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Abstract

This paper presents a new algorithm focusing irhhigiality fast motion estimation for high definitio
video coding and a hardware design for the rand@arsh step. This algorithm provides more efficietwy
avoid local minima falls in fast motion estimatidoe to random search exploration. The random sgate
doesn’'t have data dependences to the hardware mgsiation and allow the maximum parallelization to
achieve high performance. The developed algorithoalled Iterative Random Sear@iRS). It evaluates the
central region of the search area, and also chopsssdomly, many other candidate blocks in the clearea.
This approach gives to the algorithm the possipiid avoid local minima falls, increasing the qialiesults,
especially for high definition videos. The evalaatiresults shows that the algorithm gets the bejteality
compared to other fast algorithms and the proposechitecture for the random step can process high
definition videos (HD 1080p) in real time (at 3@rnes per second).

1. Introduction

The number of electronics devices that handles higih definition videos increase each year. Most of
these devices demand for solutions that aim to Ish@bware, low power and high quality. However th
amount of data to represent a high definition videibhout compression is very high, exceeding the
transmission, processing and storage capacityesktdevices, especially portable devices.

The video coding basically tries to identify amanove the redundant information presented in thaadli
video. The redundancy contained between neighlaonds (called temporal redundancy) is explored by th
motion estimation (ME) process.

There are many fast algorithms to exploit the imfation redundancy to reduce the computational
complexity. However, fast algorithms are vulnerabdelocal minima falls with the increase of the edd
resolution. This characteristic generates signifidasses in the visual quality could be achiewvedamparison
with Full Search algorithm (FS) [1]. Because oftthia necessary the research and development of new
algorithms to approach the results obtained with FS

The high definition videos require efficient codisglutions, mainly for real time applications (3@rfies
per second). A current personal computer can codedacode a HD 1080p (Full High Definition) video i
software in real time. However, the digital TV $ep-box, for example, does not have a last gereraeneral
purpose processor to accomplish this task witm#eessary performance.

Fast algorithms have not easy hardware implementasome characteristics as data dependenciesoand n
regular memory access can be very complicated &b wih. In other hand, FS algorithm requires lofs
hardware resources to achieve high performancethig context, a fast algorithm, that can be easily
implemented in hardware, is very important for igake ME in high definition videos.

This paper presents a new algorithm for fast mogistimation targeting high quality when processiigh
definition videos and a hardware design for thedomm search step of the IRS algorithm. This algorith
provides an efficient way to avoid local minimaldain the fast ME for high definition videos, due the
random search exploration. The IRS was appliecdenoHD 1080p video sequences and the test resutg sh
that gets better quality compared to other fastrétlgms.

This paper is organized as follow: the motion eation is explained in section 2. In section 3 isganted
the RS ant the IRS algorithm. In section 4 the psgparchitecture is explained. The comparisons oittler
architectures from literature are shown in sectiom section 6 the conclusion and future workspaesented.

2. Motion Estimation

Motion Estimation (ME) represents 80% of the ta@nputational complexity of current video coderg [1
However, ME is responsible for most of the gairlsieed in compression process.

A digital video consists in a sequence of pictuffieames), are needed between 24 and 30 frames per
second [2] to generate a moviment sensation. Haaofefare divided into blocks, each block are forimgd set
of pixels. The pixels are the less information efdeo, represents a brightness or a color intgnsit
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Neighbors pictures usually are similar becauserditee sampling nearly 30 frames per second, ancehigh
when used special cameras, for example the trasiemisf slow motion replays in the last soccer @oup and
the next worldcup in Brazil, able to save thousaput$ures per second. This similarity between frauige
defined temporal redundancy.

The ME is a stage responsible to reduce (or elita)rthe temporal redundancy. For this process, BESu
a search window (or search area) for compare blfmoka current frame to a reference frame (befoaené or
after frame). To find the smallest difference oe thetter similarity (best matching) between blocks,
subtraction is performed between current block@rdpared block.

