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1. INTRODUCTION

XML is frequently used as an interface to relational databases. In this scenario,
XML documents (or views) are exported from relational databases and pub-
lished, exchanged, or used as the internal representation in user applications.
This fact has stimulated much research in exporting and querying relational
data as XML views [Fernádez et al. 2002; Shanmugasundaram et al. 2000,
2001; Chaudhuri et al. 2003]. However, the problem of updating a relational
database through an XML view has not received as much attention: given an
update on an XML view of a relational database, how should it be translated
to updates on the relational database?

There are many applications in which the need to update through an XML
view of a relational database arises, from manufacturing to finance to general
administration. As an example, Supplier Relationship Management (SRM) sys-
tems are used in companies which purchase large amounts of supplies from a
variety of suppliers. Due to the size of the purchases, each supplier works al-
most exclusively with the company. The company can therefore specify how
orders are to be managed; in particular, it typically requires suppliers to make
their stock available in a specific XML format conformant with their SRM so
that purchases can be planned in an automated manner. The XML file is a
view of the supplier’s underlying (relational) product management database.
The company then notifies each supplier of the quantity of each product it
intends to purchase next so that the supplier can begin production and be
ready for immediate delivery when the order is placed. Currently, the notifi-
cation and ordering is done outside of the supplier’s XML stock view. How-
ever, discussions with developers in at least one such company have revealed
the desire to provide notification and ordering by updating the stock XML
view directly, since this would considerably simplify the current transaction
process.

The approach we take to solving this problem is to take advantage of the well
studied problem of updating through relational views, and present a solution by
mapping from XML views to relational views. Specifically, we (i) map an XML
view query to a set of relational view queries; (ii) map updates over the XML
view to updates over the corresponding relational views; and (iii) use existing
work on updating through relational views to map the updates to the under-
lying relational database. The starting point of this mapping is a formalism
that we call query trees. In the relational case, work on updating through views
has focused on select-project-join views since they represent a common form of
view that can be easily reasoned about using key and foreign key information.
Similarly, query trees represent a common form of XML views that allow nest-
ing, composed attributes, heterogeneous sets, and repeated elements. However,
query trees were conceived as an internal query representation and are not well
suited for end-users. To specify how an XML view is constructed from a rela-
tional source, we therefore use the UXQuery [Braganholo et al. 2003b] view
definition language. UXQuery is expressive enough to capture the XML views
that we have encountered in practice yet is simple to understand and manip-
ulate. It is a subset of XQuery [Boag et al. 2005], and equivalent in expressive
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Fig. 1. XML view containing vendors, books, and DVDs.

power to DB2 DAD files [Cheng and Xu 2000]. Throughout the article, we will
use the term XML view to mean those produced by UXQuery.

In summary, in this article we will focus on the interactions between
UXQuery and query trees, as well as the architecture and algorithms of the
system that implements them, PATAXÓ.1

1.1 Running Example and Overview

An example of an XML view is shown in Figure 1. In this example, and in every
example of this article, we use the database shown in Figure 2. Its schema
consists of six tables: Vendors, Warehouse, Book, DVD, SellBook, and SellDVD.
Table SellBook establishes a relationship between tables Vendor and Book,
registering prices of books sold by a given vendor. The table SellDVD plays the
same role for DVDs and vendors. A vendor has several warehouses in which
products are stored. In the XML view of Figure 1, data was extracted from
tables Vendor, Book, DVD, SellBook and SellDVD. Note that the products for a
vendor are grouped by price.

The strategy we adopt is to map an XML view query to a set of underlying
relational view queries. Similarly, we map an update against the XML view to a
set of updates against the underlying relational views. It is then possible to use
any existing technique on updating through relational views to both translate
the updates to the underlying relational database and to answer the question
of whether or not the XML view is updatable with respect to the update.

In preliminary work [Braganholo et al. 2003a], we used the nested relational
algebra (NRA) as the view definition language. In this approach, each XML view
query is mapped to a single relational view query. However, NRA views are
not capable of handling heterogeneous sets, which arise frequently in practice.
Thus, the NRA is capable of representing the XML view of Figure 3 but not that
of Figure 1. To make this clearer, in this context heterogeneity means distinct
DTD types for repeating children. In the example of Figure 1, the node products

1While PATAXÓ is the name of a native Brazilian tribe (there are still a few living in Bahia), here it

stands for Permitindo ATualizaçõies Através de visies Xml em bancos de dados relaciOnais, which

can be loosely translated as permitting updates on relational databases through XML views.
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Fig. 2. Sample database.

Fig. 3. XML view showing books and vendors.

has heterogeneous children—that is, it has repeating children of types book and
dvd. In contrast, in Figure 3 there are no heterogeneous nodes.

Since views such as the one in Figure 1 are very common in practice, we
have decided to adopt a more general view definition language—UXQuery. We
then map a query in UXQuery to an extended query tree,2 and use the results
of Braganholo et al. [2004] to map the resulting XML view to a set of relational
views. The extension to query trees presented here allows the grouping of tuples
that agree on a given value. For example, the products in Figure 1 represents
grouping by price.

2This article extends the query trees of Braganholo et al. [2004] to support grouping of tuples.
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As mentioned before, a single XML view produced by a query tree can be
mapped to a set of relational views. The reason why there may be more than
one underlying relational view for an XML view expressed by a query tree is
the presence of heterogeneous sets. For example, the XML view of Figure 1
is mapped to two corresponding relational views: one for vendors and books
(ViewBook), and another one for vendors and DVDs (ViewDVD). We must then
identify to which relational views an XML update should be mapped.

As a concrete example, suppose we wish to insert a new book

<book>

<btitle>Birding in North America</btitle>

<isbn>5555</isbn>

</book>

at the point in the XML view of Figure 1 specified by the following update path
expression: /vendors/vendor[@id="01"]/products[@price="29"] (node 13). Using
the techniques of this article, this update would be mapped to the following
SQL insert statement over ViewBook:

INSERT INTO VIEWBOOK (id, vendorname, state, country, price, isbn, btitle)

VALUES ("01", "Amazon", "WA", "US", 29, "5555", "Birding in North America");

Using existing relational techniques (in particular, that of Dayal and
Bernstein [1982]), we would then map the update on the relational view to
a set of updates against the underlying relations.

We also address the problem of checking if an update respects the schema of
the XML view. As an example, the DTD of the XML view of Figure 3 is shown
below:3

<!ELEMENT vendors (vendor*)>

<!ELEMENT vendor (book*)>

<!ATTLIST vendor id CDATA #REQUIRED>

<!ELEMENT book (vendorname, isbn, title, price)>

<!ELEMENT vendorname (#PCDATA)>

<!ELEMENT isbn (#PCDATA)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT price (#PCDATA)>

If a user tries to insert the XML tree <bike>Giant</bike>using the update path
/vendors/vendor[@id="01"], we would determine that the update is not correct
with respect to the schema of the XML view, and would not attempt to map it
to the underlying relational database.

1.2 Contributions

In summary, the main contributions of this article are

—a notion of query trees which captures a common form of XML views
that allows nesting, composed attributes, heterogeneous sets and repeated
elements;

3We use DTDs because their syntax is succinct. Our implementation actually uses XSD.
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—a subset of XQuery, to define XML views over relational databases;

—an architecture of a system that implements the ideas of this article;

—algorithms to map an XML view query to a set of corresponding relational
views queries, and to map updates over the XML view to updates over the
relational views.

The chief contribution of this article is a complete and novel treatment of
updating relational databases through XML views, a problem that has not been
addressed in previous literature.

1.3 Organization of the Text

The outline of this article is as follows: Section 2 presents related work. Sec-
tion 3 shows the architecture of the PATAXÓ System and discusses its main
modules. The view definition language (UXQuery) and query trees are pre-
sented in Section 4. Section 5 presents a simple language for updating XML
views and shows how to detect whether or not an update is correct with re-
spect to the XML view DTD. An algorithm for mapping an XML view to a set of
underlying relational views is given in Section 6, along with an algorithm for
mapping insertions, modifications and deletions on XML views to updates on
the underlying relational views. Section 7 presents an evaluation of our view
definition algorithm. We conclude in Section 8 with a summary of the article’s
main contributions and a discussion of future work. The Electronic Appendix,
which can be accessed in the ACM Digital Library, gives proofs of the theorem in
Section 6, along with algorithms and the partitioned query trees corresponding
to the application of algorithm split.

2. RELATED WORK

The closest work on updates through XML views is that of Wang et al. [2003]
and Wang and Rundensteiner [2004]. In Wang et al. [2003], the XML views con-
sidered were XML documents stored in relational databases and reconstructed
using XQuery. For this class of views, it was proven that it is always possible to
correctly translate the updates back to the database. However, the authors did
not give details of how such translations are made. This approach differs from
ours since we deal with XML views constructed over legacy databases. The ap-
proach in Wang and Rundensteiner [2004] presented an extension to the notion
of clean source of Dayal and Bernstein [1982]. They used this extended notion
to study the updatability of XQuery views published over relational databases.
Their results are analogous to the results of our previous work [Braganholo
et al. 2003a]. Neither of these articles discussed how updates are translated to
the underlying relational database.

Work on data provenance (or data lineage) is also relevant, since one of the
concerns is knowing where a piece of data that is in a given view came from.
In the literature, this is called where provenance [Buneman et al. 2001]. The
solution adopted in Buneman et al. [2001] is to syntactically analyze the view
definition query. Why provenance, on the other hand, deals with knowing why
a piece of data is in the view, that is, what tuples were used to generate a given
piece of information in the view [Cui and Widom 2000]. In our work, we also
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need to know where data came from, so we can map updates over this data to
the database. As in Buneman et al. [2001], our approach uses view definition
analysis to solve this problem.

Another area related to our work is data mapping, which is studied in data
integration. The main goal in this area is to integrate autonomous data sources
so they can be viewed as an integrated repository where queries can be posed.
Most of the work in this area [Garcia-Molina et al. 1997; Carey et al. 1995;
Baru et al. 1999; Mello and Heuser 2005; Kittivoravitkul and McBrien 2005]
has used a mediated architecture that defines a global view of the data sources
and maps each local source to the global view. While the XML files we consider
are views of a (single) relational database, we are primarily concerned with
updating through the view rather than the simpler problem of querying the
view. Furthermore, systems that allow updates over the global view [Carey
et al. 1995; Kittivoravitkul and McBrien 2005] do not specify how to map an
XML update to the underlying systems.

2.1 Building XML Views over Relational Databases

Several articles have explored the subject of building and querying XML views
over relational databases [Fernádez et al. 2002; Shanmugasundaram et al.
2001; Bohannon et al. 2002; Chaudhuri et al. 2003; Shanmugasundaram et al.
2000]. Most approach the problem by building a default XML view from the
relational source and then using an XML query language to query the default
view [Fernádez et al. 2002; Shanmugasundaram et al. 2001; Bohannon et al.
2002; Chaudhuri et al. 2003].

Each of the existing approaches uses a different technique to construct the
XML view using a relational engine to retrieve data. Some transform the XML
view definition into extended SQL [Shanmugasundaram et al. 2000, 2001;
Chaudhuri et al. 2003]; others use internal representations to map the XML
view to several SQL queries [Fernádez et al. 2002; Bohannon et al. 2002]. In
our approach, views are built using an extension of XQuery, but the goal is to
update the resulting views rather than to query them.

