
XXVII SIM - South Symposium on Microelectronics 1

An Effective Method for Generating Boolean Signatures

Renato S. de Souza, Vinícius N. Possani, Julio S. Domingues Jr,
Felipe S. Marques, Leomar S. da Rosa Jr.

{rsdsouza, vnpossani, jsdomingues, felipem, leomarjr}@inf.ufpel.edu.br

Group of Architectures and Integrated Circuits – GACI
Technology Development Center – CDTec

Federal University of Pelotas – UFPel
Pelotas - Brazil

Abstract
CAD (Computer Aided Design) tools are currently indispensable in the development of digital circuits due

to the feasibility of adapting technology parameters. This paper proposes a quickly and secure method based in
signature of logic functions to represent Boolean functions efficiently. To perform a case of study, the proposed
method was used in the Soptimizer tool to validate the optimizations performed by the tool. Experiments show a
reduction in runtime of 41.4% when comparing to the previously adopted strategy.

1. Introduction
Electronic devices are increasingly present in our days, causing a great impact on society, due to the fact

that they apply directly to different areas of knowledge. Thus, it has been noted the importance of advances in
the development of digital circuits. Due to that it is possible to create new technologies. Consequently, great
difficulties are eventually found due to adaptation of new technology parameters, as the complexity of designing
a chip in a time short enough that the product is launched on the market. In this context, CAD (Computer Aided
Design) tools have contributed to developers increase the efficiency and reduce the complexity in a project [1,
2].

In this context a tool that implements a graph-based method to generate transistor networks was proposed.
This tool is called Soptimizer [3]. From a Boolean expression, it is obtained a graph, where each edge
represents a transistor, and, in a posterior step, it is performed an optimization process by sharing of edges,
reaching a reduced network in terms of switches. Due to the shares of edges performed during the optimization
process, it can be introduced new paths in the graph, which may change the logical behavior of the function.
Therefore, it is necessary to ensure that these new paths do not change the logical behavior of the circuit that is
represented by the graph.

Thus, this paper proposes a method to generate logic functions signatures which can efficiently represent
Boolean functions. The proposed method is incorporate in Soptimizer tool to verify, from quickly to a secure
way, if the new paths in the graph are valid and have not changed the logical behavior of the circuit. Apart from
that, by using the proposed method, the Soptimizer tool becomes able to perform some algebraic optimizations
that are not possible when using the previous solution.

2. Method for Generating Boolean Signatures
The main idea of this method is to generate a signature for a Boolean function. The first step consists in

checking how many variables there are in the function. The proposed method represents the signatures by
integers. So, to discover how many integers are necessary, it is computed 2n, where n represents the number of
variables existing in the input function. After that, the result is divided by 32. If needed to use more of one
integer to represent the signature, than it is used a structure of vector to store each integer. For example, in a
case that a function has six variables, the result of calculation 26/32 is equal to 2. So it is needed two integers to
generate the basic signatures for each variable. A vector is used to guarantee that comparisons are performed
correctly, where each integer in the vector is compared with another integer in an equivalent position.

After verifying how many integers are necessary to create a signature, the method generated the basic
signatures, which are the signatures of each variable in the input function. If the function has no more than five
variables, it is performed a naïve assigning process, where each variable receive a signature as shown in Fig.1.
The data present in Fig.1 were generated by the concatenation of bits, a similar process of mounting a truth
table. Fig.2 exemplifies that when considering two variables.

2 XXVII SIM - South Symposium on Microelectronics

� 2 variable:

var1 = 5
var2 = 3

� 3 variable:

var1 = 85
var2 = 51
var3 = 15

� 4 variable:

var1 = 21845
var2 = 13107
var3 = 3855
var4 = 255

� 5 variable:

var1 =1431655765
var2 =858993459
var3 =252645135
var4 =16711935
var5 =65535

� 1 variable:

var1 = 1

Fig. 1 – Default values of basic signatures for each variable according to the
number of variables present in the input function.