There are several similarity metrics which can beduin this search process. In this paper, theriaitised
to compare the similarity is the Sum of Absolutéf@ences (SAD) [1]. For the block with highest Barity
(lowest value of SAD) a motion vector is generaieddentify this block. So, the quality and the ttoeach
motion vector are directly connected to the usedaiferithm.

High definition videos have very homogeneous regiammd in consequence have more blocks with idéntica
values. The best blocks of these regions can bsidined local minims while the best block of thiesalarch
window can be considered global minima. The ina@édasvideo resolution requires a proportional iase in
the search, because it, often does not find theagiminimum in the center, preventing fast alganigithat start
your search in the center, find the global minimum.

The algorithms are divided in two classes: optimramd sub-optimum (fast) algorithms. The costs o$¢he
algorithms is measured by the amount of candidiekb compared (CBC) and the quality is measurethby
PSNR (Peak Signal-to-Noise Ratio) [3] in this work.

The Full Search Algorithm is the only witch alwdirsds the global minima (the best matching) becatise
evaluates all candidate blocks in a search winddowever, its computational cost is extremely highe sub-
optimum algorithms use some heuristics to speethesearch. These heuristics try to get good gquadgults
with low complexity, but are susceptible to locahima.

3. The RS and IRS algorithm

The random search step of the IRS algorithm divitiessearch area into four regions to randomize the
initial search locations. This is done to assubetter distribution of the selected blocks. Thedman selection
as a strategy to avoid local minima falls and abtmins in quality when coupled with others seatrhtegies
when high definition video compression is performstile preserving a low computational complexity.

The Iterative Random Search (IRS) algorithm usesndom step and also applying an evaluation process
around the central region of the search area toagtee good results when the video has little margnpwhere
the best candidates are near to the search aréer.cAdditionally, the IRS algorithm also explorasfinal
iterative refinement in best result for each quatrabtained in the random search.

The random stage can generate different resultgerfifeless, an analysis of the average deviationweth
that this variation is insignificant, so this wilbt be considered in this paper.

The efficiency of random algorithms is directlylidnced by the number of blocks (N value) and the s
of the search area. As higher is the N value, high¢he probability to find the optimal result. Wever, the
impacts in computational cost must be evaluatednwKevalue is modified. A larger search area usually
produces better PSNR results. It happens becauseegions can be explored and more candidate bloaks
be considered. However, the increase in the seaBzhalso causes an increase in the computatiosilsince
more blocks must be compared.

The IRS algorithm was developed in C and it waduatad though software simulations with ten HD
1080p video sequences [4]. These simulations wene avith several combinations of N values andcear
area size to IRS algorithm and was possible to firedbest values for N and for search size to 15%6x96
respectively.

The results presented in Tab. 1 represent the geevhithe 10 test video sequences to PSNR and CCBs
results for IRS, Full Search (FS) [1], Uneven Midéxagon (UMH) [5], Diamond Search (DS) [1], Hexago
Search (HS) [6], Three Step Search (TSS) [7], and Btep Search (FSS) [8].

Tab.1 — Comparative results of PSNR

Algorithm PSNR (dB) CBC x 10
FS 35.90 15,040.51
IRS 34.45 91.82
UMH 34.42 311.96
DS 33.02 48.07
HEX 32.79 32.52
FSS 32.40 58.03
TSS 30.94 43.51
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The PSNR difference between IRS and FS is only dBL5n other hand, the number of CCBs is decreased
in more than 169 times. The IRS algorithm obtaitrexlbetter PSNR result among all fast algorithnedyared,
showing the efficiency of random selection withemiral evaluation and also has no data dependeacieng
its five iterative processes allowing greater galiagin and improved performance in hardware.