Other approaches focus on extracting XML documents from relational data-
bases; querying the resulting document is not the goal. Some of these ap-
proaches apply a default mapping over an SQL query specified by the user
[Turau 2001]. Others allow the user to specify an XML template, together with
SQL instructions that will be used to generate the resulting XML document
[Intelligent System Research 2001].

Commercial relational databases also offer support for extracting XML views
over relational databases. IBM DB2 XML Extender [Cheng and Xu 2000] uses
a mapping file called DAD (Data Access Definition) to specify how a given SQL
query is mapped to XML. This mapping file is very complex, and is generally
built using a wizard. Oracle 9i release 2 uses SQL/XML [Eisenberg and Melton
2002]. SQL Server extends SQL with a directive called FOR XML [Conrad 2001b].
It also provides an alternative way of expressing XML views, which can be done
using an annotated XML Schema. The schema reflects the view structure that
the user wants to construct, and is augmented by annotations that tell where
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the element must come from (i.e., database table and column name). The XML
instance is not generated from the schema. The user must specify an XPath
query over the view in order to get the instance (or portions of it).

As we can see, most commercial databases have their own way of dealing
with XML, which makes it difficult to use them for accessing and updating
legacy databases. DB2, which allows the creation of XML documents from re-
lational tables, requires that updates be issued directly to the relational tables.
In SQL Server an XML view generated by an annotated XML Schema can be
modified using updategrams. Instead of using INSERT, UPDATE or DELETE
statements, the user provides a before image of what the XML view looks like
and an after image of the view [Conrad 2001a]. The system computes the dif-
ference between these images and generates corresponding SQL statements to
reflect changes on the relational database. Oracle offers the option of specifying
an annotated XML Schema, but the only possible update operation is to insert
XML documents that agree with an annotated XML Schema.

Native XML databases like XIndice [Apache Software Foundation 2002],
Timber [Jagadish et al. 2002] and Tamino [Software AG 2002; Schöning 2001]
also support updates. However, the goal of all these systems differs from ours
since they do not update through views, nor is the source data relational.

3. ARCHITECTURE

In our approach, the user is presented with an XML document which is an
UXQuery view of an underlying relational database. The user performs updates
directly on this document; the system then determines how to translate the
updates to the underlying relational database so that the updated view remains
correct. Thus there is no need for the XML document to be regenerated by
reexecuting the view query over the relational database.

PATAXÓ implements an UXQuery processor and maps each UXQuery view
definition to a set of SQL view definitions over the underlying relational
database. To do this, an UXQuery view definition query is transformed into
an internal representation called a query tree [Braganholo et al. 2004], which
is then manipulated by our system and mapped to a set of corresponding re-
lational view definitions. When an update is performed on the UXQuery view
document, it is mapped to a set of updates over the relational views.

The overall architecture of PATAXÓ is shown in Figure 4, and consists of
two main modules: the UXQuery Processor and the Update Manager. The UX-
Query Processor is responsible for processing the UXQuery view definition and
generating the XML view instance (document). The Update Manager receives
updates over this document from users and maps them to updates over the cor-
responding relational views. A submodule called Relational View Updater then
translates the relational view updates to the underlying relational database.
We do not cover details of this module in this article.

We now present each of these modules in detail.

3.1 UXQuery Processor

The UXQuery processor (Figure 5) is the module responsible for processing a
view definition query expressed in UXQuery and producing the corresponding
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PATAXÓ: Framework to Allow Updates Through XML Views • 847

Fig. 4. PATAXÓ system architecture.

XML view instance. To do this, it translates a query in UXQuery to a query
using pure XQuery syntax (see Section 4.1.1 for details on this translation).

From the parsed UXQuery query, the UXQuery Processor generates the
XQuery query (which is executed by an external XQuery processor), the query
tree, and the XML schema of the XML view. (See Section 4.1.1 for the transfor-
mation rules for translating UXQuery queries into XQuery, and Section 4.3 for
the translation of UXQuery queries to query trees.)

The generated query tree is used by the Relational View Mapper to generate
the relational view queries that correspond to the XML view query (Section 6.1).
Notice that we do not create the relational views in the underlying relational
database. We just store the SQL view definition queries in PATAXÓ and use
them in the Relational View Updater Module. The query tree is also used by
the XSD Generator to generate the schema of the XML view (Section 4.2.4).

Relevant portions of the relational source data are translated to XML by a
submodule called XML Extractor. The XML Extractor encodes a relational table
in XML using an element row as a tuple delimiter. For example, the Vendor table
of Figure 2 is represented in XML as

<vendor>

<row>

<vendorid>01</vendorid>

<vendorname>Amazon</vendorname>

<url>www.amazon.com</url>

<state>WA</state>
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Fig. 5. UXQuery processor.

<country>USA</country>

</row>

<row>

...

</vendor>

Since SQL does not distinguish between lower- and uppercase, we have
adopted the convention that element names in the extracted XML documents
are all in lowercase (notice that our example of Figure 2 uses mixed case).
In this way, XML elements representing tables/attributes in UXQuery queries
must also be referenced in lowercase.

Rather than extracting the entire table, the XML Extractor uses selection
conditions specified in the UXQuery (where conditions) to eliminate unnecessary
tuples, and projects only the columns specified in the query. In this way, we
avoid extracting data that would be discarded by the XQuery processor when
processing the query. Notice that the extracted XML documents are used as
input to process the UXQuery query.

After extracting the XML files that represent relevant portions of the un-
derlying relational tables (XML Extractor) and producing the XQuery query
(XQuery Generator), an external XQuery processor (Saxon [Kay 2001]) is used
to process the query. The result of this processing is the XML view document
over which updates are then made by users.
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PATAXÓ: Framework to Allow Updates Through XML Views • 849

Fig. 6. Update manager.

3.2 Update Manager

The Update Manager (Figure 6) is the module responsible for receiving up-
date requests and mapping the updates to the underlying relational database.
In order to do so, it first checks whether or not the update conforms to the view
schema and rejects updates that do not conform (Section 5.1).

Using the query tree, the Relational View Update Generator takes the re-
quested update and translates it to updates over the corresponding relational
views (as specified in Section 6.2). The Relational View Updater then uses ex-
isting techniques for mapping updates over the relational views to updates over
the base tables. Our current version of PATAXÓ uses the translation algorithm
of [Dayal and Bernstein 1982] to produce updates over the base tables; updates
that cause side effects are rejected (for details please see Braganholo et al.
[2004]). However, this module could be replaced by many other options [Keller
1985; Bancilhon and Spyratos 1981; Lechtenbörger 2003], many of which allow
side effects that would then have to be propagated back to the view. Details are
beyond the scope of this article.

4. VIEW DEFINITION LANGUAGE

4.1 UXQuery

Due to its wide-spread acceptance, we would ideally adopt XQuery [Boag et al.
2005] as the view definition language. However, it contains a number of fea-
tures that are not consistent with the underlying relational nature of the data,
as well as others that create new values that do not appear in the underlying
relational database. In particular, order related operators affect only the layout
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of the resulting XML view document rather than the contents of the underlying
relational database, in which tuples are inherently unordered. Thus while or-
dering is allowed in UXQuery, it is not considered in the translation of updates
to the relational database. Furthermore, aggregate operators create ambiguity
when mapping a given view tuple to the underlying relational database. We
therefore outlaw aggregate operators. This means that the use of let in our
subset of XQuery must be very carefully controlled, and for this reason we will
allow it only as expanded by a new macro called xnest. To evaluate the effect of
these restrictions, we have analyzed the use of let in the queries of the XQuery
Use Cases (Relational) [Chamberlin et al. 2005], and have concluded that the
only places let cannot be replaced by a for is when aggregate operations or
function applications are used. We therefore feel that these restrictions are
reasonable and do not overly limit the expressiveness of our language.

The subset we have chosen is called UXQuery (Updatable XQuery), and con-
tains the following:

—FWOR for/where/order by/return expressions (note that we do not allow let

expressions);

—element and attribute constructors;

—comparison expressions;

—an input function table, which binds a variable to tuples of a relational table
that is specified as a parameter to the function;

—a macro operator called xnest, which facilitates the construction of heteroge-
neous nested sets.

It is important to notice that UXQuery is a view definition language rather
than an update language. Our update language will be introduced in Section 5.

In this section we assume the reader is familiar with XQuery, its syntax, and
semantics, and will not get into details that UXQuery “inherits” from XQuery.
For further details on XQuery, please refer to Boag et al. [2005]. The XQuery
use cases are also an easy way to understand XQuery [Chamberlin et al. 2005].

As a first example, we show a very simple UXQuery view definition query
which retrieves vendors and their warehouses. The query is shown in Figure 7
(left-hand side). The only difference between this query and one in XQuery is
the table input function (lines 2 and 6), which takes as input the name of the
relational table and produces a set of tuples. The XML view resulting from this
query is also shown in Figure 7 (right-hand side).

The EBNF of UXQuery is shown in Figure 8. It is based on the EBNF of the
XQuery Core [Boag et al. 2005], and has been simplified to remove operators
not allowed by UXQuery. We have also added the xnest operator and the table

input function. In the EBNF we use a set of grammar definitions available in
the XML documentation. The basic tokens Letter and Digit are defined in Bray
et al. [2004]. The identifier QName is defined in Bray et al. [1999]. Literals and
numbers are defined in Boag et al. [2005].

The formal semantics of UXQuery matches the semantics of XQuery [Draper
et al. 2005] with the exception of the new input function table and the macro
xnest, which we discuss next.
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Fig. 7. Example of a simple query that retrieves vendors and warehouses and its result.

4.1.1 Semantics of table(). XQuery has two input functions: collection
and doc [Malhotra et al. 2005]. In UXQuery, the only input function available to
the user is table. This function takes as input a table from a relational database
and returns a set of tuples of the following form:

<row> <!-- tuple attributes -->

<attribute-1> value of attribute 1</attribute-1>

...

<attribute-n> value of attribute n</attribute-n>

</row>

<row>

...

</row>

...

Following SQLX [Eisenberg and Melton 2002], we translate this input func-
tion to pure XQuery as follows:

define function table($tableName as xs:string) as node*

{ let $tuples := doc(concat($tableName,".xml"))//row

return $tuples }

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.
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Fig. 8. EBNF of UXQuery.

For this input function to work, the relational table used as the parameter
in the function call must be represented in XML. As an example, the function
call shown in line 2 of Figure 7 assumes that table Vendor is available in a file
named vendor.xml which has the following structure:

<vendor>

<row>

<vendorid>01</vendorid>

<vendorname>Amazon</vendorname>

<url>www.amazon.com</url>

<state>WA</state>

<country>USA</country>

</row>

<row>

...

