Evolving swarm intelligence for task
allocation in a real time strategy game

:F- -r_ : il |r"|~ -: :
= ‘“ﬂ-.-
=

'i*
-- Lw'

1’
i » Hﬁ-q_
=ik, — -«.....

ANDERSON TAVARES
HECTOR AZPURUA
LUIZ CHAIMOWICZ

The problem

Coordination in complex
scenarios

— Multiple agents

— Partial observability

— Dynamic environment

Coordination — task allocation
— Divide goal into tasks
— Assign tasks to agents

RTS game (StarCraft)

Our approach - Goals

Genetic
algorithm

Complex
scenario
o Task allqcatlon
algorithm

« Automatically adjust task allocation parameters

Our approach - Goals

Genetic
algorithm

8 Swamcap

« Automatically adjust task allocation parameters
« Employ task allocation in an RTS game (StarCraft)

Related work — Task allocation

» Many algorithms for task allocation
— LA-DCOP [1]
— Branch-and-Bound Fast-Max-Sum [2]
— many others!

» But parameters are configured by hand

[1] Scerri et al, “Allocating tasks in extreme teams,” in AAMAS, 2005.
[2] Macarthur et al, “A Distributed Anytime Algorithm for Dynamic Task Allocation in Multi-Agent Systems,” in AAAI, 2011.

Task allocation

* An optimization problem...
 Given:
— A set of tasks

— A set of agents
 (and their capabilities)

High capability
Low capability

Task allocation

An optimization problem...

Given:

— A set of tasks

— A set of agents LD
 (and their capabilities)

Find: ' Explore

— The best task-agent
assignment

— Utility given by agent-
task compatibility

NP-Complete!

(a bad assignment)

Task allocation

An optimization problem...

Given:
— A set of tasks ﬂ

— A set of agents
 (and their capabilities)

Find:

— The best task-agent
assignment

— Utility given by agent-
task compatibility

NP-Complete!

(a good assignment)

Task allocation

« Complex scenarios
— Environment changes
— Must reassign tasks

— We need scalability
and robustness

resources

Defend base!

(now what?)

Swarm-GAP!1]

» Jasks have associated stimuli (s)
« Agents have response thresholds to tasks (6)
* Probability to engage in task depends on both:

P(s,0) =

s2 4+ g2

m 0.
E 0.
o
el
O o
i
(=S

0

0.4

Response threshold 8

[1] Ferreira et. Al. Using Swarm-GAP for distributed task allocation in complex scenarios. Massively Multiagent Systems. 2008

Swarm-GAP!1]

Strengths of Swarm-GAP

» Tasks allocated independently
« Emergent coordination

» Robustness and scalability

[1] Ferreira et. Al. Using Swarm-GAP for distributed task allocation in complex scenarios. Massively Multiagent Systems. 2008

Popular RTS game with 3 races:

— Terran
— Zerg
— Protoss

In-game score based on:

— Resource management
— Base expansion
— Attack and defense

Our bot implements Swarm-GAP
— Plays with Terran
— Uses 7 out of 17 buildings
— Uses 3 out of 13 units

v ik

~

(¥

Terran

v
* SN
¥
—

StarCraft — our testbed

Protoss

12

Evolving Swarm-GAP

* The genetic algorithm

— An individual is an array of Swarm-GAP
parameters

Population

== Stop Return best

Selection and |

13

Evolving Swarm-GAP

* Array of parameters:
— Stimuli for each task

Agents

Tasks

14

Evolving Swarm-GAP

* Array of parameters:
— Stimuli for each task

— Capability for each agent-task
combination G

Agents

Tasks

15

Evolving Swarm-GAP

* Array of parameters:
— Stimuli for each task
— Capability for each agent-task

combination G
— One game-related parameter Agents
* Army size Tasks

BRI e

16

 Fitness =

Evolving Swarm-GAP

our bot's score

opponent'’s score

If fitness > 1: our bot
won the match

Evolving Swarm-GAP

!/
1100 S ScoTe If fitness > 1: our bot

/
opponent's score won the match

* Problem:
— Evaluation depends on match results

— Time-consuming! ﬂ.
— e

e Solution
— Estimate fitness of some individuals

— “Interpolate” parents’ fitness StarCraft
application

18

&

/

Experiments

1. Evaluate GA behavior
— Fitness along generations
— Evaluation vs. estimation

2. Compare different approaches
— Victory rate against StarCraft’'s native Al
— Validation of our approach

19

Experiment 1 — GA behavior

Q
3
©
>
v
[0l
L
o
=
[

Zerg est. fit.
Protoss -~ Protoss est. fit.
Terran Terran est, fit.

