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Abstract� This work presents two data stream algo-
rithms for wireless sensor networks (WSNs), based in
sample and sketch technics. For each case, we show that by
using our algorithms, we can save energy and reduce delay
in WSN applications in different scenarios. Speci�cally, the
sampling solution, provides a sample of only log n items
to represent the original data of n elements. Despite of
reduction, the sampling solution keep a good data quality.

I. INTRODUCTION

The data that the wireless sensor networks
(WSNs) [1]�[3] process usually arrives in an online

fashion, is unlimited and there is no control in the arrival
order of the elements to be processed. Data with this
characteristic is called data stream. However, there is a
difference between sensor stream and traditional stream.
The sensor streams are only samples of the entire
population, usually imprecise and noisy, and typically
of moderate size. On the other hand, in traditional
stream the entire population is usually available, the
data is exact, error-free and huge [4].

Recently research in traditional data stream algorithms
try to establish their lower bounds. The main metrics
analyzed are time and communication complexities [5]�
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[7]. There are proposals that present speci�c data stream
applications that are modeled using data stream algo-
rithms. For example, �nding the rarity and similarity
in a data stream or counting the triangulation in a
Web graph [8]�[11]. Indyk [12] proposes a data stream
algorithm (implemented by Zhao [13]) that uses a fam-
ily of hash functions called min-wise [14] to compute
properties in data streams. This algorithm uses O(log n)

bits to represent a hash index. The Indyk's algorithm
computes a δ − error and an ε − approximation for
the index found.

There are many techniques, in traditional streaming,
that reduce the volume of data that can be applied or
adapted in sensor stream. Examples of some technics
are: sampling, histograms, sliding windows, sketches,
wavelets, and others. Applications of each one of these
techniques generates data similar to the real ones. The
similarity of the generated data and the real data de-
pends on how the technic adopted is conduced and the
applications requires to be computed.

There are two main types of applications for WSNs:
monitoring and actuating applications. In monitoring ap-
plications, the nodes only processes the data. In actuating
applications, the nodes can interfere in the monitored
environment [15], [16]. In the both cases we can to
apply the data stream technics, to process the sensor
stream in monitoring case or to compose stream queries
in actuating case.

The most common sensor stream consider the network
as a distributed database. In this case, the network ab-
straction is based on a Data Stream Management System

(DSMS). These applications are concerned with how
queries can be answered [17]�[20]. Some proposals use
the amount of resources available at a DSMS and apply
it to extract management information from the WSN,
such as energy and node location [21], [22]. However,

current DSMS's are not suitable for WSNs, since nodes
have too few resources.

If a node sends all its measurements, it will spend
much energy, and part of the data probably will be
delayed or lost. For avoiding that, part of the data is not
processed. Data stream algorithms based on sampling
process only part of the data, producing data similar to
the original. The data stream algorithms that sketches
data, reduce the data through a data sketch. As an ex-
ample, calculating the minimum, maximum and average
of a data [18] or counting the data frequency. Histogram
is another technique, used to capture the distribution or
the data behavior, e.g., data is analyzed and accumulated
according its kind, in such way that only one data in this
distribution is stored [23].

There are some solutions in WSNs that use process
like data stream. In same cases the application does
adaptive sampling, where the samplings is the data
sensing [24]�[27]. In other cases, the solutions are based
in data reduction or aggregation, normally based in
correlated information about the data sensing [28]�[30].

In this sense, this work applies sensor stream technics
to reduce the network traf�c keeping the data quality and
representativeness. We propose two data stream algo-
rithms for WSNs that use a sampling and sketch of data.
With our solutions it is possible to reduce data traf�c
and, consequently, the delay and energy consumption.
This work presents a way to deal with energy and time
constraints at the application level, as a complementary
view of solutions that treat this problem in the lower
network levels. In special, the sampling algorithm aims
to choose the ideal sample size for processing data
streams.

