XXVII SIM - South Symposium on Microelectronics 1

An Effective Method for Generating Boolean Signatues

Renato S. de Souza, Vinicius N. Possani, Julio Soidingues Jr,
Felipe S. Marques, Leomar S. da Rosa Jr.
{rsdsouza, vnpossani, jsdomingues, felipem, learf@inf.ufpel.edu.br

Group of Architectures and Integrated Circuits — GACI
Technology Development Center — CDTec
Federal University of Pelotas — UFPel
Pelotas - Brazil

Abstract
CAD (Computer Aided Design) tools are currently indispensable in the development of digital circuits due
to the feasibility of adapting technology parameters. This paper proposes a quickly and secure method based in
signature of logic functions to represent Boolean functions efficiently. To perform a case of study, the proposed
method was used in the Soptimizer tool to validate the optimizations performed by the tool. Experiments show a
reduction in runtime of 41.4% when comparing to the previously adopted strategy.

1. Introduction

Electronic devices are increasingly present inaays, causing a great impact on society, due tdattie
that they apply directly to different areas of kiedge. Thus, it has been noted the importance drazs in
the development of digital circuits. Due to thatsitpossible to create new technologies. Consetygreat
difficulties are eventually found due to adaptatidmew technology parameters, as the complexityesfgning
a chip in a time short enough that the producausithed on the market. In this context, CAD (Compaided
Design) tools have contributed to developers irggahe efficiency and reduce the complexity in @egmt [1,
2].

In this context a tool that implements a graph-basethod to generate transistor networks was pezpos
This tool is called Soptimizer [3]. From a Boolearpression, it is obtained a graph, where each edge
represents a transistor, and, in a posterior stap,performed an optimization process by shawhgdges,
reaching a reduced network in terms of switches® futhe shares of edges performed during the @ation
process, it can be introduced new paths in thehgrapich may change the logical behavior of thecfiam.
Therefore, it is necessary to ensure that thesepaghs do not change the logical behavior of theutithat is
represented by the graph.

Thus, this paper proposes a method to generate fogctions signatures which can efficiently reprds
Boolean functions. The proposed method is incotgoira Soptimizer tool to verify, from quickly to secure
way, if the new paths in the graph are valid aneehaot changed the logical behavior of the ciroygart from
that, by using the proposed method, the Soptimiza@rbecomes able to perform some algebraic opéitinns
that are not possible when using the previous isolut

2. Method for Generating Boolean Signatures

The main idea of this method is to generate a sigedor a Boolean function. The first step corssist
checking how many variables there are in the fonctiThe proposed method represents the signatyres b
integers. So, to discover how many integers acessary, it is computed,2vheren represents the number of
variables existing in the input function. After théhe result is divided by 32. If needed to useranof one
integer to represent the signature, than it is @settucture of vector to store each integer. lKanmple, in a
case that a function has six variables, the redudalculation 232 is equal to 2. So it is needed two integers to
generate the basic signatures for each variabledfor is used to guarantee that comparisons aferped
correctly, where each integer in the vector is careg with another integer in an equivalent position

After verifying how many integers are necessarycteate a signature, the method generated the basic
signatures, which are the signatures of each Jariakthe input function. If the function has no madhan five
variables, it is performed a naive assigning precetere each variable receive a signature as showig.1.
The data present in Fig.1 were generated by theatenation of bits, a similar process of mountingush
table. Fig.2 exemplifies that when considering tmoiables.

2 XXVII SIM - South Symposium on Microelectronics

v/ 1variable: v 2variable: v 3variable: v 4 variable: v’ 5 variable:
varl=1 varl=5 varl =85 varl= 21845 varl=1431655765
var2=3 var2=51 var2=13107 var2=858993459
var3=15 var3 = 3855 var3=252645135
var4 = 255 var4d =16711935
var5=65535

Fig. 1 — Default values of basic signatures foheaariable according to the
number of variables present in the input function.

v’ 2 variable:

varl = 0000 0000 00000101 =5
var2 = 0000 0000 00000011=3

Fig. 2 — Signatures when considering two variables.

