
Universidade Federal do Rio Grande do Sul
Instituto de Informática
Departamento de Informática Teórica

CMP155 – Algoritmos e complexidade
2012/1

Prof. Marcus Ritt

Lista de exerćıcios 1

Questão 1 (Notação assintótica)
Resolve os exerćıcios 2.5 (classificação de funções) e 2.6 (somas parciais) do livro de Kleinberg e Tardos.

Exerćıcio 1 (KT 2.5)
Assume you have functions f and g such that f(n) is O(g(n)). For each of the following statements,
decide whether you think it is true of false and give a proof or counterexample.

a) log2f(n) is O(log2 g(n)).

b) 2f(n) is O(2g(n)).

c) f(n)2 is O(g(n)2).

Exerćıcio 2 (KT 2.6)
Consider the following basic problem. You’re given an array A consisting of n integers A[1], A[2], . . . , A[n].
You’d like to output a two-dimensional n-by-n array b in which B[i, j] (for i < j) contains the sum of
array entries A[i] through A[j] – that is, the sum A[i] +A[i + 1] + · · · + A[j]. (The value of array entry
B[i, j] is left unspecified whenever i ≥ j, so it doesn’t matter what is output for these values.)
Here’s a simple algorithm to solve this problem.

for i = 1, 2, . . . , n do
for j = i + 1, i + 2, . . . , n do

Add up array entries A[i] to A[j]
Store the results in B[i, j]

end for
end for

a) For some function f that you should choose, give a bound of the form O(f(n)) on the running time
of this algorithm on an input of size n (i.e.,a bound on the number of operations performed by the
algorithm).

b) For this same function f , show that the running time of the algorithm on an input of size n is also
Ω(f(n)). (This shows an asymptotically tight bound of Θ(f(n)) on the running time.)

c) Although the algorithm you analyzed is parts (a) and (b) is the most natural way to solve the
problem – after all, it just iterates through the relevant entries of the array B, filling in a value
for each – it contains some highly unnecessary sources of inefficiency. Give a different algorithm to
solve this problem, with an asymptotically better running time. In other words, you should design
an algorithm with running time O(g(n)), where limn→∞ g(n)/f(n) = 0.

Questão 2 (Análise de algoritmos)
Resolve os exerćıcios 1.1, 1.2 (afirmações sobre emparelhamentos estáveis), e 1.3 (competição entre
empresas) do livro de Kleinberg e Tardos.

Exerćıcio 3 (KT 1.1)
Decide whether you think the following statement is true or false. If it is true, give a short explanation.
If it is false, give a counterexample.

True or false? In every instance of the Stable Marriage Problem, there is a stable matching
containing a pair (m,w) such that m is ranked first on the preference list of w and w is
ranked first on the preference list of m.

Exerćıcio 4 (KT 1.2)
Decide whether you think the following statement is true or false. If it is true, give a short explanation.
If it is false, give a counterexample.

v2380 1 Licença Creative Commons
(Atribuição-Uso Não-Comercial-Não a obras derivadas 2.5 Brasil)

http://creativecommons.org/licenses/by-nc-nd/2.5/br


Universidade Federal do Rio Grande do Sul
Instituto de Informática
Departamento de Informática Teórica

CMP155 – Algoritmos e complexidade
2012/1

Prof. Marcus Ritt

True or false? Consider an instance of the Stable Marriage Problem in which there exists
a man m and a woman w such that m is ranked first on the preference list of w and w is
ranked first on the preference list of m. Then in every stable matching S for this instance,
the pair (m,w) belongs S.

Exerćıcio 5 (KT 1.3)
There are many other settings in which we can ask questions related to some type of “stability” principle.
Here’s one, involving competition between two enterprises.
Suppose we have two television networks, whom we’ll call A and B. There are n prime-time program-
ming slots, and each network has n TV shows. Each network wants to devise a schedule – an assignment
of each show to a distinct slow – so as to attract as much market share as possible.
Here is the way we determine how well two networks perform relative to each other, given their schedules.
Each show has a fixed rating, which is based on the number of people who watched it last year; we’ll
assume that no two shows have exactly the same rating. A network wins a given time slot if the show
that it schedules for the time slow has a larger rating than the show the other network schedules for
that time slot. The goal of each network is to win as many time slots as possible.
Suppose in the opening week of the fall season, Network A reveals a schedule S and Network B reveals
a schedule T . On the basis of this pair of schedules, each network wins certain time slots, according to
the rule above. We’ll say that the pair of schedules (S, T ) is stable if neither network can unilaterally
change its own schedule and win more time slots. That is, there is no schedule S′ such that network
A wins more slots with the pair (S′, T ) than it did with the pair (S, T ); and symmetrically, there is no
schedule T ′ such that Network B wins more slots with the pair (S, T ′) than it did with the pair (S, T ).
The analogue of Gale and Shapley’s question for this kind of stability is the following: For every set of
TV shows and ratings, is there always a stable pair of schedules? Resolve this question by doing one of
the following things:

a) give an algorithm that, for any set of TV shows and associated ratings, produces a stable pair of
schedules; or

b) give an example of a set of TV shows and associated ratings for which there is no stable pair of
schedules.