This work is organized as follows. In Section II, we
introduce the data stream problem. Next, in Section III,
we present the data stream algorithms for sensor network
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data. Experimental results are given in Section IV, and
Section V concludes this study and presents the future
work.

II. PROBLEM DEFINITION

The problem addressed in this work can be stated as
follows:
Problem Statement: Given a sensor stream, we want to
meet WSN requirements by reducing the data traf�c by
using data stream techniques and assuring a minimum
data quality order to reduce energy consumption and
delay.

This problem can be further assessed by answering
the following questions:

• Data quality: How can we evaluate the quality
of the processed data? In some applications, the
main goal of a WSN is to deliver sensed data to
an observer. Due to the network limitations and the
data characteristics only samples or sketches of the
data stream are sent. In order this, we must evaluate
if these data sent are representative. To perform
this evaluation we can use statistics tests to know
whether the original sensor stream and the sampled
one are equivalent, and also compare the distance
between the average of their data values.

• Data reduction: How much data can be reduced
without compromising the application objectives?
In the sampling case, we need to identify the
minimum data sample that can be used in speci�c
application. In this sense, we use a sample of log n

elements to represent a population of n elements
while maintaining the data quality. Other sample
sizes can be used according to the application
requirements. When we use the sketch, it represents
all data, using the �xed size. In this case we loss
the data sequence.

• Losses vs. bene�ts: What is the relation among
the data-quality loss and the bene�ts for attending
network requirements? By reducing the stream size
using sampling there is an impact on the data
quality, which is an important aspect for the ap-
plications. However, the higher the data is reduced
the more bene�ts are achieved for network aspects
such as delay and energy. The decision about which
aspect is more important depends on the application
requirements, and so the evaluation of this relation
is important. In the sketch case we loss the sequence
of data however we have a good approximation of
the original sensor stream where the data can be
regenerated arti�cially in the sink.

All these questions must be answered to conceive
some solution to sensor stream. To address these an-
swers, the scope of this work consider the following
assumptions:

• Sensor network topology: We consider a �at
network composed of homogeneous sensor nodes
with a single sink to receive and process data from
source nodes. We use a common tree-based routing
solution to evaluate the network behavior. The data
evaluation is computed when data arrive in the sink.

• Data stream processing: The streams are pro-
cessed only by the source nodes, i.e., each source
processes its own data stream and sends the results
towards the sink node.

• Data stream generation: The streams are gener-
ated continuously at regular intervals (periods) of
time and follow a normal distribution to represent
their values.

III. SENSOR STREAM SOLUTIONS

To address the problem stated above, we need to
design algorithms that reduce the traf�c in the network.
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This reduction must keep the data similarity, and also
attend the network requirements. The solutions use the
sampling and sketch technics and they are described in
the follow subsections.

A. Sampling Based Algorithm

This solution is motivated by the problem address in
Section II. Where the data reduction, can be provided
by sampling of the original data. This solution tries
to keep the data quality and the sequence of sensor
stream. Our sampling based algorithm provides a so-
lution to allow the balance between best data quality
and network requirements. The sample size can vary,
but it must be representative to attend the data similarity
requirement. According to network requirements, we can
set the sample size between log n and n. Thus, it can
attend the quality requirements in relation to network
requirements. The sampling algorithm can be divided
into the following steps:
Step 1: Build a histogram of the sensor stream.
Step 2: Create a sample based on the histogram obtained
in Step 1. To create such a sample, we randomly choose
the elements of each histogram class, respecting the
sample size and the class frequencies of the histogram.
Thus, the resulting sample will be represented by the
same histogram.
Step 3: Sort the data sample according to its order in
the original data.

These steps is showed in Fig. 1(a). The original sensor
stream is composed of n elements. The histogram of the
sensor streaming is built in step 1. A minor histogram
is built in step 2, it has the sample size required (in the
case log n), and keeping the same frequencies of original
histogram. Finally, the minor built histogram is reordered
to keep data sequence in the step 3.

