Confiabilidade e Desempenho 1

Marcelo Johann

Lembrando: gerenciamento de espaço livre

- · 2 problemas foram vistos:
 - Escolha do tamanho de bloco adequado
 - Se for muito pequeno, se gasta muito em seek/latência
 - Se for muito grande, se chega a fragmentação.
 - · Mais um meio-termo a achar!
 - Mecanismo de gerenciamento dos blocos livres
 - · Lista encadeada vs. Bitmap.

INF01142 - Sistemas Operacionais I N - Marcelo Johann - 2009/2

Aula 26 : Slide 2

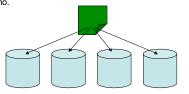
30 segundos de filosofia: informação x processamento

- · Informática = processamento de dados.
- Processamento é cada vez mais rápido e barato
 - Ciclo de relógio menor, integração maior, paralelismo, nanotecnologias, lei de Moore, etc...
- Dados = informação é cada vez mais preciosa:
 - Sucesso da rede (Web, redes P2P...)
 - Banco de dados / data mining
 - Bibliotecas digitais (Google)
- Perder um computador pode ser chato, mas nem tão problemático.
- · Perder um disco pode ser extremamente prejudicial!

INF01142 - Sistemas Operacionais I N - Marcelo Johann - 2009/2

Aula 26 : Slide 3

Confiabilidade & Desempenho

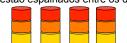

- O disco deve armazenar dados de forma consistente e duradoura
 - Confiabilidade é uma característica fundamental do sistema de arquivos.
 - O HW é falível!
 - Pode ser auxiliada pelo HW, e/ou aumentada pelo SW
 - · Discos RAID
 - Diagnóstico/manutenção/conserto de problemas pelo Sis. Op.
- O acesso ao disco é naturalmente demorado
 - Desempenho deve ser garantido.
 - Emprego de cache de HW e de técnicas de SW (vide tabelas Hash, escalonamento de acessos...)

INF01142 - Sistemas Operacionais I N - Marcelo Johann - 2009/2

Aula 26 : Slide

Discos RAID

- Redundant Array of Independent Disks
 - Combinação de vários discos físicos para prover redundância
 - O usuário só enxerga um disco único!
 - Visa o aumento do desempenho e da confiabilidade
 - Paraleliza os acessos e garante backups.
 - Existem diversos níveis de discos RAID conforme o grau de paralelismo.



INF01142 - Sistemas Operacionais I N - Marcelo Johann - 2009/2

Aula 26 : Slide 5

Níveis de RAID

 RAID-0: os arquivos estão recortados em strips, e os mesmos estão espalhados entre os discos.

Arquivo A Arquivo A

- RAID-1: espelhamento
 - Há cópia física de todo um disco em (pelo menos) um outro.
- RAID-2-3-4: stripping + paridade armazenada separadamente.
 - 2: paridade / bit ; 3: paridade Byte ; 4: paridade / bloco.

Arquivo A Arquivo C

INF01142 - Sistemas Operacionais I N - Marcelo Johann - 2009/2

Aula 26 : Slide 6

RAID (fim)

- · Existem outras combinações...
 - Espelhamento + stripping
 - Distribuição da informação de paridade
- · Cada vez que há redundância, se perde espaço "útil"
 - Mas se ganha em segurança e em tempo de leitura!
- Usar discos RAIDs necessita de um sistema de arquivo especial em nível do Sis. Op.
- Discos RAID podem também ser simulados em software...
 - Diminui o tempo de E/S!

INF01142 - Sistemas Operacionais I N - Marcelo Johann - 2009/2

Aula 26 : Slide 7

Backups

- · Estratégico!
 - Um dos problemas é: onde fazer o backup...
- · Backup integral: todo um sistema de arquivos é copiado.
- · Backup incremental:
 - Parte-se de uma versão inicial do sistema de arquivos
 - só as diferenças (atualizações) são armazenadas a partir da última versão.
 - No Linux: existe o comando 'rsync'
- · Política de backup:

 - 1 backup integral cada semana;
 Backups incrementais todos os dias.

INF01142 - Sistemas Operacionais I N - Marcelo Johann - 2009/2

O problema dos blocos defeituosos

Existem duas grandes fontes de problemas para um sistema de arquivo:

- De repente, um bloco (setor) do disco estraga
 - · Problema material
 - Perda dos dados no bloco, mais problema potencial ao acessar o
- Perda da coerência entre as estruturas de dados
 - Queda de luz. "CTRL-ALT-DEL" violento.
 - Parte dos blocos copiados na RAM ou em Cache não esteve atualizada no disco.
 - · Perda de dados, ou pior, de acesso a parte do sistema de arquivos.

