
Landmark Generation in HTN Planning Revisited

Victor Scherer Putrich1,2, Felipe Meneguzzi3,4, André Grahl Pereira1

1Federal University of Rio Grande do Sul, Brazil
2Saarland University, Germany

3University of Aberdeen, Scotland
4Pontifical Catholic University of Rio Grande do Sul, Brazil

victor.sputrich@inf.ufrgs.br, felipe.meneguzzi@abdn.ac.uk, agpereira@inf.ufrgs.br

Abstract

In Hierarchical Task Network (HTN) planning, landmarks
are facts that must hold true, and tasks or methods that must
be included in every solution. Existing landmark generation
techniques for HTN planning rely on the Delete and Order-
ing Free (DOF) relaxation and are known to be sound but
incomplete, primarily due to the limitations introduced by
Task Insertion. This paper presents a new landmark gener-
ation method that builds on a previous AND/OR graph-based
approach, extending it to capture additional hierarchical de-
pendencies among tasks and methods. We prove that our ap-
proach is sound and dominates existing techniques, though
it remains incomplete under the DOF relaxation. Experimen-
tal results on IPC benchmarks for totally ordered problems
show that our method identifies significantly more task and
method landmarks across most domains, improving coverage
with minimal computational overhead.

1 Introduction
Planning is finding a sequence of actions that transforms an
initial state into one that satisfies the goal condition. Clas-
sical planning models the environment as a set of proposi-
tions or facts that change due to deterministic actions. Hier-
archical Task Network (HTN) extends classical planning by
organizing objectives into a hierarchical structure of tasks
and enforcing tasks to comply with predefined ordering con-
straints. High-level compound tasks decompose into simpler
subtasks through predefined methods until only low-level
(primitive) tasks remain. Primitive tasks are actions that are
applied to states to modify them. Besides defining how high-
level tasks can be decomposed, methods impose ordering
constraints among subtasks. This hierarchical structure en-
ables modeling more expressive planning problems. How-
ever, it also increases computational complexity: while clas-
sical planning is PSPACE-complete, plan existence in un-
restricted HTN planning is undecidable (Erol, Hendler, and
Nau 1994).

Early work on landmark generation in HTN planning used
an AND/OR graph representation known as the Task De-
composition Graph (TDG). The TDG models the hierarchi-
cal structure of the HTN planning problem to identify task
landmarks, referred to as mandatory tasks (Elkawkagy et al.

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2012; Bercher, Keen, and Biundo 2014). Up to that point, the
only source of information for landmark identification was
the task hierarchy, disregarding the executability of primi-
tive tasks. Höller and Bercher (2021) addressed this limita-
tion by adapting an AND/OR encoding to HTN based on
the formulation from (Keyder, Richter, and Helmert 2010).
Their approach incorporates both facts and methods as po-
tential landmarks and introduces two key relaxations. First,
it ignores delete effects and ordering constraints, a relax-
ation known as Delete- and Ordering-Free (DOF) (Höller,
Bercher, and Behnke 2020). Second, it encodes the Task In-
sertion relaxation (Geier and Bercher 2011), which allows
primitive tasks to be reached independently of the task hier-
archy. This can result in overlooking hierarchical dependen-
cies and potentially missing landmarks.

In this paper, we enhance landmark generation by modify-
ing the encoding by Höller and Bercher 2021. Our approach
has three steps. First, it generates landmarks using the previ-
ously introduced AND/OR graph. Second, we modify the
AND/OR graph to capture hierarchy dependencies previ-
ously ignored by task insertion. Finally, we use a fix-point
computation to generate more landmarks using the two pre-
vious steps as sources of landmarks. We prove the soundness
of our approach and establish that it dominates existing tech-
niques by identifying all landmarks found by earlier meth-
ods and possibly additional ones; however, our approach re-
mains incomplete under DOF relaxation.

Experiments on IPC-2023 benchmarks for total-order
problems show that our method generates more landmarks in
12 out of 22 domains. Specifically, we detect 8% more fact
landmarks, 87% more task landmarks, and 5, 094% more
method landmarks. Beyond landmark generation, the addi-
tional landmarks increase coverage across the tested bench-
marks and reduce the number of expanded nodes in most
problems.

2 Background
Classical planning. A classical planning problem is a tu-
ple P = (F,A, γ, s0,G) where F is a finite set of propo-
sitional facts, A a finite set of actions, and γ : A →
(2F , 2F , 2F) assigns to each action a its preconditions
pre(a), add effects add(a) and delete effects del(a).

A (world) state is any subset s ⊆ F . The problem starts
in the initial state s0 and aims to reach a state satisfying

the goal condition G ⊆ F . Action a is applicable in s iff
pre(a) ⊆ s; its execution yields the successor s′ = (s \
del(a)) ∪ add(a). A plan is a sequence π = ⟨a1, . . . , an⟩
such that each ai is applicable in the state produced by its
predecessor and the final state satisfies G.

