Rock, Paper, StarCraft: Strategy Selection in Real-Time Strategy Games

Anderson R. Tavares

Amanda dos Santos

Héctor Azpúrua

Luiz Chaimowicz

Playing complex games

Wouldn't it be nice if we could play a complex game just like a simple one?

Complex game

Simple game

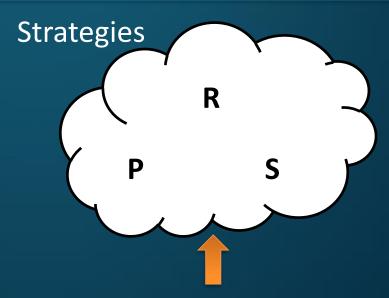
Playing complex games

Can you do that?

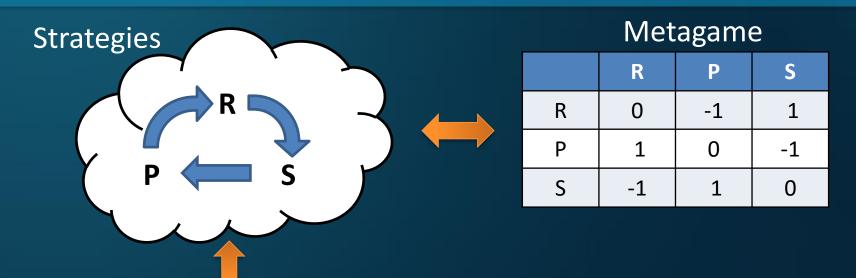
John Nash

- Yes, we can!
 - With the strategy selection metagame.

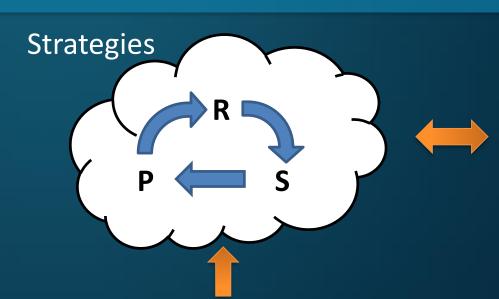
- Strategy:
 - A mapping from states to actions
 - A black-box policy to play the game



Game



Game



Game

Metagame

	R	P	S
R	0	-1	1
Р	1	0	-1
S	-1	1	0

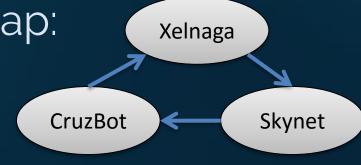
Strategy	Probability
R	33.33%
Р	33.33%
S	33.33%


Expected payoff: 0

Nash Equilibrium

Game

- Complex RTS game
- Vibrant developer community
- Lots of available bots


- 1. Identify strategies:
 - AIIDE 2015 Protoss bots
 - Full game-playing agentes
 - They map states to actions

Bot	Xelnaga	CruzBot	NUSBot	Aiur	Skynet
Xelnaga	-				
CruzBot		-			
NUSBot			-		
Aiur				-	
Skynet					-

2. Identify how strategies interact:

100 rounds in Fortress map:

Bot	Xelnaga	CruzBot	NUSBot	Aiur	Skynet
Xelnaga	-	26%	86%	73%	73%
CruzBot	74%	-	80%	67%	16%
NUSBot	14%	20%	-	74%	97%
Aiur	27%	33%	26%	-	79%
Skynet	27%	84%	3%	21%	-

3. Solve the metagame:

Strategy	Probability
Xelnaga	41.97%
CruzBot	28.40%
NUSBot	0%
Aiur	0%
Skynet	29.63%
Expected payoff:	50% victories

Nash Equilibrium

I would even play StarCraft now!

John Nash

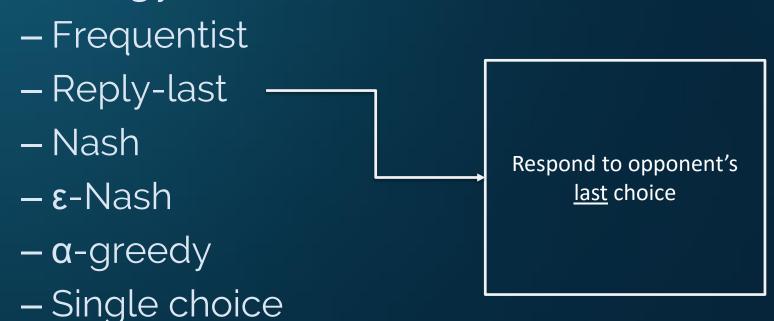
Let's play the metagame!