INF01142 - Sistemas Operacionais I N - Marcelo Johann - 2009/2

Aula 26 : Slide 9

Blocos defeituosos

- · Os discos incluem pelo menos um setor extra por trilha, que servem para compensar um defeito em um (vários) setor(es) da trilha.
 - O próprio controlador do disco pode remapear os setores se for preciso.
- O sistema de arquivos mantém uma lista dos blocos defeituosos.
 - Inicializada desde a formatação do sistema de
 - Evita trancar o sistema de arquivos, mas não prevê a perda dos dados no(s) bloco(s) defeituosos.

INF01142 - Sistemas Operacionais I N - Marcelo Johann - 2009/2

Consistência do sistema de arquivos

- Problema crucial quando blocos "perdidos" contêm inodes, listas (de blocos defeituosos por exemplo), diretórios...
- · Uso de programas de sistema especiais que verificam a consistência de um sistema de arquivos
 - fsck no linux/Unix.
- · Podem ser executados ao boot
 - Útil após um crash.
 - Demorado, pois varre todo o sistema de arquivos!

INF01142 - Sistemas Operacionais I N - Marcelo Johann - 2009/2

Aula 26 : Slide 11

Para piorar...

- · O que acontece com escritas?
- Considere a criação de um novo arquivo em um diretório:
 - /home/johann/arquivo.txt
 - Deve-se, potencialmente, escrever dados:
 - No inode do diretório /home/johann (para alterar os números de
 - Em um bloco de dados do mesmo inode (para inserir uma entrada)
 - No inode do novo arquivo 'arquivo.txt' (nome do arquivo...)
 - · Em pelo menos um bloco apontado pelo mesmo. - Têm pelo menos 4 blocos envolvidos.
- Se houver um crash enquanto isso, há possibilidade séria de alguma inconsistência.

INF01142 - Sistemas Operacionais I N - Marcelo Johann - 2009/2

Fsck: consistência de blocos

Constrói duas tabelas:

- Cada uma contém um contador por bloco, inicializado com zero.
 - 1a tabela: quantas vezes um bloco está referenciado por um arruiyo.
 - 2a tabela: quantas vezes um bloco está na lista de blocos disponíveis.
- Lê todos os inodes e varre recursivamente todos os blocos usados
 - Atualiza a 1a lista
- Lê a lista de blocos disponíveis
 - Atualiza a 2a lista

INF01142 - Sistemas Operacionais I N - Marcelo Johann - 2009/2

Aula 26 : Slide 13

Resultados e medidas a tomar

- 10 caso: cada bloco aparece UMA vez só em apenas uma tabela.
 - Tudo está bem.
- 2o caso: um bloco não aparece em nenhuma tabela (missing block)
 - Espaço perdido..
 - Solução simples: o bloco entra na tabela de blocos livres.
 - (obs: perder-se-á o conteúdo do bloco!)
- 3o caso: duplicação de um bloco na lista de blocos disponíveis
 - Limpa a lista.
- 4o caso: duplicação de um bloco na lista de blocos em uso.
 - Recupera um bloco livre, copia o duplicado nele, e usa o novo bloco em um dos dois arquivos.

INF01142 - Sistemas Operacionais I N - Marcelo Johann - 2009/2

Aula 26 : Slide 14

fsck: consistência de diretórios

- · Verifica a consistência dos diretórios
 - Operação semântica.
- · A partir da raiz, varre a árvore de diretórios
 - Cria uma lista: para cada inode/arquivo, contabiliza o número de diretórios que o contém.
 - Após isso, compara com o contador contido no inode (número de links)
 Ambos devem ser iguais!
- Caso haja mais links do que caminhos:
 - O arquivo n\u00e3o ser\u00e1 deletado em devido tempo.
 - Solução: seta o número de links igual ao número de caminhos.
- Caso haja menos links do que caminhos:
 - Muito grave! Vai ser (ou já foi) perdido dados.
 - Solução: seta o número de links igual ao número de caminhos.

INF01142 - Sistemas Operacionais I N - Marcelo Johann - 2009/2

Aula 26 : Slide

Desempenho e Cache de disco

- · Tempo de acesso ao disco >> tempo de acesso à RAM.
- Deve-se usar mecanismos de Cache para agilizar o acesso.
 - "Cache" vem do francês "Cacher" = "esconder". :o)
- Cache = coleção de blocos, logicamente pertencendo ao disco, mas temporariamente na RAM.
- Enquanto só têm leituras, não tem dificuldade:
 - A 1a leitura traz o bloco para a Cache, as leituras sucessivas lêem õ bloco na Cache.

