
XXVII SIM - South Symposium on Microelectronics 1

Technology Mapping for QCA Devices

1Stèphano Gonçalves, 2Mayler Martins, 1Melissa Colvara, 2André Reis, 2Renato
Ribas, 1Leomar Rosa Jr., 1Felipe Marques

{smmgoncalves,mdsrcolvara,leomarjr,felipem}@inf.ufpel.edu.br,
{mgamartins,andreis,rpribas}@inf.ufrgs.br,

1 Universidade Federal de Pelotas

2 Universidade Federal do Rio Grande do Sul

Abstract
 The Quantum Cellular Automata (QCA) is an emerging computation technology with great potential

to replace the CMOS technology. In this paper we present an algorithm to generate QCA libraries with the
minimum cost. Besides, we investigate technology mapping with different QCA libraries, analyzing the impact
of each library with reference to the number of inverters and majority gates. We also show the same analysis
with some FPGA mapping methods. The FPGA experiments showed a lesser number of gates and no inverters
since the LUTs already implement them. For the library mapping, the larger library showed the better results
although poor.

1. Introduction
The complementary metal-oxide semi-conductor (CMOS) technology is reaching it's physical limits [1].

New technologies, such as Quantum Celular Automata (QCA) have been proposed as a replacement of the
CMOS technology. QCA can be used to design general-purpose computational and memory circuits and is
expected to achieve high device density, extremely low power consumption, and very high switching speed.

 QCA provides a new method of computation and information transformation. In QCA, binary
information is encoded by the configuration of electrical charges in a QCA cell. Computation is realized via the
Coulombic interaction between neighboring cells. Because of the Coulombic nature of quantum cells, current
does not flow between cells. Moreover, power dissipation in QCA circuits is ultra low compared with
conventional CMOS circuits [2][3]. The fundamental QCA logic devices are the three-input majority gate,
wire, and inverter. The QCA digital architectures are combinations of these cellular automata structures.

 Currently, we could not find any work related to automatic generation of QCA libraries (using
majority gate arrangements). Besides, there is no straightforward solution for mapping a digital circuit for this
technology. Therefore, we present an investigation about the impact of using different libraries and FPGA
methods in QCA technology mapping. The ABC tool [4] was used to perform the experiments using five FPGA
mapping algorithms and three different libraries of containing different sets of majority gate arrangements and
inverters.

 This paper is organized as follow. Section 2 reviews an algorithm that can be used to automatic
generate majority gate arrangements. The results of our experiments are discussed in section 3. Finally, the
conclusions and future works are presented in section 4.

2. Majority-Based Library
The library concept in CMOS digital circuits is well established. Most of the digital designs today use the

standard-cell flow and there are many commercial tools available to synthesize, map and place standard cells.
As the QCA is a recent concept, there are no academic or commercial tools available to generate a library using
only majority gates and inverters. In [5], was appointed a set of 13 functions of 3 variables mapped using only
majority gates and inverters. This set is also the set of functions called 3-NPN. A NPN set is a class of functions
equivalent to each other, considering the permutation of its inputs, complementation of its one or more inputs,
and/or inversion of its output. In [6], some of the functions had the number of majority gates reduced. But this
mapping exercise was done by hand, and this is a hard work to do with a P class (only functions that are
equivalent by doing permutation its inputs). The 3-P has 80 functions, and the 4-NPN has 222 functions,
making it unfeasible without computational aid.

 The Functional Composition [7] (FC) is a novel synthesis paradigm that performs bottom-up
association of Boolean functions as opposed to top-down functional decomposition. By performing bottom-up
process, FC has a better control of the implementation cost of the final function. By relying on a canonical

XXVII SIM - South Symposium on Microelectronics 2

representation of a Boolean function, FC can perform a more complete search of the solution space, yielding
better results.

 Functional composition is based on the following principles: {1} representation of logic functions as a
bonded pair of functional/structural representations; {2} it starts from a set of initial functions; {3} simpler
functions are associated to create more complex ones; {4} a partial order that enables dynamic programming is
respected; {5} a set of allowed functions is maintained to reduce execution time/memory consumption.