</vendor>

The extraction of relational tables to XML is done by the XML Extractor in
PATAXÓ (see Section 3.1).
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4.1.2 Semantics of xnest. The xnest operator is used to specify a possi-
bly heterogeneous set of nested tuples that agree on the value of one or more
attributes. The tuples are grouped according to the value of these attributes,
which we call nesting attributes. A simple (nonheterogeneous) example of such
a query is shown in Figure 9 (lines 1–23). The query specifies a join of tables
Vendor, Book and SellBook. For each vendor, it shows the vendor name, the
vendor Id, and the books sold by that vendor grouped by price. The xnest oper-
ator is shown in lines 6–20. It is responsible for grouping books by price. The
nesting attribute in this case is price (line 8).

The xnest operator consists of four parts:

(1) The nesting attribute (line 8). The variable bound to this attribute is called
the nesting variable ($price in the example).

(2) The source tables, which contains the data that will be returned by the
xnest operator. In the example, the source tables are Book and SellBook
(lines 6–7).

(3) The header element, which is the element that encloses the XML fragment
returned by the xnest operator. In this example, the header element is books
(line 12). The nesting attribute must appear either as an attribute of the
header element or as a subelement of it.

(4) One or more element groups (ElGroup), which are XML fragments that will
be grouped according to the nesting attribute. The code in lines 13–18 of
Figure 9 is an element group. This element group specifies books that will
be returned according to their prices.

The XML view resulting from this example query is as follows:

...

<vendor id="2">

...

<books price="38">

<book>

<isbn>1111</isbn>

<title>Unix Network Programming</title>

</book>

<book>

<isbn>2222</isbn>

<title>Computer Networks</title>

</book>

</books>

...

The need for a way of specifying groups in XQuery has been extensively
discussed over the past few years. Following our xnest proposal in 2003
[Braganholo et al. 2003b], the groupby operator was proposed in 2004 [Deutsch
et al. 2004a, 2004b]. They proposed an algorithm that translates XQuery
queries using pure XQuery syntax into equivalent queries that use groupby.
Notice that they are going in the opposite direction from us: they start with a
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Fig. 9. Example of a query that uses the xnest operator (lines 1–23) and its translation to regular

XQuery syntax (lines 24–49).

general XQuery query and produce another with groupby with the goal of query
amelioration. Since our goal is to simplify query specification for the user and
limit “bad” uses of let, we start with queries using xnest and produce pure
XQuery queries. The approach proposed by Deutsch et al. [2004b] also requires
a special XQuery processor which understands groupby. In 2004, BEA Systems
proposed an extension to XQuery which allows grouping through a group by

operator [Borkar and Carey 2004]. The motivation is the same as ours: to fa-
cilitate query specification. The difference between group by and xnest is that
xnest allows the specification of heterogeneous groups (see Figure 10). With
group by, groups are homogeneous. There was also a submission to W3C of a
grouping extension to XQuery, authored by well known DB researchers; un-
fortunately, this submission is not yet available online. However, the Working
Draft of XSLT 2.0 [Kay 2005] now has a for-each-group operator which is also
similar in purpose to xnest. The difference is that in XSLT, when grouping by a
set of values, the same item may appear in more than one group. In xnest, each
item will belong to exactly one group, thus avoiding update problems. XSLT 2.0
also allows grouping by patterns, which xnest does not. Due to the differences
discussed above, we believe xnest allows the types of grouping that are useful in
XML views (i.e., heterogeneous sets) while avoiding potential problems when
updating.

4.1.3 Normalization to XQuery. A query containing xnest can be normal-
ized to one using pure XQuery syntax. The normalized query corresponding to
the query in Figure 9 (lines 1–23) is shown in Figure 9 (lines 24–49). The nor-
malization process ensures that the nesting variable (in the example, $price)
appears in the Header element (in the example, books) as an attribute or a
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sub-element. Notice that in the normalized query, we still use the input func-
tion table.

Continuing with the example, the xnest operation (lines 6–20) is normal-
ized to the expression shown in lines 29–46. The expression consists of a
let/for (lines 29–31) and an additional for (lines 34–44) for each element group
(ElGroup) (lines 13–18) specified in the query.4 In the normalization process,
we introduce new variables in the let clause. These variables are primed (′),
and correspond to the variables bound to source tables in the xnest operator.
There will be one primed variable in the let clause for each source variable
specified in the xnest operator.5

The normalization process also makes sure that nested elements are related
to the nesting variable. This is done by adding a new condition in the where

clause. In the example (line 38) we added a condition requiring that the book
is sold at the price specified by $price.

Note that this example shows a nesting over a single attribute, but that it is
possible to specify nests over more than one attribute. As an example, we could
group books over price and year as follows:

...

{xnest $b in table("Book"), $sb in table("SellBook")

by $price in ($sb/price), $year in ($b/year)

where $v/vendorid=$sb/vendorid and $sb/isbn=$b/isbn

return

<books price="{$price/text()}" year="{$year/text()}">

{

<book>

{$b/isbn}

{$b/title}

</book>

}

</books>

}

...

The query of Figure 9 has a single element group (ElGroup) (lines 13–18).
In this example, it is not necessary to separate the conditions and variable
bindings that appear in the xnest operator over the corresponding fors in the
normalized query. We now show an example of where this is necessary.

Figure 10 shows a query that has two element groups (lines 21–26 and 27–
32). In this case, the normalized query will have two fors, one for each of the
element groups (lines 54–64 and 65–75). The variable bindings and where con-
ditions must then be carefully analyzed in order to identify which of the fors
they belong to. This is done by functions fs:SubVariable(i) and fs:SubExpr(i) in
the normalization process shown below.

4See Figure 8 for the definition of ElGroup.
5XQuery does not accept variable names with (′). However, we use them here for ease of explanation.
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Fig. 10. Example of a query with two element groups (lines 1–37) and its translation to regular

XQuery syntax (lines 38–80).

The normalization process described through the above examples can be
formally stated as:

[xnest Variable1 in TableExpr1, . . . , Variablen in TableExprn

by NestVariable1 in (Variable11
/QName11

| . . . | Variable1m /QName1m ),

. . . , NestVariablek in (Variablek1
/QNamek1

| . . . | Variablekm /QNamekm )

where Expr return

<ElName AttName1=”{NestVariable1/text()}” . . . AttNamek=”{NestVariablek /text()}”>
{ElGroup1} . . . {ElGroupm} </ElName> ] xnest

==

let Variable′
1 := TableExpr1, . . . , Variable′

n := TableExprn

for NestVariable1 in distinct-values(Variable11
/QName11

| . . . | Variable1m /QName1m ),

. . . , NestVariablek in distinct-values(Variablek1
/QNamek1

| . . . | Variablekm /QNamekm )

return
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<ElName AttName1=”{NestVariable1/text()}”, . . . , AttNamek=”{NestVariablek /text()}”>
{for fs:SubVariable(1), fs:IsolatedTables()

where fs:SubExpr(1) and (Variable11
= NestVariable1 and . . . and Variablek1

= NestVariablek )

return ElGroup1 }
. . .

{for fs:SubVariable(m), fs:IsolatedTables()

where fs:SubExpr(m) and (Variable1m = NestVariable1 and . . . and Variablekm = NestVariablek )

return ElGroupm }
</ElName>

The notation for the normalization process is the same as that in Draper
et al. [2005]. The process assumes that

—{Variable11
, . . . , Variable1m , . . . , Variablek1

, . . . , Variablekm} ⊆ {Variable1

, . . . , Variablen}.
—The auxiliary function fs:SubVariable(i) returns all variables Vx referenced

in ElGroupi and also all variables Vy appearing in a condition of the form
“Vx/QNamex cmp Vy/QNamey ” or “Vy/QNamey cmp Vx/QNamex” in
Expr in the where clause of the xnest operator ( cmp ∈ {=, <, >, ! =, <=, >=}).

—The auxiliary function fs:IsolatedTables() returns all variables Vx not ref-
erenced in any ElGroup of the xnest operation, or in any where condition.
Such variables reference what we call isolated tables, and they must be
added to all fors of the normalized query (excluding the first for, which de-
fines the nesting variables). An example of this situation follows the function
definitions.

—The auxiliary function fs:SubExpr(i) returns every expression specified in
Expr in the where clause of the xnest operator that references a variable re-
turned by the function fs:SubVariable(i).

Returning to the example of Figure 10, the first element group (ElGroup)
(lines 21–26) references variable $b. Additionally, there is a where condition
that uses $b and references $sb ($sb/isbn=$b/isbn, line 17). Hence the function
fs:SubVariable(1) returns $b and $sb. These variables are used in the for clause
corresponding to this element group (lines 54–55). The where conditions for this
element group are found by function fs:SubExpr(1), which analyzes the where
condition of the xnest expression and takes all such conditions that references
variables $b and $sb. A condition requiring that each book is sold by the price
specified by $price is also added. The resulting where condition is shown in lines
56–58. The same process is done with the second element group (the one that
builds the dvd element—lines 27–32).

When there are isolated tables in the xnest, that is, tables which are not
referenced in an element group and for which there are no where conditions,
the tables are added in each for produced by the normalization process. As an
example, suppose that there is an additional binding using a new variable $w

to the Warehouse table in line 13a of Figure 10, and that no where condition is
specified for $w. In this case, this instance of Warehouse is an isolated table,
and the normalization process would add $w to the two fors under the products

element (lines 55a and 66a). The semantics in this case is a Cartesian product
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of table Warehouse with the joined tables Book and SellBook, and also with the
joined tables DVD and SellDVD.

The normalized query is the one used by PATAXÓ to produce the XML view,
as mentioned in Section 3.1. The XML view resulting from the sample query of
Figure 10 is shown in Figure 1.

4.1.4 Expressive Power. UXQuery can express everything in the
XQueryCore [Boag et al. 2005] except for queries that refer to element order;
recursive functions; is/is not operators; if/then/else expressions; sequences of
expressions; disjunctions; function applications; and arithmetic and set oper-
ations. The restriction on sequences of expressions is due to the fact that the
result of a query must be a single XML document, and the restriction on dis-
junctions relates to restrictions imposed by the algorithm we use to translate
the view updates to the relational database [Dayal and Bernstein 1982]. Input
functions are also limited to single relations, whereas in XQuery variables can
be bound to the results of expressions.

Even with such limitations, UXQuery is capable of expressing most real-
world views we encountered in practice [Braganholo et al. 2004], and its ex-
pressive power is equivalent to that of DB2 DAD files [Cheng and Xu 2000].

4.2 Query Trees

Query trees are used as an internal representation of the XML view ex-
traction query. This abstract representation enables reasoning about updates
and the updatability of an XML view, using the structure of the XML view
and the source of each XML element/attribute. These are syntax-independent
features, which allow us to work on a syntax-independent level. Other sys-
tems in the literature, such as SilkRoute [Fernádez et al. 2002], XPERANTO
(XQGM) [Shanmugasundaram et al. 2001] and Rainbow [Wang and Runden-
steiner 2004], also use internal structures (view forests, XQGM, and view rela-
tionship graph, respectively) which are easier to manipulate than a user level
language.

Query trees were first introduced in Braganholo et al. [2004]. Here, we
present an extension which adds a new type of node called a group node. These
nodes are used to represent nodes whose children are grouped according to a
given value, and correspond to nodes returned by the UXQuery xnest operator.

