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Abstract 
This paper addresses the exploration of different heuristic-based algorithms for a better manipulation of 

coefficients in twiddle factors of Fast Fourier Transform (FFT). Due to the characteristics of the FFT 
algorithms, which involve multiplications of input data with appropriate coefficients, the best ordering of 
these operations can contribute for the reduction of the switching activity, what leads to the minimization of 
power consumption in the FFTs. The heuristic-based algorithm named Bellmore and Nemhauser and a new 
proposed one named Anedma are used to get as near as possible to the optimal solution for the ordering of 
coefficients in FFTs with larger number of points. Since some low-power techniques for global 
communication in CMOS VLSI using data encoding methods are used for the decrease of power consumed 
for transmitting information over buses by reducing the switching activity, we have used Gray encoding 
technique in the coefficients. As will be shown, the appropriate ordering of coefficients, based on the 
guidance given by the Anedma heuristic algorithm, can contribute for the reduction of switching activity of 
the encoded twiddle factors. 

1. Introduction 
 
Fast Fourier Transform (FFT) is the largely implementation of the Discrete Fourier Transform (DFT), 

because this algorithm needs less computation due its recursive operator named butterfly. This operator 
performs the calculation of complex terms, which involves multiplication of input data by appropriate 
coefficients [1]. 

Coefficient ordering is used in [2] as a technique for low power, where all coefficients are ordered in a 
Fully-Sequential circuit so as to minimize the transitions in the multiplier input and data bus. Thus, the 
problem is related to finding a better ordering for each coefficient by calculating the minimum Hamming 
distance between the coefficients. If the number of coefficients is reduced, the cost function can be calculated 
for all the combinations over the coefficients, since the total number of permutations is still reasonable.  
However, for a higher number of coefficients this exhaustive algorithm is less attractive due to the time 
necessary to process the large number of combinations. In this case, heuristic algorithms should be used to get 
as near as possible to the optimal solution. In this paper, we explore the use of different heuristic-based 
algorithms in order to search the best ordering of the coefficients for the power reduction of sequential FFT 
architectures. Two heuristic algorithms are used for this purpose, where one of them is named Bellmore and 
Nemhauser [3] and the other one is a new proposed heuristic named Anedma [4], which were implemented in 
order to get as near as possible to the optimal solution for the ordering of larger FFT instances. The main 
results show that based on the guidance given by the Anedma heuristic algorithm, the switching activity of 
the twiddle factors can be reduced significantly.  

Since the data encoding method has been used for the decrease of power consumed over buses, by 
reducing the switching activity, we have used Gray encoding technique in order to verify the impact on 
reducing the switching activity of the coefficients. The results show that depending on the heuristic-based 
algorithm used, the number of transitions in the encoded twiddle factors can be reduced considerably.  

2. FFT Structure 
The most popular among the algorithms for the FFT calculation is named common factor FFT [5]. In this 

work, the main focus is the radix-2 common factor algorithm with decimation in frequency. In this algorithm, 
the frequency samples are decimated during each stage of the FFT. The operations are realized at each pair of 
input signals. The basic structure of this algorithm is shown in Fig. 1 for a 16-point example, where the 
computational structure of the FFT is divided into stages, groups and butterflies. The amount of stages of a 
radix-2 common factor FFT is given by log2N, where N represents the number of points of the FFT.  
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Fig.  1 - Data flow for 16-point radix-2 common factor FFT with decimation in frequency 

 
In the structure presented in Fig. 1, 32 real and 32 imaginary terms are performed in the butterfly (4 

stages with 8 butterflies). The butterfly plays a central role in the FFT computation. For the common factor 
FFT algorithm with decimation in frequency, the butterfly allows the calculation of complex terms according 
to eq. (1) and (2). 
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As can be observed in the equations above, one complex addition, one complex subtraction and one 

complex multiplication are involved in the butterfly block. In the complex multiplication, the input samples 
are multiplied by fixed coefficients named twiddle factors (W) These coefficients represent values multiple of 
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, where k is the level of the butterfly at 
each stage of the FFT. 

2.1 Ordering of the Twiddle Factors 
Tab.1 shows an example of the calculation of the first column (stage) of the FFT, based on the structure 

previously presented in Fig. 1. This example considers a fully sequential structure with both normal 
(sequential with no ordering) and after using ordering of the coefficients. In this work we use Gray encoding 
technique for both i) verify the impact on reducing the switching activity in the original FIR filter 
coefficients, and  ii) verify the best ordering of the encoded coefficients when using the heuristic-based 
algorithms. 

3. Heuristic-based algorithms  
This section summarizes the main aspects of the heuristic-based algorithms used in this work.  