- Isn't solving it enough?
 - You can do better against sub-optimal opponents
- Computer Rock, Paper, Scissors^[1]:
 - Nash Equilibrium placed only 27th out of 55 competitors

[1] Billlings. 2001. RoShamBo programming competition. https://webdocs.cs.ualberta.ca/~darse/rsbpc.html

- Strategy selection methods:
 - Frequentist
 - Reply-last
 - Nash
 - ε-Nash
 - α-greedy
 - Single choice

Strategy selection methods:


Frequentist

- Reply-last
- Nash
- ε-Nash
- -α-greedy
- Single choice

Respond to opponent's most frequent choice

Strategy selection methods:

- Strategy selection methods:
 - Frequentist
 - Reply-last
 - Nash
 - ε-Nash
 - $-\alpha$ -greedy
 - Single choice

Play according to Nash Equilibrium					
Strategy	Probability				
Xelnaga	41.97%				
CruzBot	28.40%				

29.63%

Skynet

- Strategy selection methods:
 - Frequentist
 - Reply-last
 - Nash
 - $-\epsilon$ -Nash
 - -α-greedy
 - Single choice

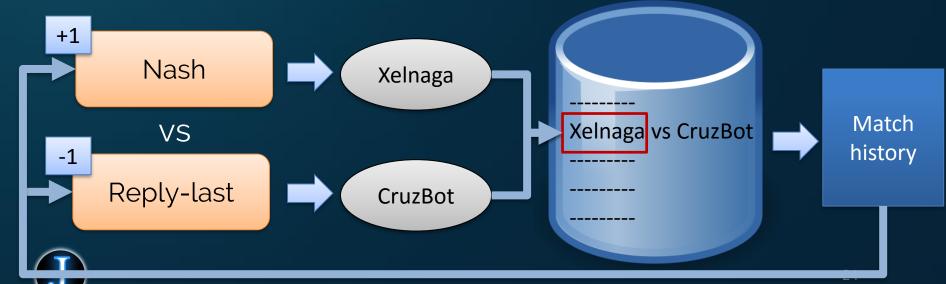
Safe opponent exploitation

(1-ε): Nash ε: Frequentist

- Strategy selection methods:
 - Frequentist
 - Reply-last
 - Nash
 - ε-Nash
 - α-greedy
 - Single choice

Multi-armed bandit approach

(1- α): Best strategyα: random strategy


- Strategy selection methods:
 - Frequentist
 - Reply-last
 - Nash
 - ε-Nash
 - -α-greedy
 - Single choice

Dummy player

Always select the same strategy

- Strategy selection tournament
 - Strategy selection methods face each other
 - Each match: methods choose a bot
 - Result: queried from a pool of matches
 - Repeat

- Setup
 - 1000-match round-robin tournament
 - 30 repetitions

Results

	Reply-last	ε-Nash	α-greedy	Frequentist	Nash	Single choice
Reply-last	-		A			
ε-Nash		-				
α-greedy						
Frequentist				-		
Nash —		——			-	
Single choice						-

- Results
 - Reply-last is good against 'repeaters'

	Reply-last	ε-Nash	α-greedy	Frequentist	Nash	Single choice
Reply-last	-	50.2%	62.5%	63%	48.1%	80.8%
ε-Nash	49.8%	-	49.8%	53.6%	51.3%	69.1%
α-greedy	37.5%	50.2%	-	52.5%	51.3%	73.5%
Frequentist	37%	46.4%	47.5%	-	52.5%	80.8%
Nash	51.9%	48.7%	48.7%	47.5%	-	55.5%
Single choice	19.2%	30.9%	26.5%	19.2%	44.5%	-

- Results
 - Reply-last is good against 'repeaters'
 - Nash is safe

	Reply-last	ε-Nash	α-greedy	Frequentist	Nash	Single choice
Reply-last	-	50.2%	62.5%	63%	48.1%	80.8%
ε-Nash	49.8%	-	49.8%	53.6%	51.3%	69.1%
α-greedy	37.5%	50.2%	-	52.5%	51.3%	73.5%
Frequentist	37%	46.4%	47.5%	-	52.5%	80.8%
Nash	51.9%	48.7%	48.7%	47.5%	-	55.5%
Single choice	19.2%	30.9%	26.5%	19.2%	44.5%	-

Results

- Reply-last is good against 'repeaters'
- Nash is safe
- $-\epsilon$ -Nash performs safe exploitation

	Reply-last	ε-Nash	α-greedy	Frequentist	Nash	Single choice
Reply-last	-	50.2%	62.5%	63%	48.1%	80.8%
ε-Nash	49.8%	-	49.8%	53.6%	51.3%	69.1%
α-greedy	37.5%	50.2%	-	52.5%	51.3%	73.5%
Frequentist	37%	46.4%	47.5%	-	52.5%	80.8%
Nash	51.9%	48.7%	48.7%	47.5%	-	55.5%
Single choice	19.2%	30.9%	26.5%	19.2%	44.5%	-

Conclusion

- Contributions:
 - Simplified representation of complex games
 - Discussion of game theory concepts
 - Spin-off: look out for MegaBot!

- Limitation:
 - Works with a predefined set of strategies

"To Nash Equilibrium... and beyond!"

The end

- Resources:
 - Strategy selection tournament engine https://github.com/h3ctor/StarcraftNash
 - MegaBot https://github.com/andertavares/MegaBot

anderson amandasantos hector.azpurua chaimo

•@dcc.ufmg.br

Questions?