HTN planning. An HTN planning problem is P =
(s0,G, tnI , F,A,C,M) 1 and extend a classical planning
with a task hierarchy: C is a set of compound tasks, they
abstractly describe a task that needs refinement; A is reused
for primitive tasks (actions). M is a set of methods m =
⟨c, tnm⟩ that refine a compound task c ∈ C into a task net-
work tnm.

A task network is a triple tn = (T,≺, α) where T is a
finite set of task identifiers, ≺⊆ T × T a strict partial order,
and α : T → A ∪ C labels each identifier with an action or
a compound task. Refining tn1 = (T1,≺1, α1) with method
m = (c, tnm) at identifier t ∈ T1, α1(t) = c (denoted
tn1

t,m−−→ tn2) removes t and inserts a (renamed) copy of
tnm, while progressing ordering constraints and label func-
tions (cf. Geier and Bercher 2011 for full details). We write
tnI →∗ tn for a sequence of such refinements. A solution
is a primitive task network tnS reachable from tnI whose
linearization can be executed from s0 to reach the goal (if
defined) and comply with ≺S .

To establish key landmark properties, we review the con-
cept of decomposition trees. For a complete formalization,
refer to Geier and Bercher (2011). Decomposition trees (DT)
serve as witnesses that the initial task network derives a
primitive task network through a series of valid decompo-
sitions.
Definition 2.1 (Decomposition tree). Let P be an HTN
planning problem. A decomposition tree for P is a quintuple
g = (T,E,≺, α, β) where
• (T,E) is a rooted tree (edges oriented towards the

leaves);
• ≺ is a strict partial order on T that extends the ordering

constraints of method’s application.
• α : T→ A ∪ C assign each node with a task name;
• β : T→M assign each inner node with the method used

for its decomposition.
g is valid iff (i) the root is α(troot) = cI with cI an (artificial)
initial task that decomposes into tnI , and (ii) for every inner
node t with β(t) = (α(t), tnm), the children of t, together
with ≺, reproduce a copy of tnm. The yield of g, denoted
yield(g), is the task network formed by its leaves and the
induced order ≺.

A task network tn is reachable from tnI iff there exists
a valid DT g with yield(g) = tn (Geier and Bercher 2011,
Prop. 1). DTs are trees, hence cycle-free, even though cycles
might occur over compound task names.

Landmarks A landmark is any component that must ap-
pear or become true in every solution to the underlying plan-
ning problem. More generally, one can also speak of disjunc-
tive landmarks (i.e., one of its elements must be achieved in

1For brevity, we omit γ from P .

any solution). Our work only considers unary landmarks, or
disjunctions containing a single element.
Definition 2.2 (Landmarks in HTN planning). (Höller and
Bercher 2021) Let P = (s0,G, tnI , F,A,C,M).

1. Task-landmark: n ∈ A ∪ C if every solution derivation
contains some identifier t with α(t) = n.

2. Method-landmark: m ∈M if every solution derivation
applies m.

3. Fact-landmark: f ∈ F if every executable linearisation
of every solution passes through a state where f holds.

Landmark membership is co-class of the plan existence
problem in the underlying planning formalism. That is
PSPACE-complete in classical and undecidable in HTN
planning (Hoffmann, Porteous, and Sebastia 2004; Höller
and Bercher 2021), hence, practical methods rely on prob-
lem relaxations.

Encoding HTN problems with AND/OR Graphs. The
AND/OR graph of Keyder, Richter, and Helmert (2010) of-
fers a complete and polynomial-time method for identifying
landmarks in delete-relaxed classical planning. Höller and
Bercher (2021) extend this approach to HTN planning by
adapting the graph structure to capture hierarchical task re-
lations. The graph encodes a relaxed planning problem using
an AND/OR graph. The edges capture dependency relations
among the components (i.e, for HTN the components are
tasks,facts and methods). In this graph, a fixed-point proce-
dure finds landmark information within each node and ex-
tracts landmarks to solve the problem.

For HTN planning, the AND/OR graph described by
Höller and Bercher (2021) works as follows: every primitive
action is an AND-node whose predecessor facts must hold
before the action is applied; every method is an AND-node
whose incoming edges are the subtasks that must all be
achieved for the method to hold. Compound tasks and facts
are OR-nodes that can be supported by any of their produc-
ers (that is, methods and primitive tasks, respectively). Ini-
tial nodes are the starting point (don’t need supporters), and
goal nodes are goal facts from G along with the tasks from
the initial task network tnI .