After defining query trees, we introduce a notion which will be used to de-
scribe the mapping to relational queries: the abstract type of a query tree node.
We use this notion of typing to define the semantics of query trees, and then
present their result type DTD.

4.2.1 Query Trees Defined. An example of a query tree can be found in
Figure 11 (ignore for now the types τ associated with nodes). This query tree
retrieves vendors, and for each vendor, its @id, vendorname, address, and a set
of books and dvds grouped by price within products. The query tree resembles
the structure of the resulting XML view. The root of the tree corresponds to
the root element of the result. Leaf nodes correspond to attributes of relational
tables, and interior nodes whose incoming edges are starred capture repeating
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Fig. 11. Query tree with grouped values.

elements (an incoming edge of a node n is an edge that connects n to its parent).
The UXQuery corresponding to this query tree is shown in Figure 10, and the
resulting XML instance is shown in Figure 1.

Query trees are very similar to the view forests of Fernádez et al. [2002] and
schema-tree queries presented in Bohannon et al. [2002]. The difference is that,
instead of annotating all nodes with the relational queries that are used to build
the content model of a given node, we annotate interior nodes in the tree using
only the selection criteria (not the entire relational query).

An annotation can be a source annotation or a where annotation. Source
annotations bind variables to relational tables, and where annotations impose
restrictions on the relational tables making use of the variables that were bound
to the tables.

In the definitions that follow, we assume that D is a relational database over
which the XML view is being defined. T is the set of table names of D. AT is the
set of attributes of a given table T ∈ T.

Definition 4.1. A query tree defined over a database D is a tree with a
set of nodes N and a set of edges E in which Edges are simple or starred
(“*-edge”). An edge is simple if, in the corresponding XML instance, the child
node appears exactly once in the context of the parent node (regardless of the
database content), and starred otherwise. Nodes are as follows:

(1) All nodes have a name that represents the tag name of the XML element
associated with this node in the resulting XML view.

(2) Leaf nodes have a value, which is either projected or grouped. Names of leaf
nodes that start with “@” are considered to be XML attributes.

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.



860 • V. P. Braganholo et al.

(3) Starred nodes (nodes whose incoming edge is starred) may have one or more
source annotations and zero or more where annotations. An exception is
made for starred nodes with group children, which must have no source
annotation.

(4) A Group node (one that has a grouped value) must have siblings that are
starred nodes or group nodes of a restricted form (see Definition 4.4).

Since we map XML view queries to relational view queries, nodes with the
same name in the query tree may cause ambiguities in the mapping (a relation
cannot have two attributes with the same name [Ullman and Widom 1997]).
For simplicity, in this article we will ignore this problem and use unique names
for nodes in the query trees, and, as a consequence, in element constructors in
UXQuery. In Braganholo [2004], we presented a very simple solution to this
problem. When we build the query tree, we append a numeric suffix (gener-
ated according to the Global Order Encoding [Tatarinov et al. 2002]) to each
node name. This way, the relational views are generated with unique attribute
names. This numbering schema is used only internally, and the user is not
aware of it.

Returning to the example in Figure 11, there is a *-edge from the root (named
vendors) to its child named vendor, indicating that in the corresponding XML
instance there may be several vendor subelements of vendors. There is a simple
edge from the node named vendor to the node named vendorname, indicating
that there is a single vendorname subelement of vendor. The node named @id
will be mapped to an XML attribute instead of an element.

Before giving an example of how values are associated with nodes, we define
source and where annotations on nodes of a query tree.

Definition 4.2. A source annotation s within a starred node n is of the form
[$x := table(T )], where $x denotes a variable and T ∈ T is a relational table.
We say that $x is bound to T by s.

Definition 4.3. A where annotation on a starred node n is of the form [where
$x1/A1 op Z1 AND . . . AND $xk/Ak op Zk], k ≥ 1, where Ai ∈ ATi and $xi is
bound to Ti by a source annotation on n or some ancestor of n. The operator op
is a comparison operator {=, �=, >, <, ≤, ≥}. Zi is either a literal (integer, string,
etc.) or an expression of the form $ y/B, where B ∈ AT and $ y is bound to T by
a source annotation on n or some ancestor of n.

Continuing with the example of Figure 11, the vendor node is annotated with
a binding for $v (to table Vendor), and has several children at the end of simple
edges (@id, vendorname, and address). The value of its id attribute is specified
by the path $v/vendorid, indicating that the content of the XML view attribute
id will be generated using column vendorid of the table Vendor. The value of
vendorname is specified by the path $v/vendorname. The node address is more
complex, and is composed of state and country subelements.

The node products has two *-edge children, book and dvd, and a group child,
@price. Source annotations on the book node include bindings for $b (Book)
and $sb (SellBook), and its where annotations connect tuples in SellBook to
tuples in Book, and tuples in SellBook with tuples in Vendor (join conditions).
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Node dvd has source annotations for $d (DVD) and $sd (SellDVD). Its where
annotation connects tuples in SellDVD to tuples in DVD and tuples in SellDVD
with tuples in Vendor.

Definition 4.4. The value of a node n can be projected or grouped.

—A projected value is of form $x/A, where A ∈ AT and $x is bound to table T
by a source annotation on n or some ancestor of n.

—A grouped value is of form GROUP($x1/A1 | . . . | $xm/Am), where m ≥ 1 and
Ai ∈ ATi and $xi is bound to Ti by a source annotation on a sibling node of n.
The domains of A1, . . . , Am inD must be the same. Group nodes with the same
parent must be defined over the same set of variables x1, . . . , xm, and must
have m siblings b1, . . . , bm whose incoming edges are starred.6 Furthermore,
the parent of node n must be starred, and it must have no source annotations.

Still in the example of Figure 11, the @price node has a grouped value which
references variables $sb (declared on its sibling node book) and $sd (declared
on its sibling node dvd). The XML instance resulting from this query tree will
take values from both tables SellBook and SellDVD, grouping by their price.

From now on, we assume UXQuery queries are nonempty, and consequently,
their corresponding query trees are nonempty.

4.2.2 Abstract Types. In our mapping strategy, it will be important to rec-
ognize nodes that play certain roles in a query tree. In particular, we identify
six abstract types of nodes: τ , τT , τN , τC, τS , and τG . We call them abstract types
to distinguish them from the type or DTD of the XML view elements.

Nodes in the query tree are assigned abstract types as follows:

(1) The root has abstract type τ .

(2) Each leaf node has abstract type τS (Simple).

(3) Each nonleaf node with an incoming simple edge has abstract type τC

(Complex).

(4) Each starred node which is either a leaf node or whose subtree has only
simple edges has an abstract type of τN (Nested).

(5) Each starred node with one or more children with a grouped value has an
abstract type τG (with Grouped children).

(6) All other starred nodes have abstract type τT (Tree).

Note that each node has exactly one type unless it is a starred leaf node, in
which case it has types τS and τN .

As an example of this abstract typing, consider the query tree in Figure 11,
which shows the type of each of its nodes. Since book and dvd are repeating
nodes whose descendants are nonrepeating nodes, their types are τN rather
than τT . Also, since products has a child @price with grouped value, its abstract
type is τG .

6Notice that we do not require that ($x1/A1 | · · · | $xm/Am) in the group operation be in the same

order as b1, . . . , bm.
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The motivation behind abstract types is as follows. To map updates in the
XML view to updates in the underlying relational database, we must be able to
identify a mapping from the column of a tuple in the relational database to an
element or attribute in the XML view. Ideally, this mapping is 1:1, that is, each
attribute of a tuple occurs at most once in the XML view and can therefore be
updated without introducing side-effects into the view. In general, however, it
may be a 1:n mapping. The class of views allowed by our query trees and its
associated abstract type views captures this mapping intrinsically.

Specifically:

—τT /τN /τG identifies potential tuples in the underlying relational database.
Nodes of type τT /τN /τG are mapped to tuples, and the node itself serves as
a tuple delimiter. A node of type τT may have children of type τT , that is,
nesting is allowed.

—τS identifies relational attributes (columns). A node of type τS must have a
node of type τT , τN or τG as its ancestor. Starred leaf nodes are an exception
to this rule: they need not to have such ancestor.

—τC identifies complex XML elements. Since they do not carry a value, this
type of node is not mapped to anything in the relational model. Nodes of type
τC are present in our model to allow more flexible XML views, but are not
important in the mapping process.

XML views produced by query trees and their associated abstract types can
be easily mapped to a set of corresponding relational views, as we will show
in Section 6. However, before turning to the mapping we prove two facts about
query trees that will be used throughout the article.

PROPOSITION 4.5. There is at least one τN node in the abstract type of a query
tree qt.

PROOF. Since query trees are assumed to be nonempty, qt must have at least
one leaf. This means that qt must have at least one starred node n, since the
leaf node has a value which involves at least one variable which must be defined
in some source annotation attached to a starred node. Since the tree is finite, at
least one of these starred nodes is either a leaf node or has a subtree of simple
edges, that is, the starred node is a τN node.

PROPOSITION 4.6. There is at most one τN node along any path from a leaf
with projected value to the root in the abstract type of a query tree qt.

PROOF. Suppose there are two τN nodes, n1 and n2, along the path from some
leaf with projected value to the root of qt. Without loss of generality, assume
that n1 is the ancestor of n2. By definition of τN , n2 must be a starred node.
Therefore n1 has a *-edge in its subtree, a contradiction.

We will refer to the abstract type of an element by the abstract type that was
used to generate it followed by the element name. As an example, the abstract
type of the element dvd in Figure 11 is referred to as τN (dvd), and its type
(DTD) is <!ELEMENT dvd (dtitle, asin)>.
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Algorithm 1 . Algorithm eval.

4.2.3 Semantics of Query Trees. The semantics of a query tree follows the
abstract type of its nodes, and can be found in Algorithm 1. The algorithm con-
structs the XML view resulting from a query tree qt recursively, and starts with
n being the root of the query tree. The basic idea is that the source and where
annotations in each starred node n are evaluated in the database instance d ,
producing a set of tuples. The algorithm then iterates over these tuples, gener-
ating one element corresponding to n in the output for each of these tuples and
evaluating the children of n once for each tuple.
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The bindings{} hash array keeps the values of variables taken from the un-
derlying relational database. We assume that values in bindings{} are repre-
sented as $x/A = 1, $x/B = 2, where $x is a variable bound to a relational table
T , A and B are the attributes of T , and 1 and 2 are the values of attributes A
and B in the current tuple of T .

4.2.4 View Schema. Query tree views defined over a relational database
have a well-defined schema that is easily derived from the tree. Given a query
tree, its DTD is generated as follows:

(1) For each attribute leaf node named @A with parent named E, create an
attribute declaration <!ATTLIST E @A CDATA #REQUIRED>.

(2) For each nonattribute leaf node named E, create an element declaration
<!ELEMENT E (#PCDATA)>.

(3) For each nonleaf node named E, create an element declaration
<!ELEMENT E (E1, . . . , Ek)>, where E1, . . . , Ek are nonattribute child
nodes of E connected by a simple or starred edge. In case Ei is connected
to E by a starred edge, add a ”*” after Ei. In case k = 0, then create an
element declaration <!ELEMENT E EMPTY>.

