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Problem

 Modeling joints
— Where the motion takes place
— Clinical interest
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Usual approach

e Simplified — Idealized joint J\@ H l M
n y" NI B

e From robotics works
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ldeal Approach

 Model everything
— From cells to tissues to organs

« Complex
— We cannot run the “Matrix” in nowadays’ machines

e Must simplify
— Application driven simplification
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Context and overview

« CO-ME project
— Computer Aided and Image Guided Medical Interventions

— Project #10:

* A generalized approach towards individualized functional
modeling of human articulations
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Context and overview
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Our approach

 Compromise (simplify according to the application)
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 Medical applications: problem split in 2

— Kinematical aspects

— Soft tissues

Deformable objects

. Our approach for joint modeling




Kinematical aspects

Joint motion model



Related work

Two classes of works

General mechanisms to keep Simulation of specific
body structure complex parts
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Anatomy-based kinematical model

 Take anatomy into consideration
* Allow producing and constraining any type of motion
+ normalized parameterization
+ range of motion control
+ axes coupling
+ axes displacements
e Can be setup from captured data

o Simple motion specification (unified parameter)
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Types of joints - anatomy

e Synarthroses
* Anphiarthrose
 Diarthroses

2 DOF <

L e« Saddle

- { e Ball-and-socket = e AXxes are not fixed

e Joints are coupled
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The Joint Model - Basic topology

LIM = Local Instance Matrix ; LIMp

M worg) = (LIM x(LIM x.x(LIM, (LIM xLIM, ))..)
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The Joint Model — Isolating DOFS
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The Joint Model - 1 DOF

/ Normalized parameter
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The Joint Model - Range modifiers

e Coupling between joints
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Anatomy-based configuration

Hip Joint Center and Dynamic MRI data
range of motions
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Deformation aspects

Soft tissues model



Literature review: modeling methods

e Mass-spring systems
— Lattice of masses connected by springs

— Advantages
e Easy to construct/implement

e Real-time animation
— Limitations m#
 Difficult to tune mechanics m
« Convergency problem **” )
(time step vs. stiffness) *””
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Literature review: modeling methods

 Finite element method

— Deformable object is considered as a continuum
subdivided into elements
— Advantages

 Mechanical behavior is more realistic
than mass-spring methods

« Mechanical properties can be
specified in the model
— Limitations

e computationally less efficient
than mass-spring methods
(especially for soft biological tissues)
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Related work

Simulation of deforming elastic
solids in contact

e Simulation of human motion from
scanned data (visible human)

e Lowered computations
— Precomputed material depth
e Solving method

— Implicit finite element

G. Hirota, et al., An Implicit Finite Element

Method for Elastic Solids in Contact. Computer

Animation 2001. J. JANSSON and J. S. M. VERGEEST
“A discrete mechanics model for
deformable bodies”. Computer-Aided
Design. Amsterdam, 2002.

Time and space adaptive sampling
« Adaptive level of detall

— Refining the resolution with larger deformation
e Fast solving method

— Local explicit finite element

G. Debunne, et al., Dynamic Real-Time Deformations Using Space
& Time Adaptive Sampling, SIGGRAPH 2001.
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Soft tissues model

Molecular model based on *

A generalized mass-spring model where mass points are spherical mass regions.

E:{el’ez’...en} C:{Cel’cez’"'cen} Ce :{Cl’CZ’”'Cn}

Unregistered HyperCam

Fe - FG + FL + Fc + Fcollision
N - r e o *e_*p
Fs =m.g Ry = _kcq e_Pp‘_IC)* 5

* J. JANSSON and J. S. M. VERGEEST “A discrete mechanics model for deformable bodies”.
Computer-Aided Design. Amsterdam, 2002.
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Bilo-tissues behavior

« Ligament, cartilage, tendon, muscle.
* Viscoelastic

e Anisotropic

 Non-linear

 Heterogeneous

e Sensitive to: age, gender, activity...
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Configuring springs: trivial approach

~
e Young’s modulus of material (E)
Input; < * Spheres distribution Output: < k= Hooke’s constant
— r=radius
g — |, = nominal distance between centers g

2r

cross-sectional area = (2r)? l

This approach works straight forward
when applied to objects which —
springs have only right angles.
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Iterative approach

* Pre-processing phase

— lteratively approximate value of spring constants

(P 3. Our approach — deformation model

*Estimate effective E at a time step
A given force
*Rest elongation
*Current elongation variation
*Cross sectional area

*Adapt k values
*Minimize difference between
effective and target E
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Comparing with FEM analysis

« Same dimensions

« Same Young’s modulus
« Same force applied

* Very similar deformation

1 - FEM static analysis by IMES - Center of
Mechanics/ETHZ

2 - Our reproduction using the same
physical parameters and applying the
same forces
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Results and Evaluation

o (Case study
— Hip joint

MRI acquisition
and 3D models
reconstruction

Hip Joint
Center

Discretization and kinematical model
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Results — stress on hip joint cartilage
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4. Results and evaluation
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Outcome

 Challenges:
— Understanding the role of different structures
» Correlate pain and stress
— Help on diagnosis
— Surgery planning
 validate customized treatments before application

B 5. Medical outcome
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