We adopt the same notation but call it the Bottom-up
Graph (BU), defined by Gbu, to emphasize that landmarks
propagate upward through the task hierarchy.
Definition 2.3 (Bottom-up Graph). For an HTN problem
P = (s0, tnI ,G, F,A,C,M), the BU graph is a directed
graph Gbu = (V,E) with

Vand = A ∪M, Vor = C ∪ (F \ s0),
VI = s0, VG = tnI ∪ G.

V = Vand∪ Vor∪ VI∪ VG and edges

E = {(f, a) | a ∈ A, f ∈ pre(a)}
∪ {(a, f) | a ∈ A, f ∈ add(a)}
∪ {(n,m) | m = (c, tn) ∈M, t ∈ Ttn, αtn(t) = n}
∪ {(m, c) | m = (c, tn) ∈M}.

According to Keyder, Richter, and Helmert (2010) the
original AND/OR graph can be understood as specifying a

delete-relaxed classical problem, while a justification from
VI to VG corresponds to a solution of the problem; Höller
and Bercher (2021) establish the same result for HTN plan-
ning under some additional relaxations; which will be pre-
sented at the end of this section. The appropriate notion of
justification is formalized below as an acyclic subgraph J .

Definition 2.4 (Justification Graph). A subgraph J =
(V J , EJ) of an AND/OR graph G justify the goal nodes
VG ⊆ V J if and only if the following conditions hold:

1. VG ⊆ V J

2. ∀a ∈ V J ∩ VAND : ∀(v, a) ∈ E : v ∈ V J ∧ (v, a) ∈ EJ

3. ∀o ∈ V J ∩ VOR : ∃(v, o) ∈ E : v ∈ V J ∧ (v, o) ∈ EJ .
4. J is acyclic.

In other words, VG must be part of J , AND–nodes are
justified if all its predecessors are selected, whereas an
OR–node requires at least one predecessor (except for nodes
in VI which are trivially justified). J must be acyclic to en-
sure non-circular dependencies.

Computing landmarks. A simple, but intractable, way to
find landmarks is to enumerate all justifications and then
take the intersection of these sets of nodes. A set containing
the intersection nodes yields exactly those nodes common to
all solutions (i.e., the landmarks by definition). Instead, Key-
der, Richter, and Helmert (2010) introduce a fix-point equa-
tion whose unique maximal solution computes the same set
in polynomial time via iterative set updates:

Definition 2.5 (Landmark-table update rules). For v ∈ V
let pred(v) = {u | (u, v) ∈ E}. Initially LM(v) = V for
every v /∈ VI and LM(v) = {v} for v ∈ VI . Iteratively
replace each entry according to

LM(VG) =
⋃

v∈VG

LM(v),

LM(v) = {v} ∪
⋂

u∈pred(v)

LM(u) v ∈ Vor,

LM(v) = {v} ∪
⋃

u∈pred(v)

LM(u) v ∈ Vand,

The landmark table LM initially maps each node to an
over-approximation of the landmarks reachable from it, and
this table is updated until convergence. The procedure ter-
minates after at most |V | iterations and runs in O(|V | +
|E|) (Keyder, Richter, and Helmert 2010). The landmarks
to the problem are exactly the union set of landmarks in VG .

We illustrate this with a simple HTN planning problem
Problem1 with the following components: T is a compound
task T ∈ C that appears in the initial task network T ∈ tnI ,
methods m1,m2 ∈ M decomposes T . There are two primi-
tive actions a,b ∈ A, and facts x,y ∈ F , where x ∈ pre(a),
y ∈ add(a), and y ∈ pre(b). The initial state is given by
{x} ⊆ si, and the goal is empty G = ∅, meaning the prob-
lem solution depends only on successfully decomposing T .

Figure 1 illustrates the BU graph for Problem1: circles
denote OR-nodes; squares denote AND-nodes. The landmark
set computed at the goal is LM bu(VG) = {T, x, a, y, b}. In
this example, the BU graph misses a method landmark m1,

T

m1 m2

a b

x y

LM(VG)
bu = {T, x, a, y, b}

LMbu(T) = {T, x, a, y, b}
LMbu(m1) = {x, a, y, b,m1}
LMbu(m2) = {x, a, y, b,m2}

LMbu(b) = {x, a, y, b}
LMbu(y) = {x, a, y}
LMbu(a) = {x, a}
LMbu(x) = {x}

Figure 1: BU graph for Problem1.

which is easily detectable upon human inspection: since a
is a landmark and m1 is the only method that introduces a
through decomposition, m1 must also be a landmark.

Figure 1 also illustrates the relaxations inherent to the
BU graphs. (1) The only successors of primitive tasks are
their add effects set, so the problem is Delete relaxed. (2)
For justified methods, it suffices that subtasks are reached
without considering any ordering constraints. Together (1)
and (2) characterize the Delete- Ordering Free relaxation
(DOF) (Höller, Bercher, and Behnke 2020). (3) For a jus-
tified primitive task a it suffices to have its predecessors
pred(a) fulfilled. This means primitive tasks don’t need to
be reachable from the task hierarchy; they can be included
to justify other tasks. This HTN relaxation is called Task In-
sertion (TI) (Geier and Bercher 2011).