As an example, the DTD of the view produced by the query tree shown in
Figure 11 is

<!ELEMENT vendors (vendor*)> <!ATTLIST products

<!ELEMENT vendor (vendorname, address, products)> price CDATA #REQUIRED>

<!ATTLIST vendor id CDATA #REQUIRED> <!ELEMENT book (btitle, isbn)>

<!ELEMENT vendorname (#PCDATA)> <!ELEMENT btitle (#PCDATA)>

<!ELEMENT address (state, country)> <!ELEMENT isbn (#PCDATA)>

<!ELEMENT state (#PCDATA)> <!ELEMENT dvd (dtitle, asin)>

<!ELEMENT country (#PCDATA)> <!ELEMENT asin (#PCDATA)>

<!ELEMENT products (book*,dvd*)> <!ELEMENT dtitle (#PCDATA)>

Note that all (#PCDATA) elements are required. When the value of a rela-
tional attribute is null, we produce an element with a distinguished null value.
This makes it easier for the user to distinguish between a value which is not
known (null) and a value which is known to be the empty string.

We could also have chosen to omit the element tag when the value of that
element is null. However, using a distinguished null value has several advan-
tages. First, it facilitates modifying a null value to some other value: if tag t is
omitted from the view, the user must know whether or not an element with tag
t can be added at a particular point in the XML view. Second, it makes our up-
date translation easier: if modifying a null value required inserting a new tag
in the view, then this insertion in the view would translate to a modification
in the underlying relational database. Similarly, changing from some known
value to null would require a deletion in the view but would be mapped to a
modification in the underlying relational database. Our strategy is to map an
update (e.g., insertion, deletion, or modification) in the XML view to the same
type of update in the underlying relational database.
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Fig. 12. Example of an UXQuery query that joins two relations, and its query tree.

In our implementation, we use XML Schema instead of DTDs since it sup-
ports data types, thus making the schema checking more accurate. The gener-
ation of the schema is analogous to the DTD generation shown above. The data
types are taken from the database metadata. We use a type conversion table
that maps SQL types to XML Schema simple types (string, integer, float, etc.).
We use DTDs in this article for ease of explanation.

4.3 From UXQuery to Query Trees

As mentioned before, query trees are used as an intermediate representation
of the view definition query. We must therefore define how a view definition
query expressed in UXQuery is translated to its corresponding query tree. To
illustrate the mapping process, we start with the query of Figure 7. For clarity,
the query is presented again in Figure 12 together with its query tree.

Each XML element specified in the query is represented by a node in the
query tree. Each node in the query tree needs a name, and possibly a value (if it
is a leaf node). Since XML elements and attributes can be constructed in three
distinct ways in UXQuery, we analyze each case separately:

—The leaf element is generated by an expression {$x/A}: in this case, the corre-
sponding node in the query tree has name A and value $x/A.

—The leaf element is constructed by an expression <tagName> {$x/A/text()}
</tagName>: in this case, the corresponding node in the query tree has name
tagName and value $x/A.

—The leaf is an attribute constructed by an expression attName="{$x/A/text()}":
in this case, the node in the query tree has name @attName and value $x/A.

As an example, the expression $v/vendorname in the query of Figure 12 is
mapped to a node named vendorname in the query tree. As an example of
mapping of an attribute, see node @id.
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An exception to the above rules is an element or attribute which uses a
nesting variable to specify its content. For example, attribute price in the query
of Figure 10 is constructed using variable $price as its content (line 20). The
variable $price was specified as $price in ($sb/price | $sd/price) (line 14). In
this case, the rules for the node name are the same as above (in this example,
the node will be named price), but its value is GROUP($sb/price | $sd/price).
The rule for this case can be specified as follows:

—The leaf element tagName is specified by a nesting variable $y, and is con-
structed as <tagName>{$y}</tagName>. Variable $y is in turn specified as $y in

($x1/A1 | · · · | $xn/An). The corresponding node will be named tagName and
its value will be GROUP($x1/A1 | · · · | $xn/An).

—The attribute attName is specified by a nesting variable $y, and is constructed
as attName ="{$y/text()}". Variable $y is in turn specified as $y in ($x1/A1 |
· · · | $xn/An). The corresponding node will be named @attName and its value
will be GROUP($x1/A1 | · · · | $xn/An).

Nonleaf elements can only be constructed with an expression of type
<tagName> {content} </tagName>, where content are other element constructors,
fors and/or xnests. In this case, the corresponding node in the query tree will
have name tagName, but no value. As an example, the XML element address

in the query of Figure 12 is a nonleaf element whose content is four element
constructors. Its corresponding node in the query tree is named address, and it
has no value.

Nodes in the query tree are connected to represent the parent/child relation-
ship of XML elements in the view definition query. As an example, the node
address is connected to nodes street, city, state and country in the query tree of
Figure 12. In the view definition query, elements street, city, state and country

are children of address. We will explain how starred edges are identified later.
Source and where annotations are identified as follows. Each for expression

in the view definition query has variable bindings, optional where conditions
and a return clause followed by an element constructor. Suppose this element
is named e. The variable bindings are placed as source annotations in the node
e that represents element e in the query tree. A variable binding of type $x in

table("X") becomes a source annotation of type [$x := table(“X”)]. The where
conditions (if any) are placed in node e as where annotations (where x becomes
[where x]). After this, we change the edge that connects e to its parent to a *-
edge. As an example, the query of Figure 12 has a for expression at line 2. The
expression has an element constructor after the return clause that constructs
the element vendor (line 4). As a consequence, the node vendor in the query tree
is a starred node, and it has a source annotation [$v := table(“Vendor”)].

When a query has an xnest operation, the source and where annotations
are identified using the functions fs:SubVariable(i) and fs:SubExpr(i), shown
in Section 4.1.3. The Header element is mapped to a node that has a *-edge, but
no source annotation. In the query of Figure 10, the Header element is products,
and the corresponding node is shown in the query tree of Figure 11. After this
query tree is typed, this node will receive a type τG .
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The root element of each element group in the query receives a *-edge.
The source annotations are selected using the functions fs:SubVariable(i) and
fs:IsolatedTables() to identify the relevant variables for that node. In the same
way, the function fs:SubExpr(i) is used to identify the where annotations for
the node. As an example, node book in Figure 11 has source annotations [$b :=
table(”Book”)] and [$sb := table(”SellBook”)]. Similarly, its where annotation is
[where $v/vendorid=$sb/vendorid AND $b/isbn=$sb/isbn].

The order by clause of UXQuery does not have a corresponding construction
in query trees. This is not a problem, since the purpose of query trees is to drive
the mapping to relational views and from there to the underlying relational
database, which does not have a concept of order.

5. UPDATE LANGUAGE

In this section, we present a simple update language for XML views, and de-
scribe how we check for schema conformance after updates.

Although no standard has been established for an XML update language,
several proposals have appeared [Abiteboul et al. 1997; Tatarinov et al. 2001;
Bonifati et al. 2002; Laux and Martin 2000]. The language described below is
much simpler than any of these proposals and in some sense can be thought
of as an internal form for one of these richer languages (assuming a static
translation of updates [Bonifati et al. 2002]). The simplicity of the language
allows us to focus on the key problem we are addressing.

Updates are specified using path expressions to point to a set of target nodes
in the XML tree at which the update is to be performed. For insertions and
modifications, the update must also specify a � containing the new values.

Definition 5.1. An update operation u is a triple <t, �, ref>, where t is the
type of operation (insert, delete, modify); � is the XML tree to be inserted, or (in
case of a modification) an atomic value; and ref is a simple path expression in
XPath [Clark and DeRose 1999] which indicates where the update is to occur.

Definition 5.2. An update path ref is of the form p1/p2/ · · · /pn where pi is
either a label li or a qualified label li[c1 and c2 and · · · cm]. Each pi is called a
step of P . Each ci is a qualification of the form A = x, where A is a label and x
is an atomic value (string, integer, etc).

The path expression ref is evaluated from the root of the tree and may yield a
set of nodes which we call update points. In the case of modify, it must evaluate
to a set of leaf nodes. We restrict the filters used in ref to conjunctions of compar-
isons of attributes or leaf elements with atomic values, and call the expression
resulting from removing filters in ref the unqualified portion of ref. For example,
the unqualified portion of /vendors/vendor[@id="01"] is /vendors/vendor.

Definition 5.3. An update path ref is valid with respect to a query tree qt
iff the unqualified portion of ref is nonempty when evaluated on qt.

For example, /vendors/vendor[@id="01"]/vendorname is a valid path expression
with respect to the query tree of Figure 11, since the unqualified path /vendors/

vendor/vendorname is nonempty when evaluated on that query tree.
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The semantics of insert is that � is inserted as a child of the nodes indicated
by ref ; the semantics of modify is that the atomic value � overwrites the values
of the leaf nodes indicated by ref ; and the semantics of a delete is that the
subtrees rooted at nodes indicated by ref are deleted.

The following examples refer to Figure 1:

Example 5.1. To insert a new book with title “New Book” and isbn “9999”
selling for $38 under the vendor with id=“01” we specify the following:

t = insert,

ref = /vendors/vendor[@id="01"]/products[@price="38"],

� = {<book>
<btitle>New Book</btitle><isbn>9999</isbn>

</book>}.
Example 5.2. To change the vendorname of the vendor with id = “01” to

Amazon.com we specify the following:

t = modify,

ref = /vendors/vendor[@id="01"]/vendorName,

� = {Amazon.com}.
Example 5.3. To delete all vendors of state WA we specify the following:

t = delete,

ref = /vendors/vendor[state="WA"].

5.1 Schema Conformance

Note that not all insertions and deletions make sense since the resulting XML
view may not conform to the schema of the query tree (for details, see Sec-
tion 4.2.4). For example, the deletion specified by the path /vendors/vendor/

vendorname would not conform to the DTD of the query of Figure 11 since vendor-
name is a required subelement of vendor. We must also check that �’s inserted
and subtrees deleted are correct.

Definition 5.4. An update <t,�,ref> against an XML view specified by a
query tree qt is correct iff

—ref is valid with respect to qt, according to Definition 5.3;

—if t is a modification, then the unqualified portion of ref evaluated on qt
arrives at a node whose abstract type is τS ;

—if t is an insertion, then the unqualified portion of ref extended with the
root of � evaluated on qt arrives at a node whose incoming edge is starred
(equivalently, its abstract type is τT , τG or τN );

—if t is a deletion, then the unqualified portion of ref evaluated on qt arrives
at a node whose incoming edge is starred;

—if nonempty, then � conforms to the DTD of the element arrived at by ref.
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For example, the deletion of Example 5.3 is correct since vendor is a starred
subelement of vendors. However, the deletion specified by the update path
/vendors/vendor/vendorname is not correct since vendorname is of abstract type
τS . The deletion specified by the invalid update path /vendors/vendor/dvd is also
incorrect.

As another example, the insertion of Example 5.1 is correct since book
(arrived at by /vendors/vendor/products) is a starred subelement of prod-
ucts, the DTD for book is <!ELEMENT book (btitle, isbn)>, and � con-
forms to this DTD. However, the following insertion would not be correct
for the update path /vendors/vendor[@id="01"]/products[@price="38"] and � =
<book><rating>Children</rating></book>, since the isbn and btitle subelements
are missing, and book does not have a rating subelement.