3.1.  Bellmore and Nemhauser Algorithm 
Tab.2 presents a random example with the symmetric cost to add each element to the sequence of 

decisions. Considering the same element values from Tab.2, we would have the following solution ([E2] [E6] 
[E1] [E3] [E4] [E5]), which would be formed by the steps shown in Fig. 2 (starting from the initial element 
E1). 

Tab. 1 – Ordering of coefficients in the FFT algorithm 
Clock cycles Normal operation Operation after ordering the coefficients 

1 xo + x8 
(x0 – x8) x W8

0 
Xo + x8 

(x0 – x8) x W8
0 

2 x1 + x9 
(x1 – x9) x W8

1 
x6 + x14 

(x6 – x14) x W8
6 

3 x2 + x10 
(x2 – x10) x W8

2 
x2 + x10 

(x2 – x10) x W8
2 

4 x3 + x11 
(x3 – x11) x W8

3 
x5 + x13 

(x5 – x13) x W8
5 

5 x4 + x12 
(x4 – x12) x W8

4 
x3 + x11 

(x3 – x11) x W8
3 

6 x5 + x13 
(x5 – x13) x W8

5 
x1 + x9 

(x1 – x9) x W8
1 

7 x6 + x14 
(x6 – x14) x W8

6 
x4 + x12 

(x4 – x12) x W8
4 

8 x7 + x15 
(x7 – x15) x W8

7 
x7 + x15 

(x7 – x15) x W8
7 
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Tab. 2 – Costs for the insertion of elements in the solution 

 

3.2. Anedma Algorithm 
By using this heuristic, the purpose is that a coefficient which has P candidates with the same Hamming 

distance to be chosen as a neighbor, make the choice of the lowest important coefficient for the others 
neighbors, thus making it possible to achieve better results. In this heuristic, P threads are started and each 
one produces an ordering resulting from the application of the algorithm using a random point as initial 
element. In Tab.3, a hypothetic example with 10 elements randomly generated representing the coefficients 
and the Hamming distance between them. The total Hamming distance with lexicographical ordering (E1,.. 
,E10) is equal to 27. The list of candidates of each element, considering E1 as the initial element is shown in 
Fig. 3. 

 
Tab. 3 – A hypothetic example with 10 coefficients 

Elements E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 
E1 0 2 1 4 9 1 1 3 8 1 
E2 2 0 5 9 7 2 3 2 2 5 
E3 1 5 0 3 8 6 8 9 2 3 
E4 4 9 3 0 2 5 1 6 7 2 
E5 9 7 8 2 0 2 5 3 2 8 
E6 1 2 6 5 2 0 3 2 4 3 
E7 1 3 8 1 5 3 0 7 6 2 
E8 3 2 9 6 3 2 7 0 1 6 
E9 8 2 2 7 2 4 6 1 0 2 

E10 1 5 3 1 8 3 2 6 2 0 

 In addition, E1 is already entered in a locked elements list named EBloq that now is EBloq = ([E1]). 
This list prevents that these elements will be selected as candidates from other factors. E1C represents the list 

Element E1 E2 E3 E4 E5 E6 
E1 0 2 1 4 9 1 
E2 2 0 5 9 7 2 
E3 1 5 0 3 8 6 
E4 4 9 3 0 2 5 
E5 9 7 8 2 0 2 
E6 1 2 6 5 2 0 

Step 1: Insert E3, since it is the best neighbor of E1. Current list: ([E1] [E3]). 
Step 2: Insert E6 because it is among the elements not yet added. Choosing the best neighbors to each end 

of the list, E6 appears as the best neighbor of E1, with a cost of 1. At the other end of the list, E4 is the best 
neighbor of E3 with a cost of 3. Then, E6 is added to the extreme left of the route. Current list: ([E6] [E1] 
[E3]).  

Step 3: Insert E2 at the left end of the list. From the elements which are not added yet, the best neighbor of 
E6 is E2 with a cost of 2, and the element with lower cost from E3 is E4 with cost 3. Current list: ([E2] [E6] 
[E1] [E3]). 

Step 4: Insert E4 in the far right of the list,  because the best neighbor of E2 is E5 at a cost of 7, and the 
element with lower cost compared to E3 is E4 with a cost of 3. Current list: ([E2] [E6] [E1] [E3] [E4]). 

Step 5: As the only remaining element is the E5, we just must see which end their inclusion has lower 
cost. If E5 is inserted at the end of E2, then the cost is equal to 7. On the other hand, if inserted as a neighbor 
of E4 then the cost is 2. Final list: ([E2] [E6] [E1] [E3] [E4] [E5]). 