The main properties that Höller and Bercher (2021) show
for landmark computation using BU are the following:

• Polynomial complexity. The BU graph encodes a relaxed
HTN planning problem under DOF+TI semantics, for
which plan existence can be decided in polynomial time.
As shown by Höller and Bercher (2021, Thm. 1), de-
termining whether a given HTN element is a landmark
lies in the co-class of the plan existence problem. Since
both plan existence and its complement can be decided
in polynomial time under this relaxation, landmark iden-
tification in P is also solvable in polynomial time.

• Sound Landmarks. For a DOF+TI HTN problem P , let dt
be a decomposition tree whose yield is a solution tn for
P . Then, exist a justification of VG representing dt and
tn; and since LM stores the intersection over all justi-
fications, every node it returns is guaranteed to occur in
every solution (Höller and Bercher 2021, Thm. 2).

• Incompleteness under DOF. For a DOF+TI HTN prob-
lem P , building Gbu ignores delete effects and ordering
constraints and, more subtly, admits task insertion. Con-
sequently, exist DOF-relaxed problems with landmarks
that the BU procedure never finds (Höller and Bercher
2021, Thm. 3).

3 Filling the Blanks with the Top-down
Graph

This section introduces a novel AND/OR graph structure
called the Top-down Graph (TD) to mitigate dependency re-
lations missed due to Task Insertion. The TD graph enforces
landmarks identified by the BU graph to be hierarchically
justified.

Intuition Top-down Graph. Whereas the landmarks in
the BU graph start at actions and flows upwards, the land-
marks in the TD graph start at compound tasks and flows
downwards. Each compound task propagates all its land-
marks to the methods that refine it, and methods propagate
some of their landmarks to their subtasks. The landmarks of
an action include all common landmarks of all methods that
produce it. To implement this “intersection” over methods
that produce the same action, we add an OR-node, called a
merge node. We create a merge node for each action, the pre-
decessors of the merge node are all the methods that produce
the action; and the successor of the merge node is the ac-
tion. The connections between actions and facts remains the
same. Therefore, the top-down graph represents dependen-
cies that the upward view could not capture. Since we want
to fill gaps left by the BU propagation, the landmark set al-
ready discovered by the BU procedure becomes the goal set
of the new graph.

Definition 3.1 (Top-down Graph). Let P =
(s0,G, tnI , F,A,C,M) be an HTN task and LM bu

the landmark table computed on the BU graph Gbu. Let
X = {xa | a ∈ A} be the set of merge nodes and
ρ : A → X the function that maps actions a ∈ A to merge
nodes xa ∈ X . The TD graph is Gtd = (V ′, E′) with

V ′
and = M ∪A, V ′

or = (C \ tnI) ∪ (F \ s0) ∪X,

V ′
I = s0 ∪ tnI , V ′

G = LM bu(VG),

and edges

E′ = {(c,m) | m = (c, tn) ∈M}
∪ {(m,xa) | m ∈M, t ∈ Tm, αm(t) = a; ρ(a) = xa}
∪ {(m, c′) | m ∈M, t ∈ Tm, αm(t) = c′}
∪ {(xa, a) | a ∈ A; ρ(a) = xa}
∪ {(a, f) | a ∈ A, f ∈ add(a)}
∪ {(f, a) | a ∈ A, f ∈ pre(a)}.

Landmark propagation. The landmark-table update
rules are identical to those of Definition 2.5 except that
merge nodes are discarded during goal set updates.

Definition 3.2 (Goal-set update).

LM td(V ′
G) =

⋃
v∈V ′

G

LM td(v) \X.

Figure 2 depicts a TD graph Gtd for PROBLEM1. The
node a is a landmark detected by the BU graph (Figure 1),
therefore a belongs to V ′

G . In the TD graph, m1 must appear
in the justification of a. Consequently, m1 is added to LM td

T

m1 m2

xa xb

a b

x y

LM td(V ′
G) = {T,m1, x, a, y, b}

LMtd(T) = {T}
LMtd(m1) = {T,m1}
LMtd(m2) = {T,m2}
LMtd(xa) = {T,m1, xa}
LMtd(a) = {T, x, a, xa,m1}
LMtd(y) = {T, x, y, a, xa,m1}

LMtd(xb) = {T, xb}
LMtd(b) = {T, x, y, a, xa,m1, b, xb}
LMtd(x) = {x}

Figure 2: TD graph for PROBLEM1.

as a new method landmark. Note that the merge node xb en-
sures that only the intersection of the landmarks of methods
m1 and m2 are propagated to the action node b.