 In [8], was used the FC algorithm to implement a Boolean factoring. Using the literals as a partial
order set, the dynamic programming can be done associating functions associated with a optimal literal count to
create more complex functions. The idea was adapted to use majority gates.

 The exact factored form of a majority gate is:

cbcbaMAJ)((1)

 A method to compose a majority port using Boolean functions needs four operations, the same number
of operators in (1). Since the majority gate is positive unate (e.g. positive unateness can be considered as
passing the same slope (no change in the input) and negative unate is passing the opposite slope), the input
assignment cannot generate an inverted polarity output, thus the necessity of inverters. The order of inputs is
not important, since the majority function is symmetric.

 Following the principles, in {1} is used a pair {Boolean function, majority port}. The partial order set
used to define {4} is the logic depth, e.g. max no. of majority gates a signal need to travel from the input to
output. Since the objective is to minimize the area in library, it is needed the exact results, so the set in {5} is all
functions. To generate the initial functions to attend principle {2}, there are 3 steps: Generate all majority ports
with one variable assigned, and the other pins assigned in zero and one (the output function is the input
function); Generate all 2-combination of all inputs, and the other input assigned in zero or one (the output
function is a AND or OR function of the inputs, respectively); and at last, generate all 3-combination of all
inputs. This composes all functions allocated in the first depth. In principle {3}, to generate a n-th depth
function, is necessary at least one function representing the (n-1)-th depth, and the two other functions can be of
any level. All bonded-pairs are stored in memory. If a bonded-pair is generated, the function associated is
allocated in memory and its structure has less majority gates than the allocated in memory, the structural
representation is replaced, to ensure the minimal number of majority gates. Using this methodology, we are
able to build libraries containing cells with three or more inputs.

3. Experimental Results
Currently, the main goal of QCA synthesis is to achieve smallest number of majority gates and inverters

needed to implement a given digital circuit. In order to analyze how good is the synthesis achieved by the state-
of-art algorithms for technology mapping considering QCA devices, we have run a set of experiments on the
ABC tool. For these experiments, a subset of the ISCAS benchmarks were used.

First, the five FPGA mapping methods were run for each circuit. Since a majority gate relies on three
variables, each circuit was mapped considering Look-Up Tables (LUTs) of 3 inputs. The FPGA methods
available on ABC are implemented by the commands if, fpga, ffpga, imfs and lutpack. The fpga command [9]
implements an algorithm that uses improved cut computation (stores the cuts only in the mapping frontier), two
complementary heuristics (Area Flow and Exact Area) for area recovery, and lossless synthesis. The ffpga
command [10] implements an simple algorithm based in priority cuts. Priority cuts, Area Flow and Exact Area
and cut expanding, are used on the method if [11] to improve area recovery. The imsf command [12] is a SAT-
based re-synthesis package which relies on windowing, re-substitution, SAT solving, and interpolation. The
approach is based on several heterogeneous algorithms, which include structural analysis, random and
constrained simulation, and manipulation of Boolean functions using a SAT solver. The lutpack command [13]
is a re-synthesis algorithm based on co-factoring and disjoint-support decomposition and is capable of finding
the smallest network of k-LUTs (where k is the number of variables) needed to implement the function. This
method is several orders of magnitude faster than previous algorithms that relies on BDDs for functional
decomposition or on Boolean Satisfiability for FPGA architecture evaluation since it exploits the Boolean
structure of the function being mapped and uses truth-tables to represent functions.

As a second step, the library mapping method were run using three different libraries for each circuit. The
library mapping is implemented by the command map. The library mapping algorithm [14] is based on a
simplified cut-based Boolean matching, lossless synthesis and supergates. To run the experiment, we have built
three libraries. The QCALib is a very simple library composed by a 2-input AND gate, an inverter and teh
constants ZERO and ONE. The QCALib2 is an expanded library which contains the thirteen functions defined
in [5] The QCALib3 has forty primitive functions which can be implemented by a single majority gate [15].
Each gate in the libraries can be implemented by a certain number of majority gates. Each majority gate

XXVII SIM - South Symposium on Microelectronics 3

arrangement has a area cost that is proportional to the number of majority gates and inverters used into the
arrangement.