The total cost of the elements of the list is given by: 
TotalCost = cost(E2,E6) + cost(E6, E1) + cost(E1, E3) + cost(E3, E4) + cost(E4, E5) + cost(E5, E2) = 16. 

Fig.  2 – Bellmore and Nemhauser steps 

E1C  = ([E3], [E6], [E7], [E10]); 
E2C   = ([E6], [E8], [E9]); 
E3C   = ([E9]);                         
E4C   = ([E7]); 
E5C   = ([E4], [E6], [E9]); 
E6C   = ([E2], [E5], [E8]); 
E7C   = ([E4]);                        
 E8C   = ([E9]); 
E9C   = ([E8]);                         
E10C  = ([E4]). 

 
(a) 

E1C   = ([E3], [E6], [E10]);                
 E2C   = ([E6]);          
 E3C   = ([E9]);                                     
 E4C   = ([E7]); 
 E5C   = ([E6]);                                     
E6C   = ([E2], [E5]);         
E7C   = ();                                   E8C   = ();                   
E9C   = ([E8]);                            E10C  = ([E4]); 

Finally, the list EBloq is given by:: 
Ebloq=([E1],[E9],[E7],[E4],[E8]) 

 
(b) 

E1C = ([E3], [E10]); 
E2C = ([E6]);                                
E3C = ([E9]); 
E4C = ([E7]);                               
 E5C = (); 
E6C = ([E2], [E5]);                      
 E7C = ();                              E8C = ();                                     
 E9C = ([E8]);                 E10C = (E4). 

Ebloq = ([E1], [E9], [E7], [E4], [E8], 
[E6]) 

 
(c) 

Fig. 3.  Steps of the Anedma algorithm 
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of elements candidate of (coefficient) E1, E2C represents the candidate list of element E2, and successively. 
Fig. 3(a) shows this procedure. The partial Ebloq list is shown in Fig. 3(b). The final Ebloq list, with the total 
Hamming of this ordering reduced to 20 is shown in Fig. 3(c). 

4. Results 
In this section, we present the results obtained with the two heuristic-based algorithms and with the 

encoding technique described in the previous sections.  We used 16 bit-width FFT architectures with 128, 
256, 512 and 1024 points. As the twiddle factors are composed by complex terms, the coefficients were 
divided into real and imaginary parts.  

 Tab.4 shows the obtained results, in terms of number of transitions, after applying Gray encoding in the 
original and ordered coefficients (after applying Bellmore and Nemhauser and Anedma algorithms). As 
should be seen, both algorithms achieved significant reduction in terms of Hamming distance,  mainly on the 
set of real coefficients with the Anedma algorithm.. It occurs because this algorithm uses a list of candidates 
that provides (when more than one coefficient with the same Hamming of the best candidate is found), the 
possibility of not making a random choice between them, but keep them in a candidate list. In case of any of 
these elements is the unique best candidate to one of the following coefficients analyzed, it can be removed 
from this list to be added as best candidate of another element. Thus, each coefficient with more than one 
candidate always will select the candidate that is the one which has the less importance to others coefficients, 
thus providing further optimization of the obtained results.  

Tab. 4 – Applying the ordering on the Gray encoded coefficients 
 
 
 
 
 

Twiddles factors 
size 

Number of transitions between the coefficients 
(Hamming distance) 

 
Original 

Coefficients 

Ordered Real Coefficients Ordered Imaginary Coefficients 

Bellmore and 
Nemhauser Anedma Bellmore and 

Nemhauser Anedma 
Real Imaginary 

Ham. Ham. Ham 
Red. 
(%) Ham 

Red. 
(%) Ham 

Red. 
(%) Ham 

Red. 
(%) 

128 508 232 206 59,4 200 60,6 142 38,7 138 40,5 
256 926 436 376 59,4 372 59,8 258 40,8 250 42,7 
512 1702 816 700 58,9 694 59,2 446 45,3 440 46,1 

1024 3138 1542 1248 60,2 1246 60,3 748 51,4 740 52,0 
AVG    59,5  60,0  44,1  45,3 

 

5. Conclusions 
In this work two heuristic-based algorithms named Anedma and Bellmore and Nemhauser were applied 

to the ordering of Gray encoded FFT twiddle factors.  The results shows that the algorithms can find a good 
cost function for the ordering of the coefficients and the Hamming distance between consecutive coefficients 
could be reduced significantly. As future work we intend to implement the FFT architectures with original 
and encoded ordered coefficients in order to observe the impact on power reduction of the FFT with the 
reduction of the number of transitions in the coefficients.  
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