CMP
265:
Pattern Recognition Methods and Applications (Graduate Course,
Second Semester)
OBJECTIVES:
COURSE
OUTLINE:
· Introduction to Pattern
Recognition
· Bayesian Decision Theory
· Maximum Likelihood and
Bayesian Estimation
· Non-Parametric Techniques
and Linear Discriminant Functions
· Stochastic Methods
and Pattern Recognition (Selected Topics)
· Graphic (Graph-Based) Models
in Pattern Recognition
· Clustering (Selected Topics)
BIBLIOGRAPHY:
·
R. O. Duda, P. E. Hart, and D. G. Stork,
Pattern Classification, Wiley-Interscience.
2001
Complementary
·
K. Fukunaga, Statistical Pattern Recognition, 2nd edition, Morgan
Kaufmann, 1990
·
T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical
Learning: Data Mining, Inference and Prediction, Springer-Verlag, 2009.
·
Selected papers (e.g.: IEEE
PAMI, CVPR, etc.)
Hours/Week: 4
Credits: 4