The pseudo-code of the sampling algorithm is given

Sensor stream

(size n)


Histogram (size n)


Sample  stream

(size log n)


Step 1
 Step 2
 Step 3


Histogram

(size log n)


(a) Sampling.

Step 1
 Step 2
 Step 3


Sorted

sensor stream


Frequencies


Sketch stream

(size m)


Histogram

frequencies (size m)


Sensor stream

(size n)


(b) Sketch.

Fig. 1. Example of algorithms execution.

in Fig. 2. We also consider n as the number of elements
in the original data stream, and m as the adopted sample
size.

Require:
Vector dataIn; {original data stream}
m; {sample size}

Ensure: dataOut; {sample stream}
1: Sort dataIn;
2: histScale ← �Class width�;
3: �rst ← dataIn[0];
4: count ← 0, j ← 0;
5: for i ← 0 to n do
6: if ( dataIn[i] > �rst + histScale) or (i = n − 1)

then
7: colFreq ← m× count/dataInSize;
8: while colFreq > 0 do
9: index ← �random element in the histogram

class�;
10: dataOut[j] ← dataIn[index];
11: j ← j + 1;
12: colFreq ← colFreq − 1;
13: end while
14: count ← 0;
15: �rst ← dataIn[i];
16: end if
17: count ← count + 1;
18: end for
19: Re-sort dataOut; {according to the original

order}

Fig. 2. Pseudo-code of the sampling algorithm.
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Analyzing the algorithm in Fig. 2 we have:

• Line 1 executes in O(n log n).
• Lines 8�13 de�ne the inner loop that determines

the number of elements at each histogram class of
the resulting sample, which takes O(m) steps.

• Lines 5�18 de�ne the outer loop in which the input
data is read and the sample elements are chosen.
Because the inner loop is executed only when con-
dition in line 6 is satis�ed, the overall complexity
of the outer loop is O(n)+O(m) = O(n+m). We
have an interleaved execution. Consider numClass

the number of histogram classes, colOrigi and col-

Samplei, respectively, the columns in original and
sampled histograms, where 0 < i ≤ numClass.
Basically, before entering in condition of line 6,
colOrigi is counted and n/numClass interactions
are executed. Satisfying this condition colSamplei

is built and m/numClass interactions are executed
(loop 8�13). In order to build the complete his-
togram, we must cover all classes (numClass), then
we have numClass( n+m

numClass ) = n + m.
• Line 19 re-sorts the sample in O(m log m).

Thus, the overall complexity is O(n log n) + O(n +

m) + O(m log m) = O(n log n), since m ≤ n. The
space complexity is O(n+m) = O(n) because we store
the original data stream and the resulting sample. Since
every source node sends its sample stream towards the
sink, the communication complexity is O(mD), where
D is the largest route in the network.

B. Sketch Based Algorithm

Like sampling, this solution is motivated by the prob-
lem address in Section II. The data reduction, can be
provided by sketch of the original data. This solution
tries to keep the frequency of the data values without
losses by using a little constant packet size. With the

information passed the data can be generated arti�cially
in the sink node. However, the sketch solution losses the
sequence of sensor streaming. The sketch algorithm can
be divided into the following steps:

Step 1: Order the data an identify the minimum and
maximum values in the sensor stream.

Step 2: Build the data out, only with the histogram
frequencies.

Step 3: Mount the sketch stream, with the data out and
the information about the histogram.

The execution of algorithm is showed in Fig. 1(b).
The original sensor stream is composed of n elements.
The sensor stream is sorted, and the sketch information
is acquired in step 1. The histogram frequencies is
built in step 2, where m is the number of column in
histogram. The sketch stream with the frequencies and
sketch information is mounted in step 3.

The pseudo-code of the algorithm is given in Fig. 3.
We also consider n as the number of elements in the
original data stream, and m as the histogram column
number.