INF01142 - Sistemas Operacionais I N - Marcelo Johann - 2009/2

Aula 26 : Slide

Políticas de atualização de Cache

Quando a cache está cheia...

- É preciso descartar um bloco que está na Cache;
 - Vide políticas LRU/FIFO,2a chance da paginação...
 - Os acessos são mais raros e mais bem ordenados do que no caso da memória.
 - Antes disso, se foi alterado, é preciso copiá-lo no disco.
 Vide bit de sujeira das páginas!
- Problema com LRU:
 - a política é deixar dados "envelhecer" na Cache.
 - Quanto mais tempo passa antes de ser gravado no disco, maior o risco de crash/inconsistêncial

INF01142 - Sistemas Operacionais I N - Marcelo Johann - 2009/2

Aula 26 : Slide 17

Resumo – sistemas de arquivos

Setores, blocos e clusters, dados e meta-dados...

- Em nível de Hardware, existem setores
 - Trilhas, cilindros..
- · Em nível do FS, os setores são agrupados em blocos (ou clusters)
 - Problema do tamanho do bloco/cluster
- Blocos são usados pelo FS para:
 - Armazenar dados "brutos" (blocos de dados)
 - Armazenar informação de gerenciamento dos blocos de dados (meta-dados)
- Meta-dados e dados formam o Sistema de Arquivos, enxergado pelo usuário como:
 - Diretórios, arquivos, informações de acontabilidade...

INF01142 - Sistemas Operacionais I N - Marcelo Johann - 2009/2

Aula 26 : Slide 19

O que está nos meta-dados?

- · Todo o necessário à administração dos dados:
 - Endereços de blocos (de dados ou de outros meta-dados, por exemplo de diretório)
 - Quando foi acessado um arquivo/diretório
 - O dono do arquivo/diretório
 - O tamanho (número de blocos usados)
 - Direitos de acesso
 - Blocos livres
 - Bitmap
 - lista

INF01142 - Sistemas Operacionais I N - Marcelo Johann - 2009/2

Aula 26 : Slide 20

Windows 2000+ --- NTFS

- FS do Windows desde 2000 (sucessor da FAT)
- Agrega os setores em clusters
- 512 Bytes (particões de 512 MBytes)
- Até 4 KB (partições de mais de 2 GB)
- · Define volumes (partições);
- Incluí links, compressão, jornalização...
 - Atomicidade (transações) das operações críticas
 - · Criação de arquivos/diretórios, aumento de tamanho, remoção...
 - Redundância de arquivos críticos
 - Caso estrague um setor.
 - garante os meta-dados, não os dados.

INF01142 - Sistemas Operacionais I N - Marcelo Johann - 2009/2

Aula 26 : Slide 21

Implementação da NTFS: MFT

- Descritores de arquivos/diretórios são índices de entradas na **Master File Table** (MFT)
- A MFT é uma tabela de entradas (**records**), cada uma de tamanho fixo 1 KB.
 - .

 Obs: se um cluster é identificado por um endereço de 4B, cada entrada contém no máximo 256 endereços de clusters.


 256 x 1K = 256 KB.
- Há um record por arquivo/diretório no volume.
 - Não estoura, graças ao mecanismo de jornalização!
- A cada record é associado um arquivo extra, que contém os meta-dados.
 - O resto dos arquivos do volume contém os dados dos usuários

INF01142 - Sistemas Operacionais I N - Marcelo Johann - 2009/2

Os records da MFT 0 1 Espelho MFT 2 Arquivo de log 3 Arquivo do volume 4 Tabela de def. atributos 5 Raiz Reservados Bitmap de clusters livres 6 aos 7 Setor de boot Meta-dados 8 Setores estragados predefinidos Clusters estragados 10 Segurança 11 Dir. meta-dados extendidos 12 Não usado. 16 Arquivo/diretório usuário INF01142 - Sistemas Operacionais I N - Marcelo Johann - 2009/2 Aula 26 : Slide 23

Conteúdo de um record

- Para o NTFS, um arquivo é um conjunto de pares (atributo, valor)
- Dados constituem apenas um atributo (unnamed data attribute)
- Exemplos de atributos:
 - Standard information: Read-only, data de criação, número de links...
 - Filename: Nome, Data: dados no caso de arquivos ou endereço de arquivos na MFT no caso de diretórios
- EFS: criptografia, etc. · Atributos podem ser residentes ou não