60
Generation

Mean fitness per generation

Experiment 1 — GA behavior

Results with fithess Zerg
evaluation.

Protoss
Terran

- Zerg est. fit.
Protoss est. fit.
Terran est. fit.

Generation

Mean fitness per generation

21

Experiment 1 — GA behavior

Results with fithess

S Zerg est. fit.
estimation.

Protoss est. fit
Terran est. fit.

: F-- Zerg est. fit.
otoss Protoss est. fi
Terran Terran est. fit

Mean fitness per generation

@
3J
o
>
wn
n
@
(=
e
('™

22

Experiment 1 — GA behavior

Superior fitness with
estimation

Is this reliable? Wait for
part 2!

@
3
©
>
v
0
@
o
=
[

— Zerg -~ Zerg est. fit.
— Protoss -~ Protoss est. fit.
Terran est. fit.

40 60
Generation

Mean fitness per generation

3.

4.

Experiment 2 - with other bots

GASW:

— Best parameters found without fithess estimation

GASW-e:
— Best parameters found with fitness estimation

ManSW:

— Hand-configured array of parameters.

Random bot:
— For each agent, a task is chosen with uniform probability.

AIUR:
— Competition bot, placed 3rd in AIIDE 2013[1] and CIG 2013|2].

[1] http://webdocs.cs.ualberta.ca/~cdavid/starcraftaicomp/report2013.shtml
[2] http://Is11-www.cs.uni-dortmund.de/rts-competition/starcraft-cig2013

Experiment 2 - with other bots

ManSW , GASW and GASW-e:
 Tasks allocated via Swarm-GAP

« Difference: parameter configuration
- This will validate our approach

[1] http://webdocs.cs.ualberta.ca/~cdavid/starcraftaicomp/report2013.shtml
[2] http://Is11-www.cs.uni-dortmund.de/rts-competition/starcraft-cig2013

Experiment 2 - with other bots

S A

<

ave
X

Victory rate on 150 matches against
StarCraft’'s Native Al

Experiment 2 - with other bots

Random has the worst
performance

©O

XRX)

<
L

§ ,,
N
§
% ,,
\

N

X
>

Terran Protoss

Victory rate on 150 matches against
StarCraft’'s Native Al

Experiment 2 - with other bots

Random has the worst

performance

) GASW

GASW-e

Yo

2
c
©
=
g

S NN
< NNNNNNNNNNNNNNNNAN -

0 RIS,
Gl

s

o o o
[c0) o <

%, 931e4 AI0IDIA

GASW outperforms
GASW-e and ManSW.

Victory rate on 150 matches against
StarCraft’'s Native Al

Experiment 2 - with other bots

Random has the worst
performance

GASW outperforms
GASW-e and ManSW.

GASW and AIUR
achieve similar
performance.

Eda GASW

Victory rate on 150 matches against
StarCraft’'s Native Al

Bottomline

* |n our scenario, fitness estimation wasn’t reliable

Load
o
©

Fitness value
T
w

v ”_/\._/'\‘/ ﬁ"/\/\/\\j\/\ "-\/“"A"/‘VH’\/_\V"\"/\-‘/V \'\fv\f\’ &

— Zerg - Zerg est. fit.
—— Protoss ~+- Protoss est. fit.
Terran est. fit.

[
7
7
7
.
7
7
7
Z
7
.
/)
7
7
7z
7
7
/)
7
7
7

O\ N NN N ANNN AN NN AN NN

S
n

40 60
Generation

Fitness value per generation Victory rate on 150 matches against
StarCraft’s Native Al

Bottomline

* Fitness estimation was misleading:

— Fitness is noisy: opponent behavior and
probabilistic task allocation.