The number of edges and nodes in BU and TD is the same,
except for construction related to action nodes. In TD, ac-
tion nodes have one predecessor besides its fact precondi-
tions, the merge node, and the merge node inherits all the
predecessor edges of methods of the action node. There-
fore, the TD graph has more |A| nodes and |A| edges. Since
the equations converge in polynomial time (Keyder, Richter,
and Helmert 2010), the overall computation of LM td is still
polynomial in the size of P .

We discuss top-down graph properties in three steps.
(1) We show that every valid solution to an HTN DOF
problem induces a TD justification; hence, any vertex con-
tained in all such justifications is a landmark. (2) We com-
pare the landmark set returned by LM td with the BU land-
marks LM bu. (3) We observe that LM td is still incomplete
under the DOF relaxation, paralleling the result of Höller
and Bercher (2021) for BU graphs Gbu.

First, observe that every compound task appears once in a
top-down graph, and thus in a top-down justification. Each
compound task can simultaneously justify all methods that
refine it (akin to task sharing Alford et al. 2016); admitting
task name duplicates would only create cycles without con-
tributing to the set of solutions.

Lemma 3.1. Let g be a valid decomposition tree whose
yield is a solution tn for the DOF problem P . There exists a
justification Jtd for V ′

G such that Jtd and g share exactly the
same task names, method labels and facts.

Sketch. We build the justification Jtd = (Vtd, Etd) by a
single depth–first traversal of the decomposition tree g =
(T,E,≺, α, β):

(C) Tasks. Whenever a task α(t) = A∪C is encountered for
the first time, add (or revisit) vertex α(t) ∈ Vtd.

(M) Methods. At an inner node t with β(t) = m add m and
the edge (α(t),m).

(S) Subtasks of m. For each subtask u of m:
(S1) if α(u) = c′ is compound and c′ is not justified yet add

(m, c′);

(S2) if α(u) = a ∈ A let xa be the merge node of a, insert
(m,xa), (xa, a)

Because tn is a delete-relaxed solution there is a justifica-
tion for the part of the graph representing the state transition
system (Keyder, Richter, and Helmert 2010).

Why Jtd satisfies Definition 2.4.

1. Goal inclusion. Every vertex in V ′
G = LM bu(VG) is a

landmark, hence occurs either in g (task or method) or in
the state sequence induced by its yield tn (facts). All of
those vertices are added by the procedure.

2. AND-nodes justified. Each method m has its compound
task as its single predecessor (step M). Each action a has
its merge node xa and all precondition facts f ∈ pre(a)
as predecessors since a is a task in the solution tn.

3. OR-nodes justified. A compound task c gains at most one
incoming edge (m, c) from the method chosen in g (step
S1). Merge nodes xa obtain at least one incoming edge
(m,xa) from a method that actually produces a (step
S2). Because tn is a solution, each fact f /∈ s0 is reached
by some producer action.

4. No cyclic dependencies. A justification J td won’t have
cyclic justifications for two reasons. (1) each compound
task c receives one incoming edge, except for the initial
vertices V ′

I = s0 ∪ tnI , which doesn’t require incoming
edges at all, (2) each node visited when traversing g had
all their ancestors justified by the hierarchy (including
itself).

hence Jtd is a valid justification for V ′
G .

Theorem 3.1 (Soundness). Every vertex in LM td(V ′
G) is a

landmark for the underlying planning problem.

Sketch. Lemma 3.1 maps every decomposition tree g and
solution tn to a justification; Definition 2.5 computes the
same set as the intersection of all such justifications. Hence,
every element of LM td(V ′

G) appears in every solution.

T

m2

b

z

a

x

Figure 3: Justification Jbu1 for PROBLEM1.

Not every BU justification Jbu can be mapped into a TD
justification. Figure 3 exemplifies one justification Jbu1

for
PROBLEM1, in which action a is justified solely by its fact

preconditions. In contrast, the TD graph construction con-
tains a merge node xa that connects a to the methods produc-
ing it. Since m1 is the only method that introduces a, the jus-
tification for a must include m1. Thus, m1 appears in LM td

but not in LM bu, showing that LM td(V ′
G) ⊈ LM bu(VG) in

this case.
Theorem 3.2 (DOMINANCE). LM bu(VG) ⊆ LM td(V ′

G).

Sketch. The TD graph Gtd is initialized with the landmark
set LM bu(VG). Therefore, every landmark v ∈ LM bu(VG)
is justified by construction. By soundness, all elements
of LM td(V ′

G) must appear in every DOF solution. Thus,
LM bu(VG) ⊆ LM td(V ′

G). The inclusion is strict in some
problems. For example, in PROBLEM1 (Fig. 2).

T

m1 m2 m3

a b

x y z

Figure 4: TD graph for PROBLEM2. Method m2 is a land-
mark in every DOF solution but is missed by LM td.