Analyzing the algorithm in Fig. 3 we have, line 1 ex-
ecutes in O(n log n). Lines 6�14 execute in O(n). Thus,
the overall time complexity is O(n log n) + O(n) =

O(n log n). The space complexity is O(n + m) = O(n)

if we store the original data stream and the result-
ing sketch. Since every source node sends its sketch
stream towards the sink, the communication complexity
is O(mD), where D is the largest route in the network.

IV. EVALUATION

When we apply data stream solutions in WSN we have
to analyze the network and data quality behavior. That
is, what the impact over the network, when we apply our
data stream solutions? And, how much the application
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Require:
Vector dataIn; {original data stream}
m; {sketch size}

Ensure: dataOut; {sketch stream}
1: Sort dataIn;
2: histScale ← �Class width�;
3: �rst ← dataIn[0];
4: m ← ( dataIn[n] - dataIn[0]) / histScale;
5: count ← 0, j ← 0, index ← 0;
6: for i ← 0 to n do
7: if ( dataIn[i] > �rst + histScale) or (i = n − 1)

then
8: dataOut[index] ← count;
9: index ← index + 1;

10: count ← 0;
11: �rst ← dataIn[i];
12: end if
13: count ← count + 1;
14: end for

Fig. 3. Pseudo-code of the sketch algorithm.

data losses when we use our solutions? These questions
are answered in the next subsections.

A. Methodology

The evaluation of the algorithms is based on the
following assumptions:

• Simulation: we perform our evaluation through
simulations and use the NS-2 (Network Simulator
2) version 2.29. Each simulated scenario was exe-
cuted with 33 random topologies. At the end, for
each scenario we plot the average value with 95%
of con�dence interval.

• Network topology: we used a tree-based routing
algorithm called EF-Tree [31], [32], the density is
kept constant, and all nodes have the same hardware
con�guration. To analyze only the application, the
tree is built just once before the traf�c starts.

• Stream generation: the streams used by the nodes
are always the same, following a normal distribu-
tion, where the values are between [0.0; 1.0], and the

TABLE I
SIMULATION PARAMETERS.

Parameter Values
Network size Varied with density
Queue size Varied with stream size
Sink location 0, 0
Source location Random
Number of nodes 128, 256, 512, 1024
Radio range (m) 50
Bandwidth (kbps) 250
Simulation time (s) 5000
Traf�c start (s) 1000
Traf�c end (s) 4000
Stream periodicity (s) 60
Number of sources 1, 5, 10, 20
Stream size (n) 128, 256, 512, 1024
Sample size log n, n/2
Sketch size 10

periodicity of generation is 60s. The size of the data
packet is 20 bytes. For larger samples, these packets
are fragmented by the sources and re-assembled at
the reception.

• Evaluated parameters and stream size: we varied
the number of nodes, stream size, and number
of nodes generating data. In the sampling case,
for each evaluated parameter we analyzed the ap-
plication and network behavior by using sample
size of n/2 and log n. All parameters used in the
simulations are presented in Table I.

We evaluated the algorithms by considering two parts:
evaluation of network behavior by use the sampling
and sketch solutions and evaluation of data quality
only with sampling solution. In order to evaluate the
distribution approximation between the original and sam-
pled streams, we use the Kolmogorov-Smirnov test (K-
S test) [33]. This test evaluates if two samples have
similar distributions, and it is not restricted to samples
following a normal distribution. Moreover, as the K-S
test only identi�es if the sample distributions are similar,
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it is also important to evaluate the discrepancy of the
values in the sampled streams, i.e., if they still represent
the original stream. To quantify this discrepancy (Data

Error) we compute the absolute value of the largest
distance between the average of the original data and the
lower or higher con�dence interval values (95%) of the
sampled data average, Data Error = Max{|lowervalue−
Generateavg|, |highervalue − Generateavg|}, where the
pair (lowervalue; highervalue) is the con�dence interval
of data sample and Generateavg is the average of original
data.