» “Lucky” individual propagates itself with
estimation

— It brings the search to its neighborhood.
— Which may not be the optimum region.

31

Conclusion

 Contributions:

— Systematic approach to adjust parameters for task
allocation in complex scenarios.

— Evaluation of fitness estimation in a noisy
environment.

* Promising results:
— Random and manual were outperformed.
— Victory rate at par with AIUR.

* However:
— We couldn’t play direct matches vs AIUR :-(

32

Future work

* Improve fithess estimation:
— Deal with fitness noise

— Which conditions lead to reliable fithess
estimation?

* Improve game performance:
— Use all units and buildings

— Opening book, micromanagement, terrain
analysis...

33

The end =

/
x\ k; ’//

ANDERSON ROCHA

anderson
hector.azpurua g @dcc.ufmg.br

chaimo

Questions?

(¢

LUIZ CHAIMOWICZ

rE /g o

(=12}

'/%ﬁ&v@f,, A

Appendix — E-GAP model

“The math behind task allocation”
* [agents; J = tasks; a; = allocation indicator

W —Z Z Z IZUXHE? Z Z —r{u ..‘.\rf (la)

iteTt gteJt

subject to:

Appendix - Swarm-GAP algorithm

* |nitiate token (set of tasks)

» For each task j in token:
— If random() <P(s; 6):
e engage in task |

» Forward token with remaining tasks

All agents execute this algorithm

Appendix - Swarm-GAP in StarCraft

» Agent-task compatibility:

Gather minerals -——
Buildbarracks | v | |

-r"

Build supply depot -——
N

-r"

Build academy
Build refinery
Build command center
Rep air building

B 3 v A —

T Ak | V[V [

B e S A
—

Tt ain medu
Train marine

-r"-r"

II

Appendix - Evolving Swarm-GAP

* Fitness estimation®
— Parents generate offspring as usual

/0/7

Iim Child ¢ ||

* Method by [Salami and Hendtlass 2003]

Appendix - Evolving Swarm-GAP

* Fitness estimation
— Individuals have fitness value (f) and reliability (w)

— When parents generate offspring:
 Calculate parent-child similarity (p)
« Estimate child fitness
 Calculate child reliability

o
e d
(fp, W) --

Reliability: ‘how close’ estimated f is to actual fithess

Appendix - Evolving Swarm-GAP

* Fitness estimation
— Individuals have fitness value (f) and reliability (w)

— When parents generate offspring:
 Calculate parent-child similarity (p)
« Estimate child fitness
 Calculate child reliability

“ -ll
i, N /. i

Al W] — Cli]) PxyiS @ measure of “distance” of

_ | Z abs(A _’
Dac = .
[omax; N?(“ Values In X and y

Appendix - Evolving Swarm-GAP

* Fitness estimation
— Individuals have fitness value (f) and reliability (w)

— When parents generate offspring:
 Calculate parent-child similarity (p)
« Estimate child fitness
 Calculate child reliability

o

“ I

v A .

fe

Wa.p ac + WE})O bc

Appendix - Evolving Swarm-GAP

* Fitness estimation
— Individuals have fitness value (f) and reliability (w)

— When parents generate offspring:
 Calculate parent-child similarity (p)
« Estimate child fitness
 Calculate child reliability

U =)
~ 1 v
o o) A . g

2

We =
Wea Pac + Wh Pbe

Appendix - Evolving Swarm-GAP

 Fithess estimation

— Individuals have fitness value (f) and reliability (w)

— When parents generate offspring:
 Calculate parent-child similarity (p)
« Estimate child fithess
» Calculate child reliability
« Maintain reliability

B v

If w, < threshold: f, — evaluate(c);

A few individuals are always evaluated.

Appendix - GA parameters

Tournament selection (2 participants)
— With elitism

One-point crossover

Crossover probability: 0.9

Mutation probability: 0.01 per locus
100 generations

30 individuals