3.1 FPGA Mapping
The commands imfs and lutpack were run ten times (as suggested in the tool manual), followed by a sweep.

The sweep method [4] performs the following tasks: removes nodes without fanouts, collapses buffers and
inverters into their fanouts, propagates constants, and removes duplicated fanins. For if, fpga and ffpga
methods, the following command line were run ten times, followed by a sweep: choice; method –K 3. The
command choice converts the currently stored AIG snapshots into a FRAIG and sets it to be the current
network in order to apply technology mapping [4]. The option –K 3 restricts the number of inputs of a LUT to
three. Table 1 shows the results of the FPGA mapping. The methods imfs and lutpack obtained a smaller
number of LUTs in most of the circuit. Both methods use Boolean algorithm and functional decomposition to
decompose the circuit on 3-input LUTs. On the other hand, they are not so good on circuits that have internal
nodes with large fanout.

Table 1 – Number of LUTs for each FPGA method
Number of LUTs

Benchmarks if fpga ffpga imfs lutpack
C17 4 4 4 6 4

decod 24 24 24 18 18
C499 118 115 134 110 122

9symml 111 110 122 26 40
C1355 116 116 136 354 122
C1908 145 144 151 266 179
C3540 532 515 612 537 388
C6288 735 736 749 2334 960
alu2 206 209 228 58 59
vda 354 374 527 123 123
ttt2 76 76 106 45 42
frg1 52 51 71 3 3
mux 23 23 46 6 6
i2 142 143 201 35 35
k2 787 720 1125 223 223

uneg 48 49 48 32 32
apex6 360 359 414 220 208

cht 82 82 91 36 36
pcler8 38 36 38 24 24

Table 2 – Number of inverters and majority gates for three QCA libraries
Inverters Majority Gates

Benchmarks QCALib QCALib2 QCALib3 QCALib QCALib2 QCALib3
C17 6 4 0 36 30 23
decod 4 4 4 102 102 102
C499 390 48 131 2331 1089 1589
9symml 146 50 12 1014 744 606
C1355 388 47 125 2325 1032 1586
C1908 296 60 105 1992 1125 1425
C3540 655 342 157 4742 3759 3212
C6288 1833 241 644 11220 4575 8089
alu2 252 92 60 1779 1311 1185
vda 155 142 19 1959 1956 1536
ttt2 106 30 28 726 513 515
frg1 86 46 23 519 408 34
pcler8 56 35 8 357 294 218
mux 34 14 4 240 180 15
i2 217 204 1 1296 1248 639
k2 338 287 42 4386 4191 3374
unreg 116 18 19 639 390 348
apex6 486 330 72 3258 2766 2024
cht 122 4 6 810 456 462

XXVII SIM - South Symposium on Microelectronics 4

3.2 Library Mapping
The command map were also run ten times for each circuit. Table 2 shows a comparison of the mapped

circuits, considering three different libraries. The library mapping presents a great number of inverters. It is not
good for QCA designs since the inverter area cost is almost two times the majority gate area cost. The QCALib
presented the larger number of inverters and majority gates. This is expected since it is a very simple library. In
most cases the QCALib3 showed a smaller number of inverters in comparison with QCALib2. This can be
explained by the fact that the QCALib3 has many cells with inverters in the primary inputs (PIs) of the cell
while QCALib2 has only two cells with some of the PIs negated. In two thirds of the benchmarks, the
QCALib3 showed a greater reduction of majority gates, which is expected since it is a library with a greater
variety of cells.

4. Conclusions and Future Work
This work investigated the differences of using three QCA libraries on ABC library mapping as well as

five FPGA mapping methods. A group of benchmarks were run for each method and library, and results
regarding number of inverters and majority gates were obtained. The number of gates (LUTs) resulted from
FPGA mapping is significantly smaller than the number of majority gates plus inverters obtained through
library mapping. However, these numbers are not comparable since the FPGA mapping results in a set of LUTs
that implements a set of functions. In order to achieve comparable numbers, the method presented in section 2
could be used to generate minimal majority gate arrangements to implement each of the functions expressed in
the LUTs. Furthermore, this method can also be used to build larger QCA libraries. In general, just like CMOS
library mapping, the use of a library with more cells results in area saving.