6. MAPPING

In our approach, updates over an XML view are translated to SQL update
statements on a set of corresponding relational view expressions. Existing tech-
niques such as those described by Dayal and Bernstein [1982], Keller [1985],
Lechtenbörger [2003], Bancilhon and Spyratos [1981], and Tucherman et al.
[1983] can then be used to accept, reject or modify the proposed SQL updates.

In order to do so, it is first necessary to map an XML view query to a relational
view query. As we will show later in this section, there are cases where a single
XML view query must be mapped to a set of relational view queries.

The proofs for the theorems presented in this section are available in the
Electronic Appendix.

6.1 Mapping to Relational Views

In this section, we discuss how an XML view constructed by a query tree is
mapped to a set of corresponding relational view expressions. There are two
main steps in the mapping process: map and split. The map process maps a
query tree with a single τN node to a relational view query, and the split process
deals with query trees that have more than one node of type τN . It splits the
query tree into several split trees, so that each of them has a single node of type
τN . Then, the map process can be applied.

We start by showing the map process, and then we discuss the split process
in detail.

6.1.1 Map. Given a query tree qt with only one τN node, the corresponding
SQL view statement is generated as follows:

—Join together all tables found in source annotations (called source tables) in
a given node n in qt, using the where annotations that correspond to joins on
source tables in n as inner join conditions. If no such join condition is found,
then use “true” (e.g., 1 = 1) as the join condition, resulting in a Cartesian
product. Call these expressions source join expressions.

—Use the hierarchy implied by the query tree to left outer join source join
expressions in an ancestor-descendant direction, so that ancestors with no
children still appear in the view. The conditions for the outer joins are

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.



870 • V. P. Braganholo et al.

captured as follows: if node a is an ancestor of n and a where annotation
in n specifies a join condition on a table in n with a table in a, then use this
annotation as the join condition for the outer join. As with inner joins, if no
condition for the outer join is found, then use “true” as the join condition so
that, if the inner relation is empty, the tuples of the outer will still appear.

—Use the remaining where annotations (the ones that were not used as inner
or outer join conditions) in an SQL where clause and project the values of leaf
nodes. The resulting SQL view statement represents an unnested version of
the XML view.

According to the above procedure, source join expressions are as follows:

<source table> AS <source variable> INNER JOIN

<source table> AS <source variable> INNER JOIN ...

ON <inner joincond>

The complete SQL expression resulting from the mapping process is

SELECT <leaf value> AS <leaf name>, ...,

<leaf value> AS <leaf name>

FROM (<source join expression> LEFT JOIN

<source join expression> ON <outer joincond>) LEFT JOIN ...

WHERE <remaining "where" annotation> AND ...

AND <remaining "where" annotation>

For example, the relational view query corresponding to the query tree in
Figure 12 is

SELECT v.vendorid AS id, v.vendorname AS vendorname, w.depid AS idWarehouse,

w.address AS street, w.city AS city, w.state AS state, w.country AS

country

FROM (Vendor AS v INNER JOIN Warehouse AS w ON v.vendorid=w.vendorid)

The mapping algorithm is shown in Algorithm 2. The auxiliary functions
used in this algorithm have obvious meanings. The one that is not so obvi-
ous is function variable(n), which returns the variable used in the value of a
leaf node (without the $ symbol). For example, if the value of node n is $x/A,
then variable(n) returns x. When the parameter is a source annotation s, then
the function returns the variable referenced in this source annotation without
the $ (e.g., with s = $x in table(“X ”), function variable(s) returns x). Function
attribute(n) returns the relational attribute that was used to specify the value
of a leaf node. Using the example of value of leaf node n above, attribute(n)
returns A.

6.1.2 Split. For a query tree with more than one τN node, the process
shown above is incorrect. As an example, consider the query tree of Figure 11,
which has two τN nodes (book and dvd). If we follow the mapping process de-
scribed above, the tables DVD and Book will be joined, resulting in a Carte-
sian product. In this expression, a book is repeated for each DVD, violat-
ing the semantics of the UXQuery query that corresponds to this query tree
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Algorithm 2 . The map algorithm.

ACM Transactions on Database Systems, Vol. 31, No. 3, September 2006.



872 • V. P. Braganholo et al.

Algorithm 3 . The split algorithm.

(Figure 10 (lines 1–33)). We must therefore split a query tree into subquery
trees containing exactly one τN node each before generating the corresponding
relational view queries. After the splitting process, each subquery tree produced
is mapped to a relational view query as explained above.

The splitting process consists in isolating a node n of type τN in the query
tree qt, and taking its subtree as well as its ancestors and their nonrepeating
descendants (types τC and τS) to form a new tree qti. Recall that qt must have
at least one τN node by Proposition 4.5.

The first step to generate qti is to copy qt to qti. Then, delete from qti all
subtrees rooted at nodes of type τN , except for the subtree rooted at n. Observe
that deleting a subtree r may change the abstract type of the ancestors of
r. Specifically, if r has an ancestor a with type τT , and r is a’s only starred
descendant, then the type of a becomes τN after the deletion of r. Continue to
delete subtrees rooted at nodes of type τN in qti and retype ancestors until n is
the only node of type τN in qti. The process is repeated for every node of type
τN in qt and results in exactly one τN node per split tree.

Also, it is necessary to remove parts of the value of group nodes so that
variable references are correct in each split tree. As an example, the query
tree of Figure 11 has a group node price whose value is GROUP($sb/price |
$sd/price). The two split trees generated by the split algorithm will have a
node price referencing just one of the variables each ($sb or $sd ).

Formally, the split algorithm (Algorithm 3) splits a query tree qt producing
one split tree qti for each node of type τN in qt.

The result of this process for the query tree of Figure 11 is shown in the
Electronic Appendix. Using these split trees, the corresponding relational view
queries ViewBook and ViewDVD are:

CREATE VIEW VIEWBOOK AS

SELECT v.vendorId AS id, v.vendorname AS vendorname, v.state AS state,

v.country AS country, sb.price AS price, b.isbn AS isbn, b.title AS

btitle

FROM (Vendor AS v LEFT JOIN (SellBook AS sb INNER JOIN

Book AS B ON b.isbn=sb.isbn) ON v.

vendorId=sb.vendorId);
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CREATE VIEW VIEWDVD AS

SELECT v.vendorId AS id, v.vendorname AS vendorname, v.state AS state,

v.country AS country, sd.price AS price, d.asin AS asin, d.title AS

dtitle

FROM (Vendor AS v LEFT JOIN (SellDVD AS sd INNER JOIN

DVD AS d ON d.asin=sd.asin) ON v.vendorId=sd.

vendorId)

As described above, split takes as input the original query tree qt and pro-
duces as output a set of query trees {qt1, . . . , qtn}, each of which has one τN

node; map takes {qt1, . . . , qtn} as input and produces a set of relational view ex-
pressions {V1, . . . , Vn}, where each Vi is produced from qti as described above.
It follows directly from these algorithms that

PROPOSITION 6.1. The number of relational view expressions in
map(split(qt)) is the number of τN nodes in qt.

6.1.3 Correctness. The correctness of the set of relational view expressions
resulting from map and split can be understood in the following sense: each
tuple in the bindings relations (generated during the execution of the eval al-
gorithm (Algorithm 1)) for the XML view is in one or more instances of the
corresponding relational views. Of course, this bindings relation is not mate-
rialized during the execution of eval, so we now show how to capture it using
the query tree and its resulting XML view as source to materialize a relation
that we call evalRel, which in some sense corresponds to the bindings relation
mentioned above. To be more precise, we define the following:

Definition 6.2. The evaluation schema S of a query tree qt is the set of all
names of leaf nodes in qt.

As an example, the evaluation schema of the query tree of Figure 11 is S =
(id, vendorname, state, country, price, btitle, isbn, dtitle, asin).

Definition 6.3. Let x be an XML instance of a query tree qt with evaluation
schema S, in which the instance nodes are annotated by the query tree type
from which they were generated. Let {n1, . . . , nk} be the set of all deepest τN or
τT instance nodes for some root to leaf path in x. Let pi be the set of nodes in
the path from ni to the root of x. An evaluation tuple of x is created from each ni

by associating the value of each leaf node l that is a descendant of ni or of some
node in pi with the attribute in S corresponding to the name of l , and leaving
the value of all other attributes in S null.

The multiset7 of all evaluation tuples of x is called its evaluation relation
and is denoted evalRel(x).

For example, Figure 13 shows the result of evalRel(x) for the query tree qt
of Figure 11 and the XML view x of Figure 1. Recall that x is actually the
evaluation of query tree qt over the database instance d using algorithm eval

7Note that SQL queries may return repeated tuples, and therefore we can have repeated evaluation

tuples in evalRel. Thus, evalRel is a multiset instead of a set.
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id vendorname state country price btitle isbn dtitle asin

t1 1 Amazon WA US 38
Unix Network
Programming

1111 NULL NULL

t2 1 Amazon WA US 29 Computer Networks 2222 NULL NULL

t3 1 Amazon WA US 29 NULL NULL Friends D1111

t4 2
Barnes and
Noble

NY US 38
Unix Network
Programming

1111 NULL NULL

t5 2
Barnes and
Noble

NY US 38 Computer Networks 2222 NULL NULL

Fig. 13 . Tuples resulting from evalRel(eval(qt, d)) for the query tree of Figure 11.

id vendorname state country price btitle isbn dtitle asin

t1 1 Amazon WA US 38
Unix Network
Programming

1111 NULL NULL

t2 1 Amazon WA US 29 Computer Networks 2222 NULL NULL

t3 2
Barnes and
Noble

NY US 38
Unix Network
Programming

1111 NULL NULL

t4 2
Barnes and
Noble

NY US 38 Computer Networks 2222 NULL NULL

t5 1 Amazon WA US 29 NULL NULL Friends D1111

t6 2
Barnes and
Noble

NY US NULL NULL NULL NULL NULL

Fig. 14 . Tuples resulting from relOuterUnion({ViewBook,ViewDVD}, d ).

(Algorithm 1), which produces the XML view x as a result. Thus,
evalRel(eval(qt, d)) = evalRel(x).

The evaluation relation evalRel carries all data that is in the leaves of the
XML view. To prove the correctness of our approach, we must show that this
data corresponds to data in the relational views generated by our mapping
process (map and split). Since a single XML view can be mapped to more than
one relational view, we first collect the relational views together using outer
union and call the resulting relation relOuterUnion.

Definition 6.4. Let {V1, . . . , Vn} be defined over a relational schema D, and
d be an instance of D. Let evalV(V ,d) denote the instantiation of view definition
V over the database instance d . Then relOuterUnion({V1, . . . , Vn}, d ) denotes
the set of relational instances that result from taking the outer union of the
evaluation of each Vi over d : relOuterUnion( {V1, . . . , Vn}, d) = evalV(V1, d)
∪ . . . ∪ evalV(Vn, d), where ∪ denotes outer union.