� 2 variable:

var1 = 0000 0000 0000 0101 = 5
var2 = 0000 0000 0000 0011 = 3

Fig. 2 – Signatures when considering two variables.

When the function contains more than five variables, the process of generating basic signatures is modified.
So, it is used a vector. For the first five variables, the same values are used for five variables indicated in Fig.1.
These values are written in all positions of the vector according to the corresponding variable. Then, for the first
variable is assigned the value 1431655765 for all positions of the vector. This is done for all the next four
variables, changing only the value of the assignment for each case. For the next variables is performed a process
in which it is concatenated the value of 0 and -1 at each position of vector. The number of concatenations of 0
and -1 required is indicated by 2n-5. This process resembles the method of assembling a truth table.

This whole process of generating basic signatures for a given function that contains more than five variables
is shown in Fig.3.

� 7 variable:

1431655765 1431655765 1431655765 1431655765

858993459 858993459 858993459 858993459

252645135 252645135 252645135 252645135

16711935 16711935 16711935 16711935

65535 65535 65535 65535

0 -1 0 -1

0 0 -1 -1

var1 =

var2 =

var3 =

var4 =

var5 =

var6 =

var7 =

Fig. 3 – Vectors with the values for each variable.

In a case where some variable of the function is negated, the process of basic signature generation is the

same. It will be assigned, for this negated variable, the value presented in Fig.1. The main difference is that bits
that are 0 become 1, and those that are 1 become 0. In a case where the function has more than five variables, it
is performed the same procedure of concatenation explained before. The only difference is the order of
concatenation of the values in vector. Firstly, it is concatenation the value -1. After that, the value 0 is
concatenated. Fig.4 shows a case of a random function that contains the third and seventh negated variables.

--252645136 -252645136 -252645136 -252645136!var3 =

-1 -1 0 0!var7 =

Fig. 4 – Vectors with the values for each negated variable.

XXVII SIM - South Symposium on Microelectronics 3

After generating basic signatures, it is created the signature for the entire function by using logical

operations AND and OR. Exp.1 shows the function used as example.

A*C*E*F + A*B*F + A*B*!C + D*E*!G (Exp. 1)

First it is obtained the signatures of the products through of bitwise AND operation of each integer value
present in a position of the vector with the other integer value of the corresponding position of the next vector.
After that, it is performed the bitwise OR operation between the signatures generated before. Fig.5 shows a
signature generation of a product through a bitwise AND operation performed between each integer of vectors.

16711935 16711935 16711935 16711935 D =

65535 65535 65535 65535 E =

-1 -1 0 0!G=

0 -252645135 0 0

AND AND AND AND

AND AND AND AND

D*E*!G =

Fig. 5 – Generation of the signature for the product D*E*!G.

After generating all signatures of the products, it is performed the bitwise OR operation between each
position of vectors of each signature of these products. This process is illustrated in Fig.6, which also shows the
signature of the function shown in Exp.1.

0 286331153 0 286331153A*B*F =

0 1285 0 1285A*C*E*F =

OR OR OR OR

OR OR OR OR

269488144 269488144 269488144 269488144A*B*!C =

OR OR OR OR

255 255 0 0D*E*!G =

269488383 286332415 269488144 286332181Exp.1 =

Fig. 6 – Generation of the signature for Exp.1.

3. Experimental Results
The proposed method was implemented in Java using NetBeans IDE 7.0 and was integrated into the

Soptimizer tool to be validated and tested as a case of study. In order to evaluate the efficiency of the proposed
method, it was used as benchmark all functions from the 4 input p-class logic functions set [4]. This set is
composed by 3982 Boolean functions. Also, it was used 54 random logic functions with six input variables,
called Random6. Apart from that, three functions were chosen for analysis. The XOR 4 was chosen because it is
an extremely used in several circuits such as adders and multipliers. Functions F5 and F13 [5, 6], were chosen
because they contains a large number of variables if comparing to the 4 input p-class logic functions set.