Dominance does not necessarily imply completeness:
Theorem 3.3 (INCOMPLETENESS). LM td(V ′

G) is incom-
plete under the DOF relaxation.

Proof. In PROBLEM2 (Fig. 4) fact x is in s0 and z in goal.
Fact z is achievable only via action b; b requires y, which
in turn is produced by action a. The only hierarchical path
to {a, b} begins with method m2; hence m2 is a landmark.
Yet the sub-graph Jtd = ({T,m1,m3, a, b, x, y, z}, EJ

td)
satisfies Definition 2.4 without containing m2, so m2 /∈
LM td(V ′

G).

The example illustrates the incompleteness of TD under
DOF relaxation. Because a single compound task can jus-
tify any of its methods, the TD graph may overlook some
landmarks.

4 Bidirectional Landmarks
The TD graph adds hierarchical dependencies omitted by
the BU graph by enforcing every landmark to be rooted in
a valid decomposition of the initial task network tnI . How-
ever, it does not replace the BU approach: each direction re-
veals information the other misses. Therefore, we combine
the two tables in an inexpensive fix-point that alternates be-
tween them until no new landmarks are found.

Figure 5 shows PROBLEM3, which extends PROBLEM1

with an additional compound task S yielding to an arbitrary
sized subgraph ∆. Computing landmarks for PROBLEM3

in BU graph Gbu and TD graph Gtd initially repro-
duce the landmarks of PROBLEM1: {x, a, z, b, T} and

Domain Fact Landmarks Task Landmarks Method Landmarks
LM bu LM td Lbid LM bu LM td Lbid LM bu LM td Lbid

Barman-BDI (20) 1,007 1,007 1,007 226 651 651 0 0 0
Blocksworld-GTOHP (30) 16,039 16,039 16,066 12,268 16,157 24,119 0 4,116 4,116
Blocksworld-HPDDL (30) 29,923 29,923 36,183 17,976 23,975 35,869 30 12,259 12,259
Depots (30) 7,764 7,764 7,764 2,621 2,844 2,844 0 0 0
Factories-simple (20) 323 323 343 303 488 508 0 20 20
Monroe-Fully-Obs. (20) 347 347 350 154 423 534 0 248 248
Monroe-Partially-Obs. (20) 315 315 320 133 380 474 0 209 209
Multiarm-Blocksworld (74) 15,728 15,728 15,739 4,401 8,253 8,277 326 346 346
Robot (20) 2,261 2,261 2,261 1,576 2,197 2,749 20 2,105 2,105
Satellite-GTOHP (17) 1,046 1,046 1,049 1,026 1,035 1,035 1 3 3
Transport (40) 1,147 1,147 1,147 1,146 1,201 1,203 0 49 49
Woodworking (7) 120 120 121 37 42 47 3 5 5

TOTAL 76,020 76,020 82,350 41,867 57,646 78,310 380 19,360 19,360

Table 1: Comparison of the number of landmarks generated by BU, TD, and BID landmarks.

{x, a, z, b,m1, T}. However, the entry LM bu(m1) contains
any landmarks that appear in LM bu(S) which are missed by
the landmarks found by TD. This means that the landmark
set could be further expanded with LM bu(m1). These ad-
ditional landmarks, however, are not necessarily hierarchi-
cally justified, since they originate from the BU graph. Each
such landmark can then be refined by consulting the TD ta-
ble once more to uncover any hierarchical dependencies that
were overlooked.

T

m1 m2

S a b

x z

Figure 5: An illustration representing the HTN planning
problem PROBLEM3. The problem is similar to PROBLEM1

besides the additional compound task S connected to a sub-
tree of arbitrary size ∆.

Algorithm 1 formalizes this intuition. Starting from the
BU landmarks of the whole task, it repeatedly expands the
current set through the landmark tables of both graphs until a
fix-point is reached. The result is a single landmark set Lbid,
not a table.

Algorithm 1: Bidirectional Landmarks

1: Lbid ← LM bu(VG)
2: while Lbid changes do
3: Lbid ←

⋃
l∈Lbid LM bu(l) ∪ LM td(l)

4: end while

We then obtain the following properties regarding bidirec-
tional landmarks:

Corollary 4.1 (SOUNDNESS). Lbid contains only landmarks
of the original problem P .

Proof. Both LM bu (Höller and Bercher 2021, Thm. 2) and
LM td (Theorem 3.1) are sound. Algorithm 1 combines sub-
sets of these tables for components l that are guaranteed
landmarks.

Corollary 4.2 (DOMINANCE). LM td(VG) ⊆ Lbid.

Proof. Lbid is initialized with LM bu(VG). Each iteration
augments Lbid by LM td(l) or LM bu(l), so every entry
of LM td reachable is eventually absorbed, in particular
LM td(V ′

G). The inclusion is strict in some problems. For ex-
ample, in PROBLEM3

Corollary 4.3 (INCOMPLETENESS). Lbid is incomplete un-
der the DOF relaxation.