For example, relOuterUnion({ViewBook, ViewDVD}, d ) is the result of the
outer union of evalV(ViewBook, d ) and evalV(ViewDVD, d ), which is shown
in Figure 14. The evaluations evalV(ViewBook, d ) and evalV(ViewDVD, d ) are
shown in Figures 15 and 16, respectively.

It is now possible to compare the data in the XML view (evalRel) with data
in the relational views generated by the mapping process (relOuterUnion). The
correctness of the set of relational views resulting from map and split can now
be understood in the following sense:

THEOREM 6.5. Given a query tree qt defined over a database D and an in-
stance d of D, then evalRel(eval(qt, d )) ⊆ relOuterUnion(map(split(qt)), d ).

Note that the set of tuples in Figures 13 and 14 are not exactly the same (and
that Theorem 6.5 uses “⊆” instead of “=”). For instance, tuple t6 of relOuterUnion
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id vendorname state country price btitle isbn

t1 1 Amazon WA US 38 Unix Network Programming 1111

t2 1 Amazon WA US 29 Computer Networks 2222

t3 2 Barnes and Noble NY US 38 Unix Network Programming 1111

t4 2 Barnes and Noble NY US 38 Computer Networks 2222

Fig. 15 . Tuples on ViewBook.

id vendorname state country price dtitle asin

t1 1 Amazon WA US 29 Friends D1111

t2 2 Barnes and Noble NY US NULL NULL NULL

Fig. 16 . Tuples on ViewDVD.

id vendorname state country price btitle isbn dtitle asin

t1 1 Amazon WA US NULL NULL NULL NULL NULL

t2 2 Barnes and Noble NY US NULL NULL NULL NULL NULL

Fig. 17 . The stubs(x) relation for the XML view x of Figure 1.

(Figure 14) is not in evalRel (Figure 13). This is because the XML instance of
Figure 1 does not have any dvd sold by vendor Barnes and Noble, thus there
is a tuple [2, Barnes and Noble, NY, US, null, null, null] in ViewDVD which
was added by the LEFT join. This is correct, since vendor is in a common part
of the view query, so its information appears both in ViewBook and ViewDVD.
However, t6 is not in Figure 13, since, when the entire view is evaluated, this
vendor joins with a book. We call t6 a stub.

Tuples in relOuterUnion that are not in evalRel are stubs. Stubbed tuples
represent starred nodes with an empty evaluation. This situation is denoted by
relOuterUnion(map(split(qt)), d)—evalRel(eval(qt, d)). More precisely:

Definition 6.6. Let x be an XML instance of a query tree qt with evaluation
schema S, and n be a τN or τT instance node in x. A stubbed tuple of x is created
from n by associating the value of each leaf node l that is an ancestor of n with
the attribute in S corresponding to the name of l , and leaving the value of all
other attributes in S null. The set of all stubbed tuples of x is denoted stubs(x).

The set stubs(x) for the XML view of Figure 1 is shown in Figure 17.

THEOREM 6.7. Given a query tree qt defined over a database D and an
instance d of D, then every tuple t in relOuterUnion(map(split(qt)), d )—
evalRel(eval (qt, d )) ⊆ stubs(x).

Note that the statement of correctness is not that the XML view can be
constructed from instances of the underlying relational views. The reason is
that we do not know whether or not keys of relations along the path from τN

nodes to the root are preserved, and therefore do not have enough information
to group tuples from different relational view instances together to reconstruct
the XML view. When keys at all levels are preserved, then the query tree can be
modified to a form in which the variables iterate over the underlying relational
views instead of base tables (see Braganholo [2004]).
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translateUpdate(x, qt, u)
case u.t

insert: translateInsert(x, qt, u.ref, u.�)
delete: translateDelete(x, qt, u.ref)
modify: translateModify(x, qt, u.ref, u.�)

end case

Algorithm 4 . The translateUpdate algorithm.

6.2 Mapping Updates over XML Views to Updates over Relational Views

We now discuss how correct updates to an XML view are translated to SQL
updates on the corresponding relational views produced in the previous section.

Throughout this section, we will use the XML view of Figure 1, produced by
the query tree of Figure 11, as an example. The relational views ViewBook and
ViewDVD corresponding to this XML view were presented in Section 6.1.2.

The translation algorithm for insertions, deletions and modifications, trans-
lateUpdate, is given in Algorithm 4. What it does is to check the type of update
operation and call the corresponding algorithm to translate the update. All
the three algorithms (translateInsert, translateDelete and translateModify) as-
sume that the update specification u was already checked for schema confor-
mance (see Section 5.1 for details on how update operations are checked against
the view schema).

6.2.1 Insertions. To translate an insert operation on the XML view to the
underlying relational views we do the following: first, the unqualified portion
of the update path ref is used to locate the node in the query tree under which
the insertion is to take place. Together with �, this will be used to determine
which underlying relational views are affected. Second, ref is used to query the
XML instance and identify the update points. Third, SQL insert statements are
generated for each underlying relational view affected using information in �

as well as information about the labels and values in subtrees rooted along the
path from each update point to the root of the XML instance.

Observe that by Proposition 4.6 there is at most one node of type τN along
the path from any node to the root of the query tree and that insertions can
never occur below a τN node, since all nodes below a τN node are of type τS or
τC by definition.

For example, to translate the insertion of Example 5.1, we use the unqualified
update path /vendors/vendor/products on the query tree of Figure 11, and find
that the type of the update point is τC(products). Continuing from τC(products)
using the structure of �, we discover that the only τN node in � is its root, which
is of type τN (book). The underlying view affected will therefore be ViewBook.
We then use the update path ref = /vendors/vendor[@id="01"]/products[@price=

"38"] to identify update points in the XML document. In this case, there is one
node (8). Therefore, a single SQL insert statement against view ViewBook will
be generated.

To generate the SQL insert statement, we must find values for all attributes
in the view. Some of these attribute-value pairs are found in �, and others must
be taken from the XML instance by traversing the path from each update point
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to the root and collecting attribute-value pairs from the leaves of trees rooted
along this path. In Example 5.1, � specifies btitle = “New Book” and isbn =
“9999”. Along the path from the node 8 to the root in the XML instance of
Figure 1, we find id = “ 01”, vendorname = “Amazon”, state = “WA”, country =
“US”, and price = “ 38”. Combining this information, we generate the following
SQL insert statement:

INSERT INTO VIEWBOOK (id, vendorname, state, country, price, isbn, btitle)

VALUES ("01","Amazon","WA","US",38,"9999","New Book")

As another example, consider the following insertion against the view of
Figure 1: t = insert, ref = /vendors,

\(\Delta\)=\{<vendor id="03">

<vendorname>New Vendor</vendorname>

<address>

<state>PA</state>

<country>US</country>

</address>

<products price="30">

<book>

<btitle>Book 1</btitle><isbn>9111</isbn></book>

<book>

<btitle>Book 2</btitle><isbn>9222</isbn></book>

<dvd>

<dtitle>DVD 1</dtitle><asin>D9333</asin></dvd>

</products>

</vendor>\}.

The unqualified update path ref evaluated against the query tree of Figure 11
yields a node τ (vendors), which is the root. Continuing from here using labels
in �, we discover two nodes of type τN : τN (book) and τN (dvd). We will therefore
generate SQL insert statements to ViewBook as well as ViewDVD.

Evaluating ref against the XML instance of Figure 1 yields one update point,
node 1. Traversing the path from this update point to the root yields no label-
value pairs (since the update point is the root itself). We then identify each node
of type τN in �, and generate one insertion for each of them. As an example,
traversing the path from the first τN (book) node in � yields label-value pairs
btitle = “Book 1”, and isbn = “9111”. Going up to the root of �, we have id
= “03”, vendorname = “New Vendor”, state = “PA”, country = “US” and price
= “30”. This information is therefore combined to generate the following SQL
insert statement:

INSERT INTO VIEWBOOK (id, vendorname, state, country, price, isbn, btitle)

VALUES ("03","New Vendor","PA","US",30,"9111","Book 1");

In a similar way, information is collected from the remaining two τN nodes
in � to generate
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INSERT INTO VIEWBOOK (id, vendorname, state, country, price, isbn, btitle)

VALUES ("03","New Vendor","PA","US",30,"9222","Book 2");

INSERT INTO VIEWDVD (id, vendorname, state, country, price, asin, dtitle)

VALUES ("03","New Vendor","PA","US",30,"D9333","DVD 1");

Notice that in the above example, information about vendors is redundantly
collected since there are multiple relational views to which the update is
mapped. To improve efficiency, in our implementation of the translation al-
gorithm the collected values and values in � are cached and reused when spec-
ifying the INSERT SQL statements. These cached values may be flushed before
processing the next update point.

The algorithm translateInsert is presented in the Electronic Appendix.

6.2.2 Modifications. By definition, modifications can only occur at leaf
nodes. To process a modification, we do the following: first, we use the unqual-
ified ref against the query tree to determine which relational views are to be
updated. This is done by looking at the first ancestor of the node specified by ref
which has type τT or τN , and finding all nodes of type τN in its subtree. (At least
one τN node must exist, by definition.) If the leaf node that is being modified is
of type τN itself, then it is guaranteed that the update will be mapped only to
the relational view corresponding to this node.

Second, we generate the SQL modify statements. The qualifications in ref are
combined with the terminal label of ref and value specified by � to generate
an SQL update statement against the view. The corresponding algorithm is
presented in the electronic Appendix.

For example, consider the update in Example 5.2. The unqualified ref is
/vendors/vendor/vendorname. The τN nodes in the subtree rooted at vendor (the
first τT or τN ancestor of vendorname) are τN (book) and τN (dvd ), and we will
therefore generate SQL update statements for both ViewBook and ViewDVD.
We then use the qualification id = ”01” from ref = /vendors/vendor[@id="01"]

/vendorname together with the new value in �, to yield the following SQL modify
statements:

UPDATE VIEWBOOK SET vendorname="Amazon.com" WHERE id="01";

UPDATE VIEWDVD SET vendorname="Amazon.com" WHERE id="01"

6.2.3 Deletions. Deletions are very simple to process. First, the unqualified
portion of the update path ref is used to locate the node in the query tree at
which the deletion is to be performed. This is then used to determine which
underlying relational views are affected by finding all τN nodes in its subtree.
Second, SQL delete statements are generated for each underlying relational
view affected using the qualifications in ref. The corresponding algorithm is
presented in the electronic Appendix.

As an example, consider the deletion in Example 5.3. The unqualified update
path expression is /vendors/vendor. The τN nodes in the subtree indicated by this
path in the query tree are τN (book) and τN (dvd). This means that the deletion
will be performed in both ViewBook and ViewDVD. Examining the update path
/vendors/vendor[state="WA"] yields the label-value pair state=“WA”. Thus the
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deletion on the XML view is translated to SQL delete statements as

DELETE FROM VIEWBOOK WHERE state="WA"

DELETE FROM VIEWBOOK WHERE state="WA"

It is important to notice that if a tuple t in one relation “owns” a set of tuples
in another relation via a foreign key constraint (e.g., a vendor “owns” a set
of books), then deletions must cascade in the underlying relational schema in
order for the deletion of t specified through the XML view to be allowed by the
underlying relational system.

6.2.4 Correctness. Since we are not focusing on how updates over rela-
tional views are mapped to the underlying relational database, our notion of
correctness of the update mappings is their effect on each relational view treated
as a base table.