When the function contains more than five variafles process of generating basic signatures isfimdd
So, it is used a vector. For the first five varehlthe same values are used for five variablasatet in Fig.1.
These values are written in all positions of theteeaccording to the corresponding variable. THenthe first
variable is assigned the value 1431655765 for adiitipns of the vector. This is done for all thexinfour
variables, changing only the value of the assignif@reach case. For the next variables is perfdrenprocess
in which it is concatenated the value of 0 andt-&ah position of vector. The number of concatenatof 0
and -1 required is indicated b{i2 This process resembles the method of assembtingretable.

This whole process of generating basic signaturea fjiven function that contains more than fivaalaes
is shown in Fig.3.

v/ 7 variable:
varl 5 1431655765| 1431655765 1431655765 1431655765

var2 5 858993459 | 858993459 85899345p 858993459

var3= 252645135 | 252645135 252645135 252645185

var4= 16711935 | 16711935| 16711935 16711935
var5= 65535 | 65535 | 65535 | 65535 |
vag o | 1 | o | a1 |
var7 =| 0 | 0 | -1 | -1 |

Fig. 3 — Vectors with the values for each variable.

In a case where some variable of the function gatexl, the process of basic signature generatitreis
same. It will be assigned, for this negated vaeatiie value presented in Fig.1. The main diffeeendhat bits
that are 0 become 1, and those that are 1 becomea(ase where the function has more than fiveabkes, it
is performed the same procedure of concatenatigiaieed before. The only difference is the order of
concatenation of the values in vector. Firstlyisitconcatenation the value -1. After that, the galu is
concatenated. Fig.4 shows a case of a random dumittat contains the third and seventh negatedbias.

var3 =| --252645136| -25264513q -252645136 -252645136

var7 = | -1 | -1 | 0 | 0 |

Fig. 4 — Vectors with the values for each negatatihble.

XXVII SIM - South Symposium on Microelectronics 3

After generating basic signatures, it is createel slgnature for the entire function by using logica
operations AND and OR. Exp.1 shows the functiordwsseexample.

ACE'F + A'B*F + A*BYC + D*E*IG

(Exp. 1)

First it is obtained the signatures of the prodtisteugh of bitwise AND operation of each integatue
present in a position of the vector with the otimeger value of the corresponding position of rile&t vector.
After that, it is performed the bitwise OR operatibetween the signatures generated before. Fignivssh
signature generation of a product through a bit&ils® operation performed between each integer ofors.

D=| 16711935 | 16711935| 16711935 16711935
J AND |, J AND | JAND | JAND |,
E=| 65535 | 65535 | 65535 | 65535 |
J AND |, JAND | J AND |, JAND |,
IG= | 1 | 1| 0 | 0 |
D*EYIG = 0 -252645135 0 0

Fig. 5 — Generation of the signature for the produ&E*!G.

After generating all signatures of the productdsiperformed the bitwise OR operation between each
position of vectors of each signature of these petal This process is illustrated in Fig.6, whitdoashows the

signature of the function shown in Exp.1.

A*C*EXF = | 0 1285 | 0 1285 |
JORY JOR JOR JOR
A*B*F = | 0 286331153 | 0 286331153|
JOR JOR | JOR | JOR
A*B*IC = | 269488144 | 269488144 | 269488144 26948814{14
JORY JOR Y JORY JORY
D*E%G = | 255 255 | o | o |
Exp.l = | 269488383 | 286332415 | 269488144 28633212*31

Fig. 6 — Generation of the signature for Exp.1.

3. Experimental Results

The proposed method was implemented in Java usitidéns IDE 7.0 and was integrated into the
Soptimizer tool to be validated and tested as a o&study. In order to evaluate the efficiencyhe proposed
method, it was used as benchmark all functions ftben4 input p-class logic functions set [4]. Thit is
composed by 3982 Boolean functions. Also, it wasdus4 random logic functions with six input variedl
called Random6. Apart from that, three functionseaghosen for analysis. The XOR 4 was chosen bedhiss
an extremely used in several circuits such as adaied multipliers. Functions F5 and F13 [5, 6], evehosen
because they contains a large number of variabtesriparing to the 4 input p-class logic functices.