Table 1 presents the results obtained in terms of runtime. The column "Without signature" shows the results
when Soptimizer tool uses the old version algorithm to compare functions equivalence. This algorithm consists
in traversing the graph and obtaining all cubes that compose the function. In the sequence, each cube obtained
from the graph is compared to the ones from the input expression. The column "With signature" shows the
runtime when the proposed method is used. These tests were executed on a computer with an Intel Pentium Dual
Core T2370 1.73GHz, 2GB of memory and Windows Seven Ultimate 64bit.

4 XXVII SIM - South Symposium on Microelectronics

Tab.1 – Total run time in ms tool Soptimizer with and without the signature method.

Benchmark Number functions Number variable Without signature With signature Reduction
p-class 3.982 4 2193 ms 1599 ms 27,1%

Random6 54 6 189 ms 156 ms 17,5%
XOR 4 1 4 57 ms 47 ms 17,6%

F5 1 8 78 ms 100 ms -28,3%
F13 1 10 546 ms 320 ms 41,4%

As can be seen in the results of Table 1, for the benchmarks p-class, Random6, XOR 4 and F13, the total

runtime of the Soptimizer tool is smaller when using the proposed algorithm. However, for the benchmark F5,
the obtained runtime was worst when using the proposed algorithm. The main reason for that is that the
benchmark F5 contains large cubes, with few variables. In this situation the proposed algorithm presents a
disadvantage if comparing to the old strategy usage by the Soptimizer tool. All the process to generate the
signatures and compare them when necessary is more time consuming than just directly compare products
stored in vector structures. Our method is able to deliver better results when there are several cubes to be
checked in a SOP form.

4. Conclusions and Future Works
This paper presented a method to generate logic functions signatures which can efficiently represent

Boolean functions. At a first moment, the signature method was integrated into the Soptimizer tool to validate
the optimization process of transistor networks.

The method was validated using several Boolean functions with different number of input variables.
The results demonstrated that the algorithm can minimize the total runtime when incorporated in a CAD

tool. In the case of study, it was possible to achieve an average gain of 27.1% in runtime.
As future work, more tests will be performed considering different benchmarks. Also, it is intended to

incorporate the proposed method into other Boolean evaluation algorithms developed by the group, especially
in those related to technology mapping.

5 . Acknowledgment
Research partially funded by CNPq and FAPERGS Brazilian funding agencies under grant 11/2053-9

(Pronem).

6 . References
[1] Da Rosa Junior, L. S. Automatic Generation and Evaluation of Transistor Networks in Different Logic

Styles. PhD Thesis PGMicro/UFRGS, Porto Alegre, Brazil. (2008), 147 p.

[2] Callegaro, V. ; Marques, F. S. ; Klock, C. E. ; Da Rosa Junior, L. S. ; RIBAS, R. P. ; REIS, A. I. .
SwitchCraft: a framework for transistor network design. In: 23rd Symposium on Integrated Circuits and
System Design, 2010, São Paulo. Proceedings of the 23rd Symposium on Integrated Circuits and System
Design. New York : ACM, 2010. p. 49-53.

[3] Possani, V. N. ; Timm, E. F. ; Agostini, L. V. ; Da Rosa Junior, L. S. . Transistor networks design using a
graph-based approach. In: 10th Microelectronics Students Forum, 2010, São Paulo. 10th Microelectronics
Students Forum, 2010.

[4] Ledur, M. ; Marranghello F. ; Da Rosa Junior, L. S. ; Reis, A. I. ; Ribas, R. P. . Set of Digital Cells
According to Logic Equivalences. In: VII Student Forum on Microelectronics, 2007, Rio de Janeiro. VII
Student Forum on Microelectronics CDROM. Porto Alegre : SBC, 2007.

[5] J. Zhu et al. On the Optimization of MOS Circuits. IEEE Transactions on Circuits and Systems:
Fundamental Theory and Applications. (1993), 412-422.

[6] D. Kagaris et al. A Methodology for Transistor-Efficient Supergate Design. IEEE Transactions On Very
Large Scale Integration (VLSI) Systems. (2007), 488-492.