B. Network Behavior

This evaluation considers the total consumed energy
of the network and the average delay to delivery a data
packet to the sink. Another analyzed metric, not shown
here, was the packet delivery ratio, and in all cases it was
around 100% of delivered data. In this evaluation, for
sampling algorithm we use different sample sizes (log n

and n/2) and the complete sensor stream (n) and for
sketch algorithm we use a �xed size (10 ranges). Both
cases are analyzed with different network scenarios by
varying the network size, the amount of generated data
at the source, and the number of sources.

Figs. 4, 5, and 6 show the energy consumption per-
formance. We observe in all cases with the sampling
solution when sample size is diminished the consumed
energy is diminished too. The sketch solution follows
the sample-log n result. This occurs because the packet
size is constant and near of sample-log n packet size.

Analyzing separately, when the number of nodes is
varied (Fig. 4) the consumed energy does not vary.
This occurs because only one source is used, the sensor
streaming size is the same, and the network density is
kept. Even trough, in this scenario the sample-log n and
the sketch solution have less impact over the consumed

energy.
When the sensor streaming size is varied (Fig. 5), we

can observe the impact of our solutions in the energy
consumption. The sample-log n and the sketch have the
best performance in all cases, and the energy consumed
do not vary when sample size increase. In the sample-
log n case, this occur because the packet size is increase
only one element when we increase the sensor stream
size (256, 512, 1024, 2048), and in the sketch case the
packet size used is always constant. The others results
(sample-n/2 and n) have worse performance because the
packet size is increased proportionally when the sensor
streaming size is increased.

When the number of nodes generating data are varied
(Fig. 6), one more time, the sample-log n and the sketch
have the best performance in all cases. This occur be-
cause, in this scenario more packets are passing through
the network when we increase the number of nodes
generating data. Each source using the sample-log n or
sketch solution use only one packet (the packet size is
not more 20B) to send its data at the sink. The others
results (sample-n/2 and n) each source node generate
more than one packet for application, this overload the
network, causing more energy consumption.

Energy consumption
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Fig. 4. Total consumed energy with different network sizes.
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Energy consumption
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Fig. 5. Total consumed energy with different stream sizes.
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Fig. 6. Total consumed energy with different number of sources.

The delay performance is showed in Figs. 7, 8, and 9.
Like the energy results, we can see that when sample
size is diminished, the delay is diminished too for the
same reason. Again, the same effect of the number of
nodes variation is observed (Fig. 7). When the sensor
stream size and number of nodes generating data are
varied we can observe the delay impact by using our
solution. Again, in the all cases, the sample-log n and
sketch have the best performance.

C. Data Quality

Here, we present the impact of our solution by eval-
uating data quality. This evaluation is only for sampling

Packet delay
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Fig. 7. Average delay with different network sizes.
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Fig. 8. Average delay with different stream sizes.
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Fig. 9. Average delay with different number of sources.
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solution, because this solution losses information in its
process, so is important to evaluate the impact of this
losses in the data quality. In the sketch case, all data can
be generated arti�cially when arrive in the sink node,
so the losses are not identi�ed when the data tests are
applied. The only impact generated by sketch solution
is the lost of the data sequence which was not evaluated
here.

In order to this, the impact of sampling solution is
made through the K-S test and the average error. Like
the network evaluation, we use different sample sizes
(log n and n/2) and the complete sensor stream (n) in
different network scenarios. We vary the network size,
the amount of data generated at the source, and the
number of sources.

Figs. 10, 11, and 12 show the similarity between the
original and sampled stream distributions. The difference
between them we call ks-diff. The results show that when
the sample size is diminished the ks-diff increases. Be-
cause the data streams are generated between [0.0; 1.0],
ks-diff = 20% for log n sample size, and ks-diff = 10%

to n/2 sample size. In all cases, the error is constant, this
occurs because the data lost in the network is very little.
The greater error occur when we use a minor sample
size but the data similarity is kept.