Table 1 presents the results obtained in termargfime. The column "Without signature" shows theutts
when Soptimizer tool uses the old version algoritboncompare functions equivalence. This algoritlunsists
in traversing the graph and obtaining all cubes tloapose the function. In the sequence, each chtzned
from the graph is compared to the ones from thatimxpression. The column "With signature” shows th
runtime when the proposed method is used. Thetewese executed on a computer with an Intel Pembuial

Core T2370 1.73GHz, 2GB of memory and Windows Sédiémate 64bit.

4 XXVII SIM - South Symposium on Microelectronics
Tab.1 — Total run time in ms tool Soptimizer witidawithout the signature method.
Benchmark | Number functions | Number variable | Without signature | With signature | Reduction
p-class 3.982 4 2193 ms 1599 ms 27,1%
Random6 54 6 189 ms 156 ms 17,5%
XOR 4 1 4 57 ms 47 ms 17,6%
F5 1 8 78 ms 100 ms -28,3%
F13 1 10 546 ms 320 ms 41,4%

As can be seen in the results of Table 1, for #rechmarks p-class, Random6, XOR 4 and F13, thé tota
runtime of the Soptimizer tool is smaller when gsthe proposed algorithm. However, for the benchnfér,
the obtained runtime was worst when using the pegoalgorithm. The main reason for that is that the
benchmark F5 contains large cubes, with few vagmbln this situation the proposed algorithm presen
disadvantage if comparing to the old strategy udagéhe Soptimizer tool. All the process to genertite
signatures and compare them when necessary is tineeeconsuming than just directly compare products
stored in vector structures. Our method is ableldbiver better results when there are several cubdse
checked in a SOP form.

4. Conclusions and Future Works

This paper presented a method to generate logictifuns signatures which can efficiently represent
Boolean functions. At a first moment, the signatomethod was integrated into the Soptimizer toolatidate
the optimization process of transistor networks.

The method was validated using several Booleantiume with different number of input variables.

The results demonstrated that the algorithm cannmie the total runtime when incorporated in a CAD
tool. In the case of study, it was possible to e@ohian average gain of 27.1% in runtime.

As future work, more tests will be performed coesidg different benchmarks. Also, it is intended to
incorporate the proposed method into other Boowaiuation algorithms developed by the group, dsfigc
in those related to technology mapping.

5. Acknowledgment

Research partially funded by CNPq and FAPERGS Baazfunding agencies under grant 11/2053-9
(Pronem).

6. References

[1] Da Rosa Junior, L. S. Automatic Generation &wluation of Transistor Networks in Different liog
Styles. PhD Thesis PGMicro/UFRGS, Porto Alegre zBr§2008), 147 p.

[2] Callegaro, V. ; Marques, F. S. ; Klock, C. EDa Rosa Junior, L. S. ; RIBAS, R. P. ; REIS, A. I
SwitchCraft: a framework for transistor network iges In: 23rd Symposium on Integrated Circuits and
System Design, 2010, S&do Paulo. Proceedings d23h Symposium on Integrated Circuits and System
Design. New York : ACM, 2010. p. 49-53.

[3] Possani, V. N. ; Timm, E. F. ; Agostini, L. YDa Rosa Junior, L. S. . Transistor networks desigjng a
graph-based approach. In: 10th Microelectronicsl&its Forum, 2010, Sdo Paulo. 10th Microelectronics
Students Forum, 2010.

[4] Ledur, M. ; Marranghello F. ; Da Rosa Junior, & ; Reis, A. I. ; Ribas, R. P. . Set of DigiGells
According to Logic Equivalences. In: VII Studentr&im on Microelectronics, 2007, Rio de Janeiro. VII
Student Forum on Microelectronics CDROM. Porto Aé&gSBC, 2007.

[5] J. Zhu et al. On the Optimization of MOS Cinsui IEEE Transactions on Circuits and Systems:
Fundamental Theory and Applications. (1993), 4224

[6] D. Kagaris et al. A Methodology for Transistifficient Supergate Design. IEEE Transactions OmyVe
Large Scale Integration (VLSI) Systems. (2007),-482.