Let x = eval(qt, d) be the initial XML instance, u be the update as specified
in Definition 5.1, and apply(x, u) be the updated XML instance resulting from
applying u to x. The function translateUpdate(x, qt, u) translates u to a set of
SQL update statements {U11 , . . . , U1m1

, . . . , Un1 , . . . , Unmn}, where each Uij

is an update on the underlying view instance vi = evalV(Vi,d) generated by
map(split(qt)).

We use the notation v′
i = applyR(vi, {Ui1 · · ·Uimi }) to denote the application

of {Ui1 , . . . , Uimi } to vi, resulting in the updated view v′
i. If the set of updates

for a given vi is empty, then v′
i = vi.

THEOREM 6.8. Given a query tree qt defined over database D, then for any
instance d of D and correct update u over qt, evalRel(apply(x, u)) ⊆ v′

1 ∪ · · · ∪
v′

n, where ∪ denotes outer union.

THEOREM 6.9. Given a query tree qt defined over a database D and an in-
stance d of D, then v′

1 ∪ · · · ∪ v′
n − evalRel(apply(x, u)) ⊆ stubs(apply(x, u)).

Note that a correctness definition like apply(eval(qt,d), u) ≡ eval(qt, d ′),
where d ′ is the updated relational database state resulting from the application
of the translated view updates {U11 · · ·U1m1

· · ·Un1 · · ·Unmn} to updates on d ,
does not make sense due to the fact that we do not control the translation of view
updates to the underlying relational database. Therefore we cannot claim that
they are side-effect free. In Braganholo [2004], and Braganholo et al. [2004],
we present a scenario where this claim can be made.

7. EXPERIMENTAL EVALUATION

In our approach, we have adopted a naive solution for constructing the XML
views. We have opted to use an existing XQuery engine (SAXON), and extract
the relational tuples in XML format to use as input to SAXON. We have mea-
sured the performance of our solution, and, as expected, the results could be
improved by leveraging more efficient XML query processing techniques such
as those in Fernádez et al. [2002], Shanmugasundaram et al. [2000, 2001], and
Chaudhuri et al. [2003]. In future work, we plan to adapt these ideas in our
architecture.
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Fig. 18. Experimental results for Mondial (left-hand side) and TPC-H (right-hand side) databases.

However, since the focus of our work is translating updates to relational up-
dates, the total cost of performing the update is less relevant than the overhead
of our solution. The Overhead Time of our solution is measured as time to parse
the UXQuery + time to extract the relations as XML files + time to transform
the UXQuery into XQuery. We have compared the Overhead Time with the time
to execute the corresponding XQuery using SAXON (the Query Execution Time)
and have found that it is not large.

We have evaluated the overhead of our view construction solution on two
different databases: Mondial [May 1999] and TPC-H. The evaluation results
are shown in Figure 18, where the left-hand side of the figure shows the results
for the Mondial database, and the right-hand side shows the results for the
TPC-H database.

In the Mondial database experiment, we varied the number of joins (source
tables) in the view from 2 to 26 (shown on the x axis). Some of the views have
the same number of joins; for instance, we had two views with two joins each.
What varies, in this case, is the number of tuples in the resulting view. Thus the
graph in Figure 18 is ordered according to the number of tuples involved in the
view construction. As an example, the first view has 2 joins and 390 tuples, and
the last view has 26 joins and 15384 tuples involved in the view construction
(the number of tuples is not shown in the graph). The number of tuples was
obtained by counting the number of tuples that were extracted by the XML
Extractor. The y axis uses logarithmic scale and shows the time to construct
the view—the overhead time and the query execution time, as explained above.
With this data set, our overhead as a percentage of total execution time was
always low, no matter how many joins were in the view. The largest overhead
was 4.27% of the total time (first view), and the smallest was 0.0005% of the
total time (third view). It is also important to state that the views in Mondial
have varying depths.

The TPC-H database was used to measure the data volume our approach is
capable of handling. We used the same view definition query in each experi-
ment, varying the number of tuples that were involved in each view. The view
contains data about Orders and LineItems, and we varied the number of Orders
in each view. The first view has Orders with OrderKey = 1 (that is, it has a single
order and its line items). The second view has Orders with OrderKey < 10. We
increased this progressively to 50, 100, 200, 500, 1000, 5000, 10000 and 50000;
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after this point, the performance became unnaceptable. For the TPC-H graph,
we show on the x axis the number of tuples involved in each view, and on the
y axis the time in seconds (logarithmic scale). Our tests with the TPC-H views
showed that when very few tuples were involved the overhead as a percentage
of total cost was large. For instance, in the first view, we took 0.13 s executing
the corresponding XQuery, and the overhead of our solution took an additional
0.11s. The total execution time in this case was 0.24 s, and the overhead of
our solution represented 46.43% of this time. However, since the times were
small, this overhead was not a performance problem. When the number of tu-
ples involved increased, and consequently the query execution time increased,
the overhead as a percentage of total cost diminished drastically. In the last
view (the one with 62695 tuples), our overhead represented only 0.11% of the
total execution time.

These results show that the overhead of our solution is low, but that the
overall performance of the system could be improved by using an XQuery engine
that takes advantage of the underlying relational DBMS engine. We plan to
address this issue in future work.

8. REMARKS AND FUTURE WORK

In this article, we have presented a solution to the problem of updates through
XML views over relational databases. The proposed solution takes advantage
of existing work on updates through relational views. The XML views are
constructed using UXQuery, which allow nesting as well as heterogeneous sets
of tuples, and can be used to capture most of the features we encountered in
real views.

One of the main contributions of this article are algorithms to map XML
views to a set of underlying relational views, and to map updates on an
XML view instance to a set of updates on the underlying relational views. By
providing these mappings, the XML update problem is reduced to the relational
view update problem and existing techniques on updates through relational
views [Dayal and Bernstein 1982; Keller 1985; Bancilhon and Spyratos 1981;
Lechtenbörger 2003] can be leveraged. As an example, in Braganholo [2004]
we showed how to use the approach of Dayal and Bernstein [1982] to produce
side-effect free updates on the underlying relational database.

Another benefit of our approach is that query trees are agnostic with respect
to a query language. Query trees represent an intermediate query form, and
any (subset of an) XML query language that can be mapped to this form could be
used as the top level language. In particular, we have implemented our approach
in a system called PATAXÓ that uses a subset of XQuery to build the XML
views and translates XQuery expressions into query trees as an intermediate
representation.

Similarly, our update language represents an intermediate form that could
be mapped into from a number of high-level XML update languages. In our
implementation, we use a graphical user interface which allows users to click
on the update point or (in the case of a set oriented update) specify the path in
a separate window and see what portions of the tree are affected.
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The contributions of this article as follows:

—A notion of query trees which supports grouping of tuples. We add a new type
of node (τG) into the query trees of Braganholo et al. [2004] to group tuples
that agree on a given value. Query trees can be used as an intermediate
representation of a top-level query language, making our approach syntax
independent. Any language that can be mapped to query trees can be used
to specify the XML views. In Braganholo [2004], we evaluated the expressive
power of query trees and showed that query trees are expressive enough to
be used in practice.

—Mapping from XML views to relational views. Given an XML view specified
by a query tree, we provide algorithms to map it to a set of corresponding rela-
tional view expressions. We also provide algorithms to translate updates over
the XML view to updates over the corresponding relational views. We thus
transform an open problem—that of updating relational databases through
XML views—into an existing problem—that of updating relational databases
through relational views.

—A subset of XQuery to specify XML views over relational databases. We have
proposed and implemented a subset of XQuery which is capable of construct-
ing XML views over relational databases [Braganholo et al. 2003b]. UXQuery
uses query trees as an intermediate representation to map the resulting XML
view to relational views.

—PATAXÓ. We have implemented our ideas in the PATAXÓ system to
show the feasibility of our approach. PATAXÓ uses UXQuery as the view
definition language and the approach of Dayal and Bernstein [1982] to
translate updates from the relational views to the underlying relational
database.

In this article, we do not deal with the correctness of the translation of
updates to the underlying relational database, since we do not control how
they are performed. In our implementation, we use the algorithms of Dayal
and Bernstein [1982] to translate updates to the relational views to the rela-
tional database; updates which can potentially cause side effects are rejected,
thus the definition of correctness is “side effect free”. In Braganholo et al.
[2004], we used these algorithms to present an updatability study of query
trees without group nodes. The extensions of query trees we make in this ar-
ticle, however, require some changes to the updatability study as shown in
Braganholo [2004]. As an example of the side effects that may be caused by
group nodes, suppose we specify a modification over the view in Figure 1 by ref
= /vendor/vendor[@id="1"]/products[@price$=$"38"]/@price and � = {29}. The
evaluation of ref yields node 9. Although it seems fine to modify the value of
this node, the reconstructed XML view would collapse the subtree rooted at node
13 with the subtree rooted at node 8. This happens because we are changing
the value of node 9 to a value that was already in the view, and the semantics of
GROUP requires that nodes that agree in the value of price should be collected
together. As a consequence, the XML view modified by the user will be different
from the reconstructed view—a side effect.
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As another example, consider a deletion over the view in Figure 1 with update
path ref = /vendor/vendor[@id="1"]/products[@price$=$"38"]/book, which evalu-
ates to node 10. The deletion of this book will also make the subtree rooted at
node 8 (products) to disappear. This is because node 10 was the only book being
sold by this price under this vendor.

Our implementation of PATAXÓ prevents these situations by adding two
more restrictions on correct updates (Definition 5.4). The first one prohibits
modifications on group nodes, and the second one prohibits deletions of starred
children of τG nodes. Other options for dealing with the problem of updating
group nodes include (1) performing instance analysis to catch exactly those
cases that produce side effects; or (2) allowing side effects in these special cases,
or redefining side effects to exclude empty groups or groups which collapse. We
leave this for future research.

In future work, we also plan to improve the feedback given to users when
an update is rejected. Currently, there is a mismatch between what a user sees
(and how he or she understands the system—XML views), and how updates
are being managed (translated to relational views). As an example, suppose
the user wants to delete a subtree t in the XML view. This update is translated
to a deletion over the corresponding relational view V . Suppose that this update
fails because the translation procedure detects that there would be a side effect.
The side effect was detected using the relational views and its constraints,
which the user is not aware of. The question is: how can we explain to the
user why the update was rejected? This becomes even more complicated in
our scenario, since any translation process of updates through relational views
can be used. Consequently, different notions of correctness can be adopted, and
different error messages can happen.

Another important issue regards the view generation process. As shown in
our evaluation (Section 7), our view generation process is not efficient. We plan
to adapt one of the existing proposals in the literature [Fernádez et al. 2002;
Shanmugasundaram et al. 2000, 2001, and Chaudhuri et al. 2003] to PATAXÓ,
so views are constructed more efficiently, taking advantage of the underlying
DBMS query engine.

We also plan to extend the language to include other features such as aggre-
gates, and to extend the model to include order.

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital
Library. The appendix contains the proofs of the theorems of Section 6 as well
as algorithms and the partitioned query trees corresponding to the application
of algorithm split.
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