
Evolving swarm intelligence for task
allocation in a real time strategy game

LUIZ CHAIMOWICZ

HÉCTOR AZPÚRUA

ANDERSON TAVARES

The problem

2

• Coordination in complex
scenarios
– Multiple agents

– Partial observability

– Dynamic environment

• Coordination → task allocation
– Divide goal into tasks

– Assign tasks to agents

Rescue in disasters

RTS game (StarCraft)

Our approach - Goals

3

Task allocation
algorithm

Genetic
algorithm

Parameters

Complex
scenario

• Automatically adjust task allocation parameters

Our approach - Goals

• Automatically adjust task allocation parameters

• Employ task allocation in an RTS game (StarCraft)

Swarm-GAP

Genetic
algorithm

4

StarCraft

Parameters

Related work – Task allocation

• Many algorithms for task allocation

– LA-DCOP [1]

– Branch-and-Bound Fast-Max-Sum [2]

– many others!

• But parameters are configured by hand

5

[1] Scerri et al, “Allocating tasks in extreme teams,” in AAMAS, 2005.
[2] Macarthur et al, “A Distributed Anytime Algorithm for Dynamic Task Allocation in Multi-Agent Systems,” in AAAI, 2011.

Task allocation

• An optimization problem...

• Given:

– A set of tasks

– A set of agents
• (and their capabilities)

Build

Attack

Explore

Soldier

Worker

Scout

High capability

Low capability

6

• An optimization problem...

• Given:

– A set of tasks

– A set of agents
• (and their capabilities)

• Find:

– The best task-agent
assignment

– Utility given by agent-
task compatibility

• NP-Complete!

Task allocation

7

Build

Attack

Explore

Soldier

Worker

Scout

:-(

:-(

:-(

(a bad assignment)

Task allocation

• An optimization problem...

• Given:

– A set of tasks

– A set of agents
• (and their capabilities)

• Find:

– The best task-agent
assignment

– Utility given by agent-
task compatibility

• NP-Complete!

 8

Build

Attack

Explore

Soldier

Worker

Scout

:-D

:-D

:-D

(a good assignment)

Build

Attack

Explore

Soldier

Worker

Scout

Task allocation

• Complex scenarios

– Environment changes

– Must reassign tasks

– We need scalability
and robustness

9

Build

Attack

Defend base!

Soldier

Worker

Scout

?

?

?

Gather

resources

(now what?)

Soldier

?

Swarm-GAP[1]

• Tasks have associated stimuli (s)

• Agents have response thresholds to tasks (θ)
• Probability to engage in task depends on both:

10

[1] Ferreira et. Al. Using Swarm-GAP for distributed task allocation in complex scenarios. Massively Multiagent Systems. 2008

Swarm-GAP[1]

11

Strengths of Swarm-GAP

• Tasks allocated independently

• Emergent coordination

• Robustness and scalability

[1] Ferreira et. Al. Using Swarm-GAP for distributed task allocation in complex scenarios. Massively Multiagent Systems. 2008

StarCraft – our testbed

• Popular RTS game with 3 races:

– Terran

– Zerg

– Protoss

• In-game score based on:
– Resource management

– Base expansion

– Attack and defense

• Our bot implements Swarm-GAP
– Plays with Terran

– Uses 7 out of 17 buildings

– Uses 3 out of 13 units

12

 Terran Zerg Protoss

Evolving Swarm-GAP

• The genetic algorithm

– An individual is an array of Swarm-GAP
parameters

13

Evaluation
Selection and
combination

Stop
criteria?

Return best
individual

Y

N

Parameters

Population

Evolving Swarm-GAP

14

a

b

t

u

v Agents

Tasks

st su sv

• Array of parameters:

– Stimuli for each task

Evolving Swarm-GAP

15

a

b

t

u

v Agents

Tasks

st su sv kat kau kav kbt kbu kbv

• Array of parameters:

– Stimuli for each task

– Capability for each agent-task
combination

Evolving Swarm-GAP

16

• Array of parameters:

– Stimuli for each task

– Capability for each agent-task
combination

– One game-related parameter

• Army size

st su sv kat kau kav kbt kbu kbv

a

b

t

u

v Agents

Tasks

g

Evolving Swarm-GAP

17

•

If fitness > 1: our bot

won the match

Evolving Swarm-GAP

18

•

• Problem:

– Evaluation depends on match results

– Time-consuming!

• Solution

– Estimate fitness of some individuals

– “Interpolate” parents’ fitness

GASW

bot

StarCraft

application

Parameters

If fitness > 1: our bot

won the match

Experiments

1. Evaluate GA behavior

– Fitness along generations

– Evaluation vs. estimation

2. Compare different approaches

– Victory rate against StarCraft’s native AI

– Validation of our approach

 19

Experiment 1 – GA behavior

20

Mean fitness per generation

21

Mean fitness per generation

Results with fitness
evaluation.

Experiment 1 – GA behavior

Experiment 1 – GA behavior

22

Results with fitness
estimation.

Mean fitness per generation

Experiment 1 – GA behavior

23

• Superior fitness with
estimation

• Is this reliable? Wait for
part 2!