Proof. The counter-example from Theorem 3.3 also applies,
since method m2 is missing from both LM bu and LM td,
hence Algorithm 1 can never add it.

5 Experiments
We evaluated our approach using total-order benchmarks
from the 2023 IPC2 and conducted experiments on an In-
tel i7-14700F CPU, using a 30-minute timeout and an 8
GB RAM limit. We implemented our techniques within the
PANDA planner (Höller et al. 2021). Out of the 22 do-
mains in the total-order track, we report results for 12 do-
mains where LM td generates more landmarks than LM bu.
Both strategies identified the same landmarks in the other
domains, providing no additional insights.

Landmark Generation: Table 1 provides a comparison
of three landmark generation strategies: landmark generated
by the BU graph (LM bu), landmark generated by the top-
down graph (LM td), and bidirectional landmarks (Lbid). The
increase in the time required to compute the LM td and Lbid

landmarks is minimal. The average total time to generate

2https://ipc2023-htn.github.io

landmarks for all problems in Table 1 for LM bu, LM td, and
Lbid is 4.23 seconds, 4.94 seconds, and 4.95 seconds, respec-
tively. Note that the three techniques complete the landmark
generation step for all tasks of the domains we report.

DOMAIN 2WA∗ 5WA∗

bid bu bid bu

Barman-BDI 7 7 7 7
Blocks.-GTOHP 17 15 30 28
Blocks.-HPDDL 26 14 26 26
Depots 18 18 23 23
Factories-simple 5 5 5 5
Monroe-Fully-Obs. 15 14 17 16
Monroe-Partially-Obs. 10 3 5 8
Multiarm-Blocks. 16 13 66 62
Robot 11 11 16 11
Satellite-GTOHP 6 6 12 12
Transport 10 4 10 9
Woodworking 7 7 7 7

TOTAL 148 117 224 214

Table 2: Coverage of Weighted A∗ with weights of 2 (2WA∗)
and 5 (5WA∗) for landmark count, for Lbid and LM bu (de-
noted by bid and bu respectively).

Table 1 shows that the LM td and Lbid methods gener-
ate more landmarks than LM bu. LM td identified 37% more
task landmarks than LM bu, while Lbid found 87% more task
landmarks than LM bu. Additionally, the number of facts
landmarks increased by 8%, mainly due to the differences in
landmarks generated for the Blocksworld-HPPDL domain.
LM bu detects a low number of method landmarks in partial-
order domains (Höller and Bercher 2021), and this limitation
persists in total-order domains, where it identifies landmarks
in only five domains. LM td improves on this limitation by
significantly increasing the detection of method landmarks,
identifying landmarks for ten domains.

Landmark-guided Search: Although this paper primar-
ily focuses on landmark generation, we also evaluated the
impact of our bidirectional landmarks within a search frame-
work using the landmark count heuristic (lm-count). In our
experiments, we generate landmarks during preprocessing,
and the heuristic value is the number of unreached land-
marks. Given the minimal overhead in computing bidirec-
tional landmarks compared to the top-down approach (pri-
marily table lookups), we directly compared the coverage
achieved by the bidirectional and bottom-up methods.

We conducted experiments using the Weighted A∗ algo-
rithm with 2 (2WA∗) and 5 (5WA∗) weights. As shown in
Table 2, the additional landmarks identified by the bidirec-
tional method generally enhance coverage. Figure 6 and 7
illustrates the impact on node expansions across various do-
mains, each data point represents a problem instance, with
axes comparing bottom-up (BU) and bidirectional (BID)
landmark generation techniques using the landmark count
heuristic. In many cases, bidirectional landmarks result in
fewer expanded nodes than the bottom-up approach. Al-
though there are a few instances where LM bu shows a slight

101 102 103 104 105 106 107

LMcount (BU)

101

102

103

104

105

106

107

LM
co

un
t (

BI
D)

Generated Nodes: BU vs. BID
Barman-BDI
Blocksworld-GTOHP
Blocksworld-HPDDL
Depots
Factories-simple
Monroe-Fully-Observable
Monroe-Partially-Observable
Multiarm-Blocksworld
Robot
Satellite-GTOHP
Transport
Woodworking

Figure 6: Comparison of the number of nodes expanded for
solved problems on a logarithmic scale using Weighted A∗

with weights of 2 (2WA∗).