Atributos não residentes Quando um atributo se torna muito grande (> 1 KB), ele se torna não-residente. O record armazena apenas ponteiros sobre um espaço no disco **fora** da MFT (*run*); Pode haver mais de um *run* por atributo. Usado quando há muitos arquivos num diretório, quando um arquivo é muito grande, ... Guarda uma tabela de mapeamento VCN/LCN É um mecanismo de lista! standard filename Virtual 6 Cluster Nb Logical 5210 Cluster nb. INF01142 - Sistemas Operacionais I N - Marcelo Johann - 2009/2 Aula 26 : Slide 25

NTFS e abertura de um arquivo

- · A partir da raiz, se percorre o caminho até o arquivo
 - Ex. \D:\Windows\My Documents\aula.ppt
 - Cada record associado a um diretório será lido:
 - · Deve ser carregado do disco para a memória
 - Na verdade, já há cópia na RAM.
 - · Verifica-se os direitos de acesso
 - Na verdade, já há cópia na RAM.
 - Encontra-se o diretório seguinte no caminho
 - Na verdade, já há cópia na RAM. - Determina-se os clusters onde se encontram os dados

INF01142 - Sistemas Operacionais I N - Marcelo Johann - 2009/2 Aula 26 : Slide 26

Linux - ext3fs

- Diretórios e arquivos são implementados através de inodes:
 - Inode = alguns campos de meta-dados + ponteiros para blocos de
 - A tabela de inodes contém todos os inodes existentes no FS. Inodes são referenciados na tabela
- · Não há Master File Table (tabela de entradas):
 - Os blocos são organizados em grupos
 - Cada grupo é descrito por um super-bloco
 - O superbloco aponta para os grupos que contém apontadores para suas estruturas internas
 - Estrutura de lista.

INF01142 - Sistemas Operacionais I N - Marcelo Johann - 2009/2

Aula 26 : Slide 27

Descrição dos grupos no ext3fs

- Super-bloco:
 - Contém meta-dados relevantes a toda a partição (duplicado em cada grupo)

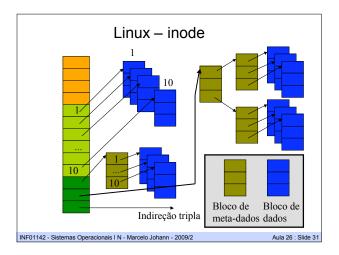
 • Número mágico da partição,

 - · número de mounts,
 - · tamanho do bloco,
 - tamanho do grupo (m),
 - ponteiro para o 1o inode do sistema de arquivos (/).
 - Número de inodes, de inodes livres, de blocos livres.
- · Descritor do grupo:
 - 1 entrada por grupo
 - Cada entrada fornece:
 - · O endereço do bloco onde está o bitmap dos blocos livres;
 - O endereço do bloco onde está o 1o inode na tabela.
 - O endereço do bloco do bitmap dos inodes

INF01142 - Sistemas Operacionais I N - Marcelo Johann - 2009/2

Aula 26 : Slide 28

Representação dos grupos Descrição da partição inteira (tamanho, raiz, número de estruturas disponíveis... Grupo 0 Grupo 1 Grupo m-1 Tabela inodes 1 bloco 1 bloco 1 bloco v blocos m blocos INF01142 - Sistemas Operacionais I N - Marcelo Johann - 2009/2 Aula 26 : Slide 29


Conteúdo do inode

- Meta-dados:
 - Tipo de arquivo (4 bits), direitos de acesso
 - Número de links
 - Dono (UID+GID)
 - Tamanho em bytes
 - Hora de último acesso

- 10 ponteiros para blocos de dados
- 1 ponteiro para blocos que vão conter ponteiros sobre blocos de dados
 - Indireção dupla
- · 1 ponteiro de indireção tríplice

INF01142 - Sistemas Operacionais I N - Marcelo Johann - 2009/2

Aula 26 : Slide 30

Ext3fs e abertura de um arquivo

- A partir da raiz, se percorre o caminho até o arquivo
 - Ex. /home/nicolas/aula.pdf
 - Cada inode associado a um diretório/arquivo será lido:
 - Carrega-se do disco para a memória
 - Na verdade, já há cópia na RAM.
 - Verifica-se os direitos de acesso
 - Encontra-se o bloco que contém os dados
 - Determina-se os blocos onde se encontram os dados

INF01142 - Sistemas Operacionais I N - Marcelo Johann - 2009/2

Auto 26 - Clido 20

Próxima aula...

- · Confiabilidade e desempenho 2
- Sistemas de Arquivos Jornalizados

INF01142 - Sistemas Operacionais I N - Marcelo Johann - 2009/2

Aula 26 : Slide 33