Mean fitness per generation

Experiment 2 - with other bots

24

1. GASW:
– Best parameters found without fitness estimation

2. GASW-e:

– Best parameters found with fitness estimation

3. ManSW:
– Hand-configured array of parameters.

4. Random bot:
– For each agent, a task is chosen with uniform probability.

5. AIUR:
– Competition bot, placed 3rd in AIIDE 2013[1] and CIG 2013[2].

 [1] http://webdocs.cs.ualberta.ca/~cdavid/starcraftaicomp/report2013.shtml
[2] http://ls11-www.cs.uni-dortmund.de/rts-competition/starcraft-cig2013

Experiment 2 - with other bots

25

ManSW , GASW and GASW-e:

• Tasks allocated via Swarm-GAP

• Difference: parameter configuration

- This will validate our approach

 [1] http://webdocs.cs.ualberta.ca/~cdavid/starcraftaicomp/report2013.shtml
[2] http://ls11-www.cs.uni-dortmund.de/rts-competition/starcraft-cig2013

Experiment 2 - with other bots

26

Victory rate on 150 matches against
StarCraft’s Native AI

Experiment 2 - with other bots

27

• Random has the worst
performance

Victory rate on 150 matches against
StarCraft’s Native AI

Experiment 2 - with other bots

28

• Random has the worst
performance

• GASW outperforms
GASW-e and ManSW.

Victory rate on 150 matches against
StarCraft’s Native AI

Experiment 2 - with other bots

29

• Random has the worst
performance

• GASW outperforms
GASW-e and ManSW.

• GASW and AIUR
achieve similar
performance.

Victory rate on 150 matches against
StarCraft’s Native AI

Bottomline

• In our scenario, fitness estimation wasn’t reliable

30

Victory rate on 150 matches against
StarCraft’s Native AI

Fitness value per generation

Bottomline

• Fitness estimation was misleading:

– Fitness is noisy: opponent behavior and
probabilistic task allocation.

• “Lucky” individual propagates itself with
estimation

– It brings the search to its neighborhood.

– Which may not be the optimum region.

31

Conclusion

• Contributions:
– Systematic approach to adjust parameters for task

allocation in complex scenarios.
– Evaluation of fitness estimation in a noisy

environment.

• Promising results:
– Random and manual were outperformed.
– Victory rate at par with AIUR.

• However:
– We couldn’t play direct matches vs AIUR :-(

32

Future work

• Improve fitness estimation:

– Deal with fitness noise

– Which conditions lead to reliable fitness
estimation?

• Improve game performance:

– Use all units and buildings

– Opening book, micromanagement, terrain
analysis...

33

The end

strategy game

Questions?

@dcc.ufmg.br } anderson
hector.azpurua
chaimo

allocation in a real time

34 LUIZ CHAIMOWICZ

intelligence for task
Evolving swarm

Appendix – E-GAP model

35

• “The math behind task allocation”
• I: agents; J = tasks; aij = allocation indicator

Appendix - Swarm-GAP algorithm

36

All agents execute this algorithm

• Initiate token (set of tasks)

• For each task j in token:
– If random() < P(sj, θj) :

• engage in task j

• Forward token with remaining tasks

Appendix - Swarm-GAP in StarCraft

• Agent-task compatibility:

37

Appendix - Evolving Swarm-GAP

Crossover
Parent a

Parent b
Child c

* Method by [Salami and Hendtlass 2003]

• Fitness estimation*

– Parents generate offspring as usual

Appendix - Evolving Swarm-GAP

39

(fa, wa)

(fb, wb)

Reliability: ‘how close’ estimated f is to actual fitness

• Fitness estimation

– Individuals have fitness value (f) and reliability (w)

– When parents generate offspring:
• Calculate parent-child similarity ()

• Estimate child fitness

• Calculate child reliability

Appendix - Evolving Swarm-GAP

40

• Fitness estimation

– Individuals have fitness value (f) and reliability (w)

– When parents generate offspring:
• Calculate parent-child similarity ()

• Estimate child fitness

• Calculate child reliability

(fa, wa)

(fb, wb)

ac

bc

xy is a measure of “distance” of
values in x and y

• Fitness estimation

– Individuals have fitness value (f) and reliability (w)

– When parents generate offspring:
• Calculate parent-child similarity ()

• Estimate child fitness

• Calculate child reliability

Appendix - Evolving Swarm-GAP

41

(fa, wa)

(fb, wb)

ac

bc

fc

• Fitness estimation

– Individuals have fitness value (f) and reliability (w)

– When parents generate offspring:
• Calculate parent-child similarity ()

• Estimate child fitness

• Calculate child reliability

Appendix - Evolving Swarm-GAP

42

(fa, wa)

(fb, wb)

ac

bc

(fc, wc)

• Fitness estimation

– Individuals have fitness value (f) and reliability (w)

– When parents generate offspring:
• Calculate parent-child similarity ()

• Estimate child fitness

• Calculate child reliability

• Maintain reliability

Appendix - Evolving Swarm-GAP

43

If wc < threshold: fc ← evaluate(c);
A few individuals are always evaluated.

(fc, wc)

Appendix - GA parameters

• Tournament selection (2 participants)

– With elitism

• One-point crossover

• Crossover probability: 0.9

• Mutation probability: 0.01 per locus

• 100 generations

• 30 individuals

44