Questão 3 (Análise de algoritmos)
Resolve os exerćıcios 2.7 (folk songs) e 2.8 (stress test of jars) do livro de Kleinberg e Tardos.

Exerćıcio 6 (KT 2.7)
There’s a class of folk songs and holiday songs in which each verse consists of the previous verse, with
one extra line added on. “The Twelve Days of Christmas” has this property; for example, when you
get to the fifth verse, you sing about the five golden rings and then, reprising the lines from the fourth
verse, also cover the four calling birds, the three French hens, the two turtle doves, and of course the
partridge in the pear tree. The Aramaic song “Had gadya” from the Passover Haggadah works like this
as well, as do many other songs.
These songs tend to last a long time, despite having relatively short scripts. In particular, you can
convey the words plus instructions for on of these songs by specifying just the new line that is added
in each verse, without having to write out all the previous lines each time. (So the phrase “five golden
rings” only has to be written once, even though it will appear in verses five and onward.)
There’s something asymptotic that can be analyzed here. Suppose, for concreteness, that each line has
a length that is bounded by a constant c, and suppose that the song, when sung out load, runs for n
words total. Show how to encode such a song using a script that has length f(n), for a function f(n)
that grows as slowly as possible.

Exerćıcio 7 (KT 2.8)
You’re doing some stress-testing on various models of glass jars to determine the height from which
they can be dropped and still not break. The setup for this experiment, on a particular type of jar, is
as follows. You have a ladder with n rungs, and you want to find the highest rung from which you can
drop a copy of the jar and not have it break. We call this the highest safe rung.

v2380 2 Licença Creative Commons
(Atribuição-Uso Não-Comercial-Não a obras derivadas 2.5 Brasil)

http://creativecommons.org/licenses/by-nc-nd/2.5/br


Universidade Federal do Rio Grande do Sul
Instituto de Informática
Departamento de Informática Teórica

CMP155 – Algoritmos e complexidade
2012/1

Prof. Marcus Ritt

It might be natural to try binary search: drop a jar from the middle rung, see if it breaks, and the
recursively try from rung n/4 or 3n/4 depending on the outcome. But this has the drawback that you
could break a lot of jars in finding the answer.
If your primary goal were to conserve jars, on the other hand, you could try the following strategy.
Start by dropping a jar from the first rung, then the second rung, and so forth, climbing one higher
each time until the jar breaks. In this way, you only need a single jar – at the moment it breaks, you
have the correct answer – but you may have to drop it n times (rather than log n as in the binary search
solution).
So here is the trade-off; it seems you can perform fewer drops if you’re willing to break more jars.
To understand better how this trade-off works at a quantitative level, let’s consider how to run this
experiment given a fixed “budget” of k ≥ 1 jars. In other words, you have to determine the correct
answer – the highest safe rung – and can use at most k jars in doing so.

a) Suppose you are given a budget of k = 2 jars. Describe a strategy for finding the highest safe rung
that requires you to drop a jar at most f(n) times, for some function f(n) that grows slower than
linearly. (In other words, it should be the case that limn→∞ f(n)/n = 0.)

b) Now suppose you have a budget of k > 2 jars, for some given k. Describe a strategy for finding the
highest safe rung using at most k jars. If fk(n) denotes the number of times you need to drop a
jar according to your strategy, then the functions f1, f2, f3, . . . should have the property that each
grows asymptotically slower than the previous one: limn→∞ fk(n)/fk−1(n) = 0 for each k.

Data de entrega: 12/03/2011.

Regras para listas de exerćıcios

1. Os exerćıcios podem ser resolvidos em colaboração com outros, mas a entrega é individual infor-
mando os eventuais colaboradores.

2. A entrega é eletrônica, não escrito a mão, em formato PDF.

3. Para receber pontos as respostas devem ser justificadas (i.e. provadas).

4. Somente entregam respostas que vocês sabem explicar pessoalmente.

v2380 3 Licença Creative Commons
(Atribuição-Uso Não-Comercial-Não a obras derivadas 2.5 Brasil)

http://creativecommons.org/licenses/by-nc-nd/2.5/br