101 102 103 104 105 106 107

LMcount (BU)

101

102

103

104

105

106

107

LM
co

un
t (

BI
D)

Generated Nodes: BU vs. BID
Barman-BDI
Blocksworld-GTOHP
Blocksworld-HPDDL
Depots
Factories-simple
Monroe-Fully-Observable
Monroe-Partially-Observable
Multiarm-Blocksworld
Robot
Satellite-GTOHP
Transport
Woodworking

Figure 7: Comparison of the number of nodes expanded for
solved problems on a logarithmic scale using Weighted A∗

with weights of 5 (5WA∗).

advantage, the overall trend favors Lbid in reducing node ex-
pansions, reinforcing its value in heuristic-guided search.

6 Discussion
Research on landmarks for Hierarchical Task Network plan-
ning has progressed through three main stages. The earli-
est accounts focused on mandatory tasks, i.e., task names
that occur in every decomposition of the initial task net-
work (Bercher, Keen, and Biundo 2014). Although inexpen-
sive to compute, this view ignores the executability of prim-
itive tasks and misses state-dependent requirements. Höller
and Bercher (2021) address this limitation by adapting the
AND/OR graph of Keyder, Richter, and Helmert (2010) to
HTN planning. Their AND/OR graph combines hierarchi-
cal structure with delete-relaxed state transitions, yielding
sound but incomplete sets of fact, task, and method land-
marks under the Delete- and Ordering-Free (DOF) relax-
ation. The third stage leverages the classical planning heuris-
tic LM-Cut (Helmert and Domshlak 2009) to find disjunctive
landmarks. The Relaxed Composition (RC) translation con-

verts a DOF with Task Insertion HTN problem into a delete-
relaxed classical problem so that LM-Cut and any other clas-
sical heuristic can be applied directly (Höller et al. 2019).
This version of LM-Cut landmarks was used by the PAN-
DADealer planner (Olz, Höller, and Bercher 2024), the win-
ner of the IPC-2023 total-order.

This paper revisited landmark generation for Hierarchi-
cal Task Network planning and introduced two complemen-
tary contributions. First, the top-down graph complements
the bottom-up encoding by enforcing that every landmark is
justified along at least one valid decomposition of the initial
task network. We prove that the resulting landmark table is
sound, polynomial to compute, and dominates the bottom-
up set while remaining incomplete under the same DOF re-
laxation. Second, an iterative bidirectional procedure com-
bines both graphs until a fix-point is reached, yielding the
most extensive landmark set currently obtainable in poly-
nomial time. Empirical results on the IPC-2023 total-order
benchmarks confirm the practical value of our approach.
Bidirectional propagation increases the number of task land-
marks by 87%.

Acknowledgments
This study was financed in part by the Coordenação de
Aperfeiçoamento de Pessoal de Nı́vel Superior – Brasil
(CAPES) – Finance Code 001. We acknowledge support
from FAPERGS with project 21/2551-0000741-9. Victor
was additionally funded by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation) – GRK
2853/1 “Neuroexplicit Models of Language, Vision, and Ac-
tion” - project number 471607914.

References
Alford, R.; Shivashankar, V.; Roberts, M.; Frank, J.; and
Aha, D. W. 2016. Hierarchical Planning: Relating Task and
Goal Decomposition with Task Sharing. In IJCAI.
Bercher, P.; Keen, S.; and Biundo, S. 2014. Hybrid Planning
Heuristics based on Task Decomposition Graphs. In SoCS.
Elkawkagy, M.; Bercher, P.; Schattenberg, B.; and Biundo,
S. 2012. Improving Hierarchical Planning Performance by
the Use of Landmarks. In AAAI.
Erol, K.; Hendler, J. A.; and Nau, D. S. 1994. HTN Plan-
ning: Complexity and Expressivity. In AAAI.
Geier, T.; and Bercher, P. 2011. On the Decidability of HTN
Planning with Task Insertion. In IJCAI.
Helmert, M.; and Domshlak, C. 2009. Landmarks, critical
paths and abstractions: what’s the difference anyway? In
ICAPS.
Hoffmann, J.; Porteous, J.; and Sebastia, L. 2004. Ordered
Landmarks in Planning. JAIR.
Höller, D.; Behnke, G.; Bercher, P.; and Biundo, S. 2021.
The PANDA Framework for Hierarchical Planning. KI-
Künstliche Intelligenz.
Höller, D.; and Bercher, P. 2021. Landmark Generation in
HTN Planning. In AAAI.

Höller, D.; Bercher, P.; and Behnke, G. 2020. Delete-and
Ordering-Relaxation Heuristics for HTN Planning. In IJ-
CAI.
Höller, D.; Bercher, P.; Behnke, G.; and Biundo, S. 2019. On
Guiding Search in HTN Planning with Classical Planning
Heuristics. IJCAI.
Keyder, E.; Richter, S.; and Helmert, M. 2010. Sound and
Complete Landmarks for And/Or Graphs. In ECAI.
Olz, C.; Höller, D.; and Bercher, P. 2024. The PAN-
DADealer System for Totally Ordered HTN Planning in the
2023 IPC. IPC 2023.

