alc+de+ace

4)
f =ab+ac+ad+b.cd
®)
a*lc a*b
Ic*d*c a*c*e a*c
d*e a*d
a) b)

Fig. 2 — NSP Kernels with a not sensitize fake cube in a) and with a reply switch in b).

3. Experimental Results

The input of the proposed algorithm is an Irredundant Sum of Products — ISOP. According to [10], if a
Boolean function is unate then only one ISOP can be expressed. A Boolean function is said to be unate if and
only if all variables in the function appear in just one polarity. This statement is important because it allows
the proposed algorithm to always find the exact answer when manipulating unate Boolean functions.
However, when considering binate Boolean function, where variables can appear in both polarities, the
algorithm occasionally cannot deliver the correct answer because sometimes an ISOP representation cannot be
implemented in a Wheatstone bridge arrangement. In other words, the algorithm should be applied to another
ISOP representation of the same logic function before to state if a NSP Kernel can or not be achieved.

To validate and evaluate the proposed method, a set of forty five logic functions were used to verify if the
algorithm is able to find the NSP Kernels. This set is composed by only unate Boolean functions.

Tab. 1 presents the total number of switches delivered by each method available in the literature and the
approximation of the optimal result according to the number of NSP arrangements found. Notice that for all
functions the proposed method was able to find NSP Kernels providing good indicators for the optimal
solution.

Tab. 1 — Synthetic benchmark with forty five unate NSP functions.

Optimal | [3] | [4] | [1] | [7] | [8] | NSP Kernel Finder
# total of switches 304 452 | 417 | 450 | 459 | 453 -

# of NSP arrangements 45 0 0 45 10 6 45

For instance, consider Fig. 3 that shows the transistors networks obtained by each method for the
Equation 5 that is part of the set of forty five functions. No one of these methods was able to generate the
optimal solution, which is illustrated by the Fig. 3.a with five switches. The methods [3, 4, 7, 8] and [1]
founds the solutions presents in the Fig. 3.b and Fig. 3.c respectively, with seven switches.

a . d bty bt c d b . d be
c
b a J . ¢ a
d
| | |
a) b) c)
Fig. 3 — In a) optimal solution, in b) series-parallel solution and ¢) presents a NSP but not optimal
solution.

A similar experiment was performed to the set of four input P-class logic functions that is composed by
3982 functions. For each function the experiment verifies if the obtained result have the same topology of the
equivalent functions in Moore’s catalog [9]. Tab. 2 presents the results of this analysis considering unate and
binate functions separately.
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Tab. 2 — NSP Kernel Finder results matching to Moore’s catalog topology for P-class 4 inputs functions.
# of functions | % of hits compared to Moore

Unate functions 198 100%

Binate functions 3784 82.69%

When the topology of our results is the same of the Moore’s catalog we have a hit. A miss not means that
the algorithm presents an error, but that for this input ISOP our method was not able to identify a NSP
arrangement. As explained before, a binate function may be represented by several ISOP forms and some of
them cannot be translated to a NSP arrangement. In these cases, to obtain a satisfactory answer it is
necessaries to find another ISOP or to use a SOP composed by all prime cubes as input of the algorithm. As
demonstrated in Tab. 2, for all unate functions of this set, the proposed method is able to deliveries 100% of
hits when compared to Moore’s catalog. When considering the binate functions the algorithm presented
82.69% of hits.

4. Conclusions and Future Work

This paper presented a graph-based method to identify if an ISOP can or cannot be implemented in NSP
arrangement. The algorithm was developed in Java language and consists in calculates the intersections
between the combinations of cubes that compose the input expression using a graph structure. Afterward, the
algorithm checks the topology of the resultant graph. If it is topologically equivalent to a Wheatstone bridge
arrangement then it can be implemented in NSP.

The experimental results demonstrate that when the input Boolean expression is unate our method found
the same topology of the optimal solution in 100% of cases. These results were found for a synthetic
benchmark as well as for the set of 4 input P-class logic functions. When the proposed method was applied
over hinate expressions the experiments demonstrates that 82.69% of cases the found topology is the same of
the optimal solution presented by Moore’s catalog, presenting a significant hit hate. Available methods in the
literature are based in greed strategies that not always carry to the optimal solution. The synthetic experiment
demonstrates that no one of these methods is able to deliver optimal solutions.

The kernels found by the proposed method provide good clue to generate optimal transistors networks or,
at least, the closest possible solution. As future work we intend to design a method that uses these kernels to
generate transistors networks.
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