 As future works, we intend to extend the experiments with other libraries and compute the cost of the
gates resulted from FPGA methods. Based on these analysis we could be able to propose a new method for
QCA mapping. Due to computational complexity, a method to perform QCA mapping should use Boolean
techniques and functional decomposition present in FPGA methods and a rich cell library.

5. References
[1] International Technology Roadmap for Semiconductors (ITRS). [Online]. Available: http://www.itrs.net
[2] P. D. Tougaw and C. S. Lent, “Logical devices implemented using quantum cellular automata,” J. Appl. Phys., vol.

75, no. 3, pp. 1818–1825, Feb. 1994.
[3] Lent, C.; Tougaw,P. “A device architecture for computing with quantum dots,” Proc. IEEE, vol. 85, no. 4, pp. 541–

557, Apr. 1997.
[4] Mishchenko, A.; Chatterjee, S.; Brayton, R.; Wang, X.; Kam, T. “Technology Mapping with Boolean Matching,

Supergates and Choices”. ERL Technical Report, [S.l.], 2005. http://www.eecs.berkeley.edu/ alanmi/abc/abc.htm.
[5] Rumi Zhang; Walus, K.; Wei Wang; Jullien, G.A.; , "A method of majority logic reduction for quantum cellular

automata," Nanotechnology, IEEE Transactions on , vol.3, no.4, pp. 443- 450, Dec. 2004
[6] Momenzadeh, M.; Jing Huang; Tahoori, M.B.; Lombardi, F.; , "Characterization, test, and logic synthesis of and-or-

inverter (AOI) gate design for QCA implementation," Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on , vol.24, no.12, pp. 1881- 1893, Dec. 2005

[7] M.G.A.Martins, R.P. Ribas and A.I.Reis. Functional Composition: A New Paradigm to Perform Logic Synthesis.
Accepted in ISQED 2011.

[8] M.G.A.Martins, L.S.Rosa Jr, A.B. Rasmussen, R.P.Ribas, A.I. Reis. "Boolean factoring with multi-objective goals,"
ICCD 2010, pp.229-234.

[9] Mishchenko, A.; Chatterjee, S.; Brayton, R. “Improvements to Technology Mapping for LUT-based FPGAs”. In:
IEEE TCAD, 2007. Proceedings. . .[S.l.: s.n.], 2007. p.41–49

[10] Cho, S.; Chatterjee, S.; Mishchenko, A.; Brayton, R. “Efficient FPGA mapping using priority cuts”. In: FPGA 07,
2007. Proceedings. . . [S.l.: s.n.], 2007.

[11] Mishchenko, A.; Cho, S.; Chatterjee, S.; Brayton, R. “Combinational and sequential mapping with priority cuts”. In:
ICCAD, 2007. Proceedings. . . [S.l.: s.n.], 2007. p.354–361if

[12] Mishchenko, A.; Brayton, R.; Jiang, J. H.; JANG, S. “SAT-based logic optimization and resynthesis”. In: IWLS ’07,
2007. Proceedings. . .[S.l.: s.n.], 2007. p.358–364.

[13] Mishchenko, A.; Chatterjee, S.; Brayton, R. “Fast Boolean Matching for LUT Structures”. 2007
[14] Chatterjee, S.; Mishchenko, A.; Brayton, R.; Wang, X.; Kam, T. “Reducing Structural Bias in Technology

Mapping”. In: PROC. IWLS 05, 2005. Proceedings. . . [S.l.: s.n.], 2005. p.519–526.
[15] Kong, K.; Lu, R.; Shang, Y. “An Optimized Majority Logic Synthesis Methodology for Quantum-Dot Cellular

Automata”. IEEE TRANSACTIONS ON NANOTECHNOLOGY, [S.l.], v.9, n.2, p.170–183, 2010.