We also evaluate the data quality through the discrep-
ancy between the original and sampled stream average
values (Figs. 13, 14, and 15). This error we call data-

error. Like ks-diff, when the sample size is diminished
the data-error increases. However, data-error = 10% for
sample-log n, and data-error is almost zero for sample-
n/2. Again, in all cases the error is constant for the same
reason of the ks-diff. However an important observation
is that the data-error is the same for use sample-n/2

and n. So if we want to keep the maximum data quality,
considering the data-error we must send only sample-
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Fig. 10. K-S distance in different network sizes.
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n/2.

Data error
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Fig. 13. Average error with different network sizes.
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Fig. 14. Average error with different stream sizes.

D. Results Summary

In summary, when we analyze the data quality against
the network behavior, we have the following conclu-
sions:

• The sketch reduces the consumed energy and delay
by keep a constant transmitted data. Once, the data
can be generate arti�cially in the sink, the data qual-
ity is not affected in the distribution similarity and
average discrepancy. The problem is the sequence
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Fig. 15. Average error with different number of sources.

of data that is lost. But the sequence lost may be
acceptable by a large majority of applications when
the network restrictions are strong. The cases where
the data sequence is important we must use the
sampling solution.

• The sample-log n reduces the consumed energy and
delay by reducing transmitted data. However, the
data quality is affected in the distribution similarity
(20%) and average discrepancy (10%). But this
quality may be acceptable by a large majority
of applications when the network restrictions are
strong.

• The sample-n/2 is interesting either when the ap-
plication priority is the average discrepancy (near
zero), or we have the scenario presented in Fig. 4,
in which the stream size and number of nodes
generating data do not vary.

• Not using our algorithm, i.e., results with sample-
n, is interesting when we have to keep the same
data quality similarity and we do not have to worry
about the WSN restrictions.

• Finally, when do we use sampling or sketch? In
the case where the data sequence is important we
can use the sampling, in this case we can always
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analyze the application or network requirements to
decide about the best sample size. If the sequence
is not important we can use the sketch because it
always has the best network performance keeping
the integrity of all data. The advantages of the
sketch over sampling is that the sketch solution can
be modi�ed for on-line processing of the sensor
stream, without the storage of the original data.

Finally, our solution can be applied in the problem
addressed in Section II, and the results answer the
questions Data quality, Data reduction, and Losses vs.

bene�ts presented in Section II.

V. CONCLUSION AND FUTURE WORK

WSNs are energy constrained, and the extension of
their lifetime is one of the most important issues in the
design of such networks. Usually, these networks collect
a large amount of data from the environment. In contrast
to the conventional remote sensing � based on satellites
that collect large images, sound �les, or speci�c scienti�c
data � sensor networks tend to generate a large amount
of sequential small and tuple-oriented data from several
nodes, which constitutes data streams.

In this work, we proposed and evaluated two data
stream algorithms that use sampling and sketch tech-
niques to reduce data traf�c, and consequently reduce
the delay and energy consumption. This work represents
a way of dealing with energy and time constraints at the
application level, as a complementary view of solutions
that deals with this problem in the lower network levels.

The results show the ef�ciency of the proposed meth-
ods by extending the network lifetime � since data
transmission demands lots of energy � and by reducing
the delay without losing data representativeness. Such a
technique can be very useful to achieve energy-ef�cient
and time-constrained sensor networks if the application

is not so dependent on the data precision or the network
operates in an exception situation (e.g., few resources
remaining or urgent situation detection).

As future work, we intend to apply the proposed
method to process sensor streams along the routing task
and in clustered networks. Thus, not only the data from a
source is reduced, but similar data from different sources
can be also reduced, resulting in more energy ef�ciency.
We also intend to evaluate other data stream solution
like wavelets where speci�cally data characteristics can
be analyzed. However, we plan to use other data distri-
butions to analyze the behavior of our algorithms and
use other scenarios when data lost can be affected in
data quality.
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