4. Proposed Hardware Architecture

The proposed architecture to random search stéipeofRS algorithm uses block size 16x16 and a pixel
sub-sampling rate of 4:1. Fig. 1 presents this itgcture and its components. The reference memdachw
contains the search area reduced to 32x32 bytemubeche sub-sampling. A local memory bank, which
contains a 8x8 bytes memory for each N random daneliblock (represented by LM in the Fig. 1). Aupof
Processing Units (PU) (contains N PUs, one for eacidom candidate block). The COMP is a comparator
responsible to find the lowest SAD between the itexative steps, generating the final Motion Vector

Random generators is implemented in hardware usibgear Feedback Shift Register (LFSR) [9] with a
huge number of bits (about 32) and storing the $ggsificant bits of the random values generatedtbyhe
first five bits and the next five bits inform theemory address for x and y position respectivelgdoh random
candidate block.

N
LM » PU » C Motion
LM > PpU 0 Vector
>N M >
Reference R LM > PU =
Memory 15 LM > PU >
Random Random Unit
Generator

Fig. 1 — RS Architecture.

In the first cycle the reference memory is emptyjtdakes one cycle per line to fill up the memarigh
data from an off-chip memory, which contains thiemence area. In parallel with this operation, therent
block memory is filled with data from the origin@ame (with no compression) and the random uniegges
and stores all random positions in its registers.

After the first line of reference memory is fillédstarts to be read line by line and if the lirmntins the
random position the appropriate local memory (LMjilied with a part of this line. This processémady when
the reference memory is completely read and intfument all local memories will be filled. The nexép is to
read every LM line by line and process this datdhéPUs, calculating the SAD. After the SADs amecpssed,
the comparator finds the best position among thdamized positions.

5. Comparative Results

Tab. 2 presents the comparisons with related wpthkdished in the literature and using the pararseter
number of Pus, PU Size, Memory Size, Cycles peciBind PSNR. The work [10] proposes an architecture
Multi Point Diamond Search (MPDS) uses the samelb&ize and pixel sub-sampling level than that used
this work. The work [11] proposes an architectwethe DS algorithm and generates samples foridnaeit
motion estimation and it also has a motion comp@msdor luminance samples integrated. That worksuhe
same block size than used in this work.

Tab.2 — Comparisons among architectures

Number of PUs | PU Size | Memory Size | Cycles per Block
This Work 16 8 1.024 120
Sanchez [10] 45 16 12.000 560
Liang [11] 9 16 2.040 184

The proposed random architecture uses about 12 tess hardware compared to [10] as shown in Tab. 2
That work use more hardware because the MPDS Higotises five DS instances but obtain a betterovide

quality.

The memory size of this architecture is larger tf], however this work only needs to fill the eeénce
memory once while that work has data dependenciesdch iteration of DS algorithm and needs totffi#

memory at each iteration.
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This work does not have frequency results, siniedicthitecture was not mapped to a FPGA or a atand
cells technology. However, it is possible to eviaduhie number of cycles necessary to process qu lxtock.
This works needs less cycles than that used by fieldause the random unit generates the randomanumb
parallel when the memory is being filled, so thispsdoes not require additional time. As the wdrk][needs
184 cycles to process one block and is capabledceps HD 1080p videos in real time in the worsecahis
architecture should achieve a processing rate taplad same type of videos in real time. As thekwan] is
about five times slower than [11], this work shoalgo be five times faster than [10].

6. Conclusions and Future Works

This work presented a new algorithm for ME focused high definition videos, called IRS, and also
proposes a hardware architecture to implement @dhelam step of this algorithm. The presented aligarit
introduces randomness to motion estimation asategly to avoid local minima, achieving better vidgmlity.
Another advantage is the inexistence of data dep®mieés among the random blocks, allowing greater
parallelism and improving the performance in thedhere.

A hardware architecture was proposed to performréimelom step of the IRS algorithm. Analyzing this
architecture, it is possible to conclude that ialide to process HD 1080p videos in real time (afr@mes per
second).

The comparative results show that the proposekitaoture has low hardware resources utilizatiod an
can generate low power consumption because nema fidquency to generate all vectors of a high Icesm